Jaypee University of Information Technology, Waknaghat

Comprehensive Examination - November 2025 Ph.D (CSE/ECE/CE/BT/BI/PMS/MATHS/HSS)

Course Code/Credits: 17P1WMA131/3

Max. Marks: 100

Course Title: Comprehensive Examination Course Instructor: RAD

Max. Time: 3 hours

Note: (a) ALL questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required.

SECTION-A (Number Theory/Weyl Algebra))
ebraic numbers with $a \neq 0, 1$ and b irr	٤.

	Q.N	2 ucbillin	
	Q1	Let a and b be algebraic numbers with $a \neq 0$	Marks
		prove the Gelfond-Schneider Thomas	7
-	$\overline{\mathrm{Q}2}$	(b) Deduce that the numbers $2^{\sqrt{2}}$ and e^{π} are transcendental.	
-	$\frac{\sqrt{2}}{Q3}$	Consider the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^{\times}$. Prove that $\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic.	
	ω ₀	Answer the following questions. Prove that $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic.	7
	•	1. Define the Euler's Totient Function	7
		2. prove that for any interest	
1	-	2. prove that for any integer a coprime to n , $a^{\varphi(n)} \equiv 1 \pmod{n}$.	
	$\overline{ ext{Q4}}$	3. Use this to explain the mathematical principle behind the RSA. Let $A_1(\mathbb{F}) = \mathbb{F}(x, y)$ [a. a.]	
-	$\overline{\mathrm{Q}5}$	characteristic 0. P.T A ₁ F is the first Weyl algebra over a field F of	7
		Consider the automorphism ϕ of $A_1(\mathbb{F})$ defined by $\phi(x) = x$, $\phi(y) = y + p(x)$, where $p(x) \in \mathbb{F}[x]$. ϕ preserves the commutation relation $f(x) = y + p(x)$,	
	l	where $p(x) \in \mathbb{F}[x]$. If ϕ preserves the commutation relation $[y, x] = 1$.	6
		(3) 2 - 1.	_

SECTION-B

(Mathematical Analysis)

Q.N	Tridiyais)	
	Prove or disprove that $f(x) = 1$	Marks
Q7	Prove or disprove that $f(x) = \frac{1}{1+x^2}$ is uniformly continuous on \mathbb{R} . Evaluate $\int_{\gamma} \frac{3z^3 + 4z^2 - 5z + 1}{(z^3 - z)(z - 2i)} dz$ where the contour $\gamma : z = 3$ is taken in the positive sense.	9
	Evaluate $\int_{2}^{\infty} \frac{(z^3-z)(z-3z)}{(z^3-z)(z-2z)} dz$ where the contour	9
Q8	the positive sense. $ z = 3$ is taken in	
-,0	Define the inner and I	·
	Define the inner product on \mathbb{R}^2 , and prove or disprove that for $\mathbf{v}, \mathbf{w} \in \mathbb{R}^2$, the product given by $\langle \mathbf{v}, \mathbf{w} \rangle = v_1 w_1 - v_1 w_2 - v_2 w_1 + 4 v_2 w_2$ is an inner product. Take $\mathbf{v} = (v_1, v_2), \ \mathbf{w} = (w_1, w_2)$.	9
Q9	Consider a segment (a) $w = (w_1, w_2)$.	
	Consider a sequence (a_n) , where $a_n = \frac{1}{2} + \frac{1}{2} \sin\left(\frac{n\pi}{3}\right)$. Compute $\lim \inf a_n$	6

SECTION-C

(Advanced Linear Algebra)

	(Auvanced	Marks	
- T	Question	6	
Q.No Q10	Consider the following system of equations:		
Ø10	Consider the following system 2		
	x + 2y + z = 3		
	2x + 5y + 3z = 8 $x + y + z = 2$	1	•
	x + y + z = -2		
	(a) Reduce the augmented matrix to reduced row-echelon form.		
	(1) Determine whether the system is consistent.	7	ļ
Q11	Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by		
	(x+y)		
	$\mathbf{T}(x, y, z) = \begin{pmatrix} x+y \\ y+z \\ x+z \end{pmatrix}$		
	and and bi	asis	
	(a) Find matrix representation of T with respect to the standard by		
	(b) Determine the rank and nullity of T.		
	(c) Find a basis for the range and kernel of T	7	\dashv
016	(c) Find a basis for the say diagonal matrix.		
Q12			
	$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}.$		
	Proposectors of the matrix A.		
	(a) Find the eigenvalues and eigenvectors of the matrix A.		
	(b) Determine whether A is diagonalizable.	7	
Q	13 the following questions.		
	(a) State and prove the Cayley-Hamilton Theorem.		٠.
	(a) State and [2, 1]		
	(b) Using it, find B^4 for $B = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$.	$ {6}$	
	2 v 3 matrix:	*7	
	Consider the following 3 × 3 matrix:		
	$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$		•
	$C = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$		
	and minimal volynomials of C.		
	(a) Find the characteristic and minimal polynomials of C .		
	(b) Find the Jordan canonical form of C.		
L	* * * * * * * * * * * * * * * * * * *		