JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

Make-up Examination-Nov-2025

COURSE CODE (CREDITS): 25B11CI512

MAX. MARKS: 25

COURSE NAME: Intelligent techniques for predictive data analytics

COURSE INSTRUCTORS: NTS*

MAX. TIME: 1 Hour 30 Minutes

Note: (a) All questions are compulsory.

(b) Use of calculator is permitted.

Q.No	Question				Marks	
Q1	A k-Nearest Neighbour model is to be used for predicting whether a student				CO	6
	passes a course. The training dataset is shown below.					0
		Study Hours (x				
	1	2.0	45	Fail		
j	2	4.0	70	Pass		
	3	5.0	60	Pass		
	4	7.0	85	Pass		
	5	3.0	50	Fail		
	6	6.0	80	Pass		1.5
	A new student has Study Hours 4.5 and Score = 72.					
	(a) In one short pa	aragraph, explain h	aph, explain how k NN classifies a new instance (what ay). howing min-max normalized values for all training			
	role distances and k play). (b) Produce a table showing min-max normalized values for all training					
	rows and for the test point (range [0,1]). (Show min and max used for each					!
	reature.					
	(c) Using the normalized values, compute the Euclidean distance from the					
	test point to each training example (show all distances). (d) For k = 3, list the three nearest neighbours (by ID) and give the predicted					
	(u) For k = 3 , hstati class by majority	ne three nearest ne	ighbours (by ID)	and give the predicted	:	
Q2 /	A small retail da	itaset is shown: t	ne target attrib	ute is Buys (Yes/No).		
1.	colubate tue iu	tormation Gain fo	or attribute Sa	lary /treat Salam, ac l		6
	Compute the Information Gain for attribute Salary (treat Salary as categorical with values High/Medium/Low). Show every step: total entropy					į
4 1	ay buys, entropy	/ after splitting o	on Salary (weig	hted), and the final	j	
	information gain (use log base 2).					
			Salary Buys		ŀ	
		1 Young F				
		2 Middle N	Medium Yes			
		3 Senior L	ow No			
		4 Middle H	ligh Yes		}	
			1edium No			ĺ
3 (8	a) A binary classifi	er for spam detecti	on gave the follo	wing results on a test		$\frac{1}{4+2}$

	dataset: True Positives (TP) = 200, False Positives (FP) = 60, False Negatives		
	(FN) = 40, True Negatives (TN) = 700.		
	Calculate Accuracy, Precision, Recall, and F1-score (round to 3 decimal		
	places). (b) Explain the difference between Precision and Recall. How can both		
	metrics be affected by choosing a different classification threshold? Give a	,	
-	brief example in context of spam filtering.	 	4 1 2
Q4	(a) Explain the role of a kernel function in Support Vector Machines (SVM).		4 + 3
QT	How does it allow the SVM to classify data that is not linearly separable?		
	Give one commonly used kernel and its form. (b) What is over fitting in decision trees? Describe two techniques that help		A Company
	reduce over fitting (e.g., pruning, limiting depth, or cross-validation) and		
	explain how each works.		<u> </u>

that help dation) and the dation and