JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT Make-up Examination-Nov-2025

COURSE CODE (CREDITS): 25B11EC311 (4)

MAX. MARKS: 25

COURSE NAME: Signals & Systems

COURSE INSTRUCTORS: Dr. Vikas Baghel

MAX. TIME: 1 Hour 30 Minutes

Note: Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c)Use of a standard scientific calculator is allowed.

Q.No	Question	CO	Marks
Q1	 a. Define and prove whether the following signals are energy or power signals: i. x₁(t) = e^{-2t}u(t) + e^{2t}u(-t) ii. x₂[n] = (1/2)ⁿ u[n] b. A signal x(t) satisfies x(t) = -x(-t+4). Determine whether it is even, odd, or neither, and sketch qualitatively. c. For a real-world sensor output modeled as x(t) = 3 + 2sin(2πt) + 0.5w(t), where w(t) is zero-mean Gaussian noise, identify and justify each classification (continuous/discrete, periodic/aperiodic, deterministic/random). 	CO1	5
Q2	 a. A system is described by: y(t) = x²(t) + 3x(t-2). Determine whether this system is linear, time-invariant, causal, stable, and memoryless, providing rigorous mathematical justification for each property. b. Consider a discrete-time system governed by: y[n+1] - 0.8y[n] = x[n] Find the impulse response and verify whether it is BIBO stable. c. Derive a necessary and sufficient condition for a nonlinear system to exhibit time-invariance. Provide an example to illustrate your result. 	CO1	5

Q3	a.	Find the output $y(t)$ of an LTI system with impulse response	CO3	5
		$h(t) = e^{-t}u(t)$ and input $x(t) = t e^{-2t}u(t)$.		:
	b.	Prove that convolution in time domain corresponds to		
		multiplication in frequency domain, starting from first principles		
		(no Fourier transform properties to be assumed).	ó	
Q4	a.	Derive the Fourier series coefficients for a signal $x(t)$ defined	CO2	5
		over one period as:		
		$x(t) = \begin{cases} t, & \text{for } 0 \le t < 1 \\ 2 - t, & \text{for } 1 \le t < 2 \end{cases}$		*
		with $x(t+2) = x(t)$. Hence, comment on the symmetry and	٠	
		convergence of the series.		
	b.	Given a continuous-time LTI system with impulse response		
		$h(t) = e^{-2t}u(t)$, find its frequency response $H(j\omega)$ and		
		magnitude-phase characteristics.		
	c.	Prove Parseval's theorem for Fourier Transform and use it to		
		compute the energy of $x(t) = e^{-at}u(t)$, $a > 0$.		_
Q5	a.	Find the Discrete-Time Fourier Transform (DTFT) of $x[n] = (0.9)^n u[n]$	CO4	5
	b.	A discrete-time LTI system has frequency response:		
		$H(e^{j\omega})=1-e^{-jw}$		
		Find the corresponding impulse response $h[n]$.		
	c.	Show that if a discrete-time signal is periodic with period N , its		
		DTFT is impulse-train periodic with period 2π. Prove rigorously		