JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

Ph.D.-I Semester (CSE)

COURSE CODE (CREDITS): 22P1WMA231 (03)

MAX. MARKS: 35

COURSE NAME: APPLIED SOFT COMPUTING TECHNIQUES

COURSE INSTRUCTORS: ARV

MAX. TIME. 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Questio	· Ouestion			CO	Marks
Q1	Explain why fuzzy logic uses min, max, and 1-T(P) for AND, OR, and NOT operations instead of classical Boolean logic.				3	4
Q2	How to derive the fuzzy rule: If x is A or y is B then z is C Given two separate fuzzy rules: 1. R1: If x is A then z is C				3	4
	2. R2: If y is B then z is C					
Q3	Two fuzzy sets P and @ are defined on $\mu(x)$ x_1 x_2 x_3 P 0.1 0.2 0.7 Q 0.9 0.6 0.3 Find the following: (a) $P_0(x_2)$, $Q_0(x_3)$ (b) $(P \cup Q)_{0.6}$ (c) $(P \cup P)_{0.8}$ (d) $(P \cap Q)_{0.4}$		X4 0.5 0.2	0.4 0.8	3	4
	 (i) Justify which of the two functions AND or XOR are linearly separable and which one is linearly non separable using truth table? (ii) Why can't a single-layer perceptron solve the XOR problem? (iii) How does a multilayer neural network solve XOR? 					[4+2+2]
Q5	(i) A neural network is training but the error is not decreasing. List possible reasons.				4	5

	(ii) Why do we use derivative of activation function in backpropagation?			
Q6	(i) For the following function, identify if the critical point is a 5 minimum, maximum, or saddle:			
	$f(x)=x^3$			
	(ii) Find all extreme points of the function:			
	$f(x)=x^3-6x$			
Q7	Solve the following primal and verify using duality principle: 5 Primal:			
	Maximize $Z = 4x_1 + 3x_2$			
	Subject to:			
	$2x_1+x_2 \le 10$			
	$x_1+x_2 \leq 8$			
	$x_1, x_2 \ge 0$			