JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

Comprehensive Examination - 2025

Ph. D. (MATHS)

COURSE CODE (CREDITS): MATHS

MAX. MARKS: 100

COURSE NAME: Comprehensive Examination

COURSE INSTRUCTORS: RAD, PKP, SST

MAX. TIME 3 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Sec A (MOO) [34 Marks]

Q. No.		Question	Marks
Q1		the following: What is the weighted sum method to solve multi-objective optimization problem? is this method applicable to both unconstrained and	5+5
·	b)	$Min(f_1, f_2, f_3)$ s. t. $(x, y) \in [-2.2] \times [-2.2]$.	
		$f_1(x,y) = x^2 + (y-1)^2$, $f_2(x,y) = (x-1)^2 + y^2 + 2$, $f_3(x,y) = x^2 + (y+1)^2 + 1$.	:
		Convert this problem into a single objective optimization problem using weights	
Q2		the following:	4+4+4
turtiti.	a)	What are the main differences between the multi-objective and many-objective optimization problems?	
	b)	and cons	
	2.	Explain the terms, objective reduction and dimensionality handling in an approximation problems.	
Q3	(a) (b)	the following: How are indicators useful in multi-objective optimization? Explain the following indicators mentioning measure formula, utility in terms of convergence, diversity, etc. i. Hypervolume (HV) ii. R2	4+4+4
	c)	Consider the true Pareto front (reference point) as: $P = \{(2,6), (3,4), (4,3)\}$, and algorithm output is $S = \{(2,7), (3,5), (5,3)\}$ for a bi-objective optimization problem. Compute the following using Euclidean distance: GD, and IGD.	

Sec B (ANALYSIS) [33 Marks]

Q. No.	Question	Marks
Q1	Prove or disprove that $f(x) = \frac{1}{1+x^2}$ is uniformly continuous on \mathbb{R} .	9
Q2	Evaluate $\int_{\gamma} \frac{3z^3 + 4z^2 - 5z + 1}{(z^3 - z)(z - 2t)} dz$ where contour γ : $ z = 3$ is taken in positive sense.	9
Q3	Define the inner product on \mathbb{R}^2 , and prove or disprove that for $v, w \in \mathbb{R}^2$ the product given by: $(v,w) = v_1w_1 - v_1w_2 - v_2w_1 + 4v_2w_2$ is an inner product. Take $v = (v_1, v_2), w = (w_1, w_2)$.	9
Q4	Consider a sequence (a_n) , where $a_n = \frac{1}{2} + \frac{1}{2} \sin\left(\frac{n\pi}{3}\right)$. Compute $\lim_{n \to \infty} a_n$, and $\lim_{n \to \infty} a_n$.	6

Sec C (ALA) [33 Marks]

Q. No.	Question	Marks
Q1	Consider the following system of equations:	6
	24-29+2 = 3	
٠	2x + 5y + 3x = 8	
	x+y+z = 2	1
1 1 1 1 1	(a) Reduce the augmented matrix to reduced row-echelon form using elementary row operations.	
	(b) Determine whether the system is consistent.	
Q2	Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $T(x, y, z) = \begin{pmatrix} x+y \\ y+z \\ x+z \end{pmatrix}$.	7
	(a) Find the matrix representation of T with respect to the standard basis.	
	(b) Determine the rank and nullity of T	
	(c) Find a bests for the range and kernel of T.	

Q3	Consider the following 3 × 3 diagonal matrix:	7
	A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}.	
	(a) Find the eigenvalues and eigenvectors of the matrix A (b) Determine whether A is diagonalizable.	
Q4	Answer the following question. (a) State and prove the Capley-Hamilton Theorem. (b) Using it, find B^4 for $B=\begin{bmatrix}2&1\\0&2\end{bmatrix}$.	77
Q5	Consider the following 3 × 3 matrix:	6
	$\sigma = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$	
	(a) Find the characteristic and minimal polynomials of C. (b) Find the Jordan canonical form of C.	