Jaypee University of Information Technology, Waknaghat Comprehensive Examination - November 2025 Ph.D (MATHS)

Course Code/Credits: 17P1WMA131/3 Course Title: Comprehensive Examination Course Instructor: RAD, PKP, MDS

Max. Marks: 100

Max. Time: 3 hours

Note: (a) ALL questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required.

(c) Scientific calculator is allowed.

(Research)

		Marks
Q.N.	Question	9
Q1	Using the Newton-Raphson method, find the solution of the following system of non-	
-	linear equations up to two iterations	
	$x^3 + y^3 = 53$, $2y^3 + z^4 = 69$, $3x^4 + 10z^2 = 770$	
	which is close to $x = 3, y = 3, z = 2$."	8
Q2	Using Galerkin method, solve the following boundary value problem (BVP):	
	$rac{d^2 u}{dx^2} + u + x = 0$ $0 < x < 1$,	
	subject to the boundary conditions.	
•	$a(0) = 0, \frac{du}{dx}\Big _{x=1} = 0.$	
Q3	Use Crank-Nicolson method to find the numerical solution of the following parabolic partial differential equation after one-time step:	9
	$T_t = T_{xx}, 0 < x < 1$	
	subject to initial condition	
	T(x,0) = 1, 0 < x < 1	
٠.	and the boundary conditions	
: :	T(0,t) = T(1,t) = 0, t0.	
	Compute the solution by taking $\Delta x = 1/4$ and $\Delta t = 1/32$.	8
Q4	Using Greens function, solve the boundary value problem	
	$\frac{d^2y}{dx^2} + y = x, y(0) = y(/2) = 0.$	

SECTIONB

(Mathematical Analysis)

Q.No	Question	Marks
Q1	Prove or disprove that $f(x) = \frac{1}{1+x^2}$ is uniformly continuous on \mathbb{R} .	9
Q2	Evaluate $\int_{\gamma} \frac{3z^3 + 4z^2 - 5z + 1}{(z^3 - z)(z - 2i)} dz$ where the contour $\gamma : z = 3$ is taken in the positive sense.	9
Q3	Define the inner product on \mathbb{R}^2 , and prove or disprove that for $\mathbf{v}, \mathbf{w} \in \mathbb{R}^2$ the product given by $\langle \mathbf{v}, \mathbf{w} \rangle = v_1 w_1 - v_1 w_2 - v_2 w_1 + 4 v_2 w_2$ is an inner product. Take $\mathbf{v} = (v_1, v_2), \mathbf{w} = (w_1, w_2)$.	9
Q4	Consider a sequence (a_n) , where $a_n = \frac{1}{2} + \frac{1}{2}\sin\left(\frac{n\pi}{3}\right)$. Compute $\liminf a_n$ and $\limsup a_n$.	6

SECTIONO

(Advanced Linear Algebra

(Advanced Linear Algebra)				
Q.No	Question	Marks		
.Q1	Consider the following system of equations: $x + 2y + z = 0$	6		
	2x + 5y + 3z $x + y + y = 2$			
	(a) Reduce the augmented native to reduced row-echelon form.(b) Determine whether the system is consistent.			
Q2	Let $\mathbf{T}:\mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $\mathbf{T}(x,\ y,\ z) \ = \ \begin{pmatrix} x+y \\ y+z \\ x+z \end{pmatrix}$	7		
	 (a) Find matrix representation of T with respect to the standard basis. (b) Determine the rank and nullity of T. (c) Find a basis for the range and kernel of T. 			

		7
Q3	Consider the following 3×3 diagonal matrix:	
,	$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}.$	
	(a) Find the eigenvalues and eigenvectors of the matrix A.	
	(b) Determine whether A is diagonalizable.	
Q4	Answer the following questions. (a) State and prove the Cayley-Hamilton Theorem.	7
	(b) Using it, find B^4 for $B = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$.	6
Q5	Consider the following 3 × 3 matrix:	
	$C \; = \; egin{bmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{bmatrix}.$	
	(a) Find the characteristic and minimal polynomials of C.	
	(b) Find the Jordan canonical ferm of C.	
	* * * * * *	<u>-</u>