JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -3 EXAMINATION- 2025

M.Tech-1st Semester (CE)

COURSE CODE (CREDITS): 25M1WCE114 (3)

MAX. MARKS: 35

COURSE NAME: FINITE ELEMENT METHODS

COURSE INSTRUCTORS; DR SAURAV

MAX. TIME; 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever reguired for solving problems

(c)Use of Non Programmable Scientific Calculator is allowed

	c)Ose of Non Programmable Scientific Calculator is allowed		
Q.No	Question	CO	Marks
Q1	Set up a structural equilibrium equation in Matrix form for the frame as shown in Fig. 1 by Potential energy method. For AB, EI= 1 For BC, EI= 2 and For		
	BD, EI= 3	•	
		1	6
	Fig. 1		
Q2	Find the stress at the support and in the middle for the system shown in Fig. 2. Use the following displacement field. h is the unknown displacement in the field		
	$U = \frac{4hx(l-x)}{l^2}$	1	7
7			
	AE, L		
	Fig. 2		

Page 1 of 2

Q3.	A truss member ij is oriented at an angle α measured counterclockwise from the global (structure) axis system X_S-Y_S to the local (member) axis system X_M-Y_M .		
	A translation vector at end i has components A_{XS} and A_{YS} in the structure axis system.		
	a) Derive the expressions for the corresponding components A_{XM} and A_{YM} in the member axis system.	2	6
	b) A force vector acting on a plane truss member is defined in the member coordinate system as		
	$\{A_{M}\} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$		
	If the member axis is rotated by 45° counterclockwise from the structure axis, express this vector in the structure coordinate system.		¥.***
Q3.	Compute the following integrals	i.	
:	$i) \oint 2 L_1^2 L_2^2 L_3^3 dA$	3	3
i	$ii) \oint L_1^2 L_2 L_4 dV$		
	Where L ₁ , L ₂ L ₃ and L ₄ are natural coordinates		
Q4.	i) Explain how the strain-displacement relationship is formulated for a CST		
	element. Derive the strain displacement matrix [B] for a CST.	3	6
	ii) A constant strain triangle (CST) element has the following nodal		
	coordinates: Node 1: 1,2 Node 2: 6,2 Node 3=3,7. Using these coordinates,		
	compute the geometric coefficients b ₁ ,b ₂ ,b ₃ andc ₁ ,c ₂ ,c ₃ and form the strain-		
	displacement matrix [B] for this CST element.		
Q5	Find stresses at various points of the system as shown in the Fig. 3. EI= 1	4	7 -
	$A_{a} = 4 \text{cm}^{2}$. 1
	Fig. 3		