JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

Comprehensive Examination - 2025

Ph.D (PMS)

COURSE CODE (CREDITS): 17P1WPH131

MAX. MARKS: 100

COURSE NAME: Comprehensive Test

COURSE INSTRUCTORS: Dr. Ragini Raj Singh

MAX. TIME: 3 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Sec A (34 Marks)

Q.No	Question	1 1 1
Q1	Critically discuss the scientific basis, methodology, and applications of nanoconjugate	Marks
	formulations that combine conventional fungicides with engineered nanoparticles to	
	achieve a synergistic antifungal effect. Your answer should include:	
	1. Scientific Rationale	
	 Explain why conjugating existing fungicides with nanoparticles can enhance antifungal efficacy. 	(8)
	o Include mechanisms of action such as improved bioavailability, controlled release,	
	targeted delivery, and multi-modal toxicity.	, · · ·
	2. Types of Nanoparticles and Surface Functionalization	(7)
	o Describe suitable nanoparticles	
	• Explain the role of surface chemistry, stabilizers, and functional groups in enabling	
	conjugation with fungicides.	
		. 1
	3. Formulation Strategies and Characterization Techniques	
	o Discuss chemical/physical methods used to conjugate fungicides with nanoparticles	(7)
	(e.g., ligand exchange, adsorption, covalent bonding, encapsulation).	
	o Provide the characterization techniques required to confirm conjugation and evaluate physicochemical properties	
	4. Assessment of Synergistic Effects	Sough term
	Explain how synergy is quantified using biological assays (e.g., MIC reduction, percent	
	inhibition, toxicity indexes, FIC indices).	(6)
	Discuss experimental design for in-vitro and in-vivo antifungal testing.	
The same of	Biolica Limitations and Entry Ducancets	
. MC 103	5. Risks, Limitations, and Future Prospects	
	o Evaluate potential environmental, toxicological, and regulatory challenges associated with nano-enabled fungicides.	. [
	Suggest future research directions for sustainable nanoconjugate-based fungicide	(6)
	formulations.	17

Sec B (33 Marks)

	Sec B (33 Marks)		
Q. No	Question	Marks	
Q1	Discuss in detail the working principles, data interpretation methods, and application domains of the following characterization techniques used for nanomaterials research: XRD, TEM, UV-Vis spectroscopy, SAXS, SSPL, FTIR, and DLS. Your answer must include:		
	 Fundamental Principle and Instrumentation Explain the working principle. Describe key components of each instrument. 	(7)	
	Data Output and InterpretationExplain the type of data obtained:	Alba	
	XRD: crystallite size, lattice parameters, phase identification TEM: morphology, lattice fringes, SAED UV-Vis: bandgap, plasmon resonance	(12)	
	TIM: surface topography at atomic scale FTIR: functional groups, bonding DLS: hydrodynamic size, polydispersity		
	o Provide examples of how these data are used in Nanomaterials characterization.		
	3. Advantages, Limitations & Complementarily o Discuss resolution limits, sample preparation issues.		
	characterization.		
	4. Case Study/Application to Nanomaterials: Select any nanomaterial (e.g., metal nanoparticles, quantum dots, nanocomposites) and describe how at least four of these techniques together help in understanding its completely.	(6)	
		(8)	

Sec C (33 Marks)

Q. No	Question	Marks
Q1	Discuss in detail the synthesis of nanomaterials using the following methods: solution growth, hydrothermal synthesis, micelle-assisted synthesis, sol-gel method, ball milling, and photolithography. In your answer include:	
	 Fundamental principle of each method Reaction mechanisms and process parameters (temperature, pH, pressure, precursor chemistry, templates, milling time, beam exposure) 	(9) (6)
	3. Advantages, limitations, and scalability	(6)
	4. Types of nanomaterials produced (oxide NPs, quantum dots, thin films, nanostructured powders, patterned nanostructures)	(6)
	5. diffect of synthesis method on nanomaterial properties (size, morphology, crystallinity, defects, surface chemistry, optical/magnetic projects.)	(6)