JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

B.Tech-VII Semester (BT)

COURSE CODE (CREDITS): 18B1WBI731(3)

MAX. MARKS: 25

COURSE NAME: Computational Systems Biology

COURSE INSTRUCTORS: Dr. Raj Kumar

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	CO	Marks
22.10	Queenon A	-	2120222
Q1	Give a brief account of the various types of protein—protein	5	3
	interactions, and enumerate the methods used for identifying PPIs.		
Q2	The BioCyc database collection is a set of several pathway/genome	2	3
`	databases (PGDBs). Provide a short summary of tasks involved in		
	curating BioCyc databases?		
Q3	Explain the working of the given synthetic gene circuit:	3	5
	P _L lac01		
	amp ^R tetR-lite		
	P, tet01		
	kars Rusy		
	letR \ TetR		
	pSC101 AP _R gfp-aav		
	origin [a]		
	GFP -		
	laci-lite		
	ColE1		
:	λ cl-lite		ŀ
	P ₁ tel01		
4.			
		,	
Q4	Create a possible XML output for the following Vet. Data:	4	5
	Conservation Street Age		
	Hafsah Downs Cashew 2		
	Carrie Pope Chase 1		
	Jim Chandler Otis 20		

Q5	Given a simple metabolic network with four reactions and three metabolites, construct the stoichiometric matrix and set up the FBA optimization problem (objective function + constraints).		5
	Metabolic network $ \begin{pmatrix} v_1 & M_1 & v_2 \\ M_1 & M_2 & M_2 \end{pmatrix} $		
Q6	Use Kruskal's Algorithm to find a minimum spanning tree in the weighted graph given below:	5	4
Q7	Systems biology is a scientific approach that studies complex biological systems. Explain the following in the context of systems biology.	1	2 × 5 =10
	 a) Reductionist Vs. systems approach b) Emergent properties c) Model organisms d) Kinetic Modelling e) Systems biology and synthetic biology 		