JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

MTech-I Semester (DS)

COURSE CODE (CREDITS): 22M11MA111 (3)

MAX. MARKS: 35

COURSE NAME: Mathematical Foundations for Data Science

COURSE INSTRUCTORS: RVS

MAX. TIME, 2 Hours

Note: (a) All questions are compulsory.

(b) A scientific calculator is allowed.

		A 450	
Q.No	Question	₽C Q ₽	Marks
Q1	(a) Explain with an example how closure under addition and olosure.	¿CO1	2+3
	under scalar multiplication ensure that a set qualifies as a vector space?		-
	(b) Check whether the following vectors in \mathbb{R}^3 are linearly		
	independent:		
	u = (1, -2, 0), v = (3, -6, 1), w = (2, -4, +1),		
	Show all steps clearly.		
Q2	(a) What is the span of a set of vectors? How is span related to the	CO2	2+3
	concept of a subspace? Provide one example		
	(b) Let		
	$S = \{(x, y, z) \in \mathbb{R}^3 \mid 4x - y + z = 0\}.$		
	(i) Show that S is a subspace of \mathbb{R}^3 .		
	(ii) Find two linearly independent vectors that form a basis for S.		
Q3	(a) Explain the geometric meaning of a basis. Why does choosing a	CO2	2+3
Q ₃	different basis change the coordinate representation of vectors?	002	2,13
	(b) Let		
	T(x,y) = (2x - y, x+3y)		
	(i) Find the matrix representation of T.		
***	(ii) Compute $T(3,-1)$.		
Q4 ^t	(a) Define an invariant subspace for a linear operator. Give one	CO3	2+3
*	example of an invariant subspace of a 2×2 matrix.		
	(b) For		
	r7 27		
	$A = \begin{bmatrix} 7 & 2 \\ 0 & 3 \end{bmatrix},$		
	(i) Find the eigenvalues. (ii) Find one eigenvector for each eigenvalue.		
	(iii) Decide whether A is diagonalizable.		
L	, , , , , , , , , , , , , , , , , , ,	<u> </u>	l

Q5	(a) Evaluin announced manner is ad and mainforcement learning	CO2	2.2
ŲΣ	(a) Explain supervised, unsupervised, and reinforcement learning.	CO3	3+2
	Give one real-world example for each.		
	(b) Why is Machine Learning useful for solving complex real-life		
	problems? Give two reasons.		
Q6	(a) K-Means Numerical:	CO4	3+2
	Given points $(1,1)$, $(2,1)$, $(4,3)$, $(5,4)$ and initial centroids		
	$C_1 = (1,1), C_2 = (5,4),$	(France)	me.
	perform one full iteration of K-Means (assignment + recompute centroids).	San	
		A 18 18 18 18 18 18 18 18 18 18 18 18 18	
	(b) Explain the working intuition of Naive Bayes and Decision Tree	1 10	
	classifiers.	h .	
Q7	a) A matrix with distinct eigenvalues is always diagonalizable. (T/R)	*CO1-	5
	b) K-Means clustering is an example of supervised learning. (TYF)	4	
	c) Every subspace must contain the zero vector. (T/F)		
	d) The zero vector cannot be part of a linearly independent set. (T/F)		
	e) If $Av = \lambda v$, then v is an eigenvector of $A_{\bullet}(\vec{V}/\vec{F})$]
	f) The number of vectors in any basis is the first of the vector		
	space.		
	g) A set of vectors is linearly dependent if one vector can be written as		
	a of others.		
	h) In Naive Bayes, features are assumed to be conditionally		
	i) The determinant of a diagonal matrix is the of its diagonal		
	entries.		
	j) In a field, every non-zero element has a multiplicative		
		1	