JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

B.Tech-I Semester (CSE/IT/ECE/CE/BT/BI)

COURSE CODE (CREDITS):10M11CI111

MAX. MARKS: 35

COURSE NAME: Advanced Data Structures

COURSE INSTRUCTORS: Saurav Singh

MAX. TIME 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

	APO, No.	<u> </u>	
Q.No	Question	CO	Marks
Q1	You are given the heads of two singly linked lists that merge at some node and continue as a single list. Write a function that returns the value (or a reference to the node) at which the two lists merge. The linked lists must retain their original structure after the function returns.	CO1	5
Q2	Given an unsorted array, prove that building a heap from the array using the "insertion" method (Top-down method) has O(nlogn) time complexity.	CO2	5
Q3	Use the Floyd-Warshall Algorithm to find the Transitive closure path in a directed graph.	CO3	5
Q4	Analyze a binary counter that starts from 0 and supports only increment operations. Using the potential method , prove that the amortized cost per increment is O(1). Let the potential function Φ be the number of 1's in the counter. Show that: • Actual cost of increment: number of bits flipped • Amortized cost = Actual cost + $\Delta\Phi$ • Prove amortized cost ≤ 2	CO5	7
Q5	Design a stack that supports: • push(x): O(1) time • pop(): O(1) time • multipop(k): Pop k elements (or until stack empty) Using aggregate analysis, prove that a sequence of n operations (mix of push, pop, multipop) on an initially empty stack takes O(n) time total.	CO5	7

Q6	A company has built an MST connecting 5 offices with the following CO6	6
	edge weights:	
	Original MST edges:	
	A-B: 5, B-C: 3, C-D: 7, D-E: 4	
	Total cost: 19	
	The company considers these changes:	
	1. Adding a new direct connection A-E with cost 6	
	2. Increasing cost of edge C-D from 7 to 9 due to maintenance	
	3. Adding a new office F with connections: A-F: 4, C-F: 2, E-F: 5	. A
	Tasks:	¥
	1. Should they add edge A-E to reduce cost? Show calculations.	
	2. If C-D cost increases to 9, should they keep it in MST?	
	3. Find new MST including office F and all connections	
	4. Calculate total cost savings/loss from all changes	