JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT Make-up Examination-Nov-2025

COURSE CODE(CREDITS): 25B11PH111 (4)

MAX. MARKS: 25

COURSE NAME: Physics I

MAX. TIME: 1 Hour 30 Minutes

COURSE INSTRUCTORS:PBB,SKK,VSA,HAZ,SKT,SBA,HSR

Note: Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	₹ ८ 0	Marks
Q1	Draw the intensity distribution of diffraction pattern due to single slit. Graphically calculate the intensity ratio of first and second maxima.		4
Q2	A diffraction grating used at normal incidence gives a line $\lambda_1 = 6000 \text{ A}^0$ in a certain order is superimposed on another line $\lambda_2 = 4300 \text{ A}^0$ of the next higher order. If the angle of diffraction is 30° alculate the number of lines in 1 cm of the grating.	2	4
Q3	(a) The ratio of intensities of two waves that produce interference pattern is 16:1. Deduce the ratio of maximum to the minimum intensities in fringe system.	3	2
	(b) Light of wavelength 5893 A ⁰ is reflected at normal incidence from a soap film of refractive index 1.42. What is the least thickness of the film that will appear (i) bright and (ii) dark		2
Q4	(a) Light source emitting the light of wavelength λ_1 =600 nm, and λ_2 =480 nm is used to obtain Newton's ring. It is found that the n th dark ring of λ_1 coincides with $(n+1)^{th}$ dark ring of λ_2 . If the radius of curvature of the curved surface of lens is 96 cm. Calculate the diameter of $(n+1)^{th}$ dark ring of λ_2 .	4	3
	(b) Show that diameter of the dark fringes is proportional to the square root of odd natural numbers.		2
Q5	(a) Prove that the intensity of the transmitted polarized light becomes half when a natural light of intensity I_0 is incident on a polarizer. (b) An incident light is plane-polarized with its electric field making an angle of 30° with the axis of the polarizer. What will be the intensity of the light transmitted from the polarizer?	2	2
Qå	(a) Describe the propagation of polarized light in Quarter —Wave plate and derive the thickness of the Quarter-wave plate. (b) What should be the thickness of a quarter-wave plate for a light of	3	2
	wavelength 5890Å if the refractive indices for extraordinary μ_e and ordinary μ_o rays are 1.553 and 1.544, respectively?		2