JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT Make-up Examination-Nov-2025

COURSE CODE (CREDITS): 18B1WEC636 (2)

MAX. MARKS: 25

COURSE NAME: Fundamentals of Digital Signal Processing & Applications

COURSE INSTRUCTORS: Dr. Vikas Baghel

MAX. TIME: 1 Hour 30 Minutes

Note: Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c) Use of a standard scientific calculator is allowed.

Q.No	Question	СО	Marks
Q1	a. Define periodic and aperiodic discrete-time signals with one	1	5
	suitable example each.		
	b. Determine the fundamental period of $s[n] = sin(\pi n/3) +$: E
	$cos(\pi n/2)$.		
Q2	a. State and prove the time-reversal and time-shifting properties of	CO1	5
	LTI discrete-time systems.		
	b. For $y[n] = x[n] + 0.5x[n-1]$ test whether the system is	!	
	linear and causal.		
Q3	a. Derive the expression for the z-transform of a right-sided	CO3	5
	exponential sequence $x[n] = a^n u[n]$.		
	b. Determine the ROC and inverse z-transform of $X(z) = z / (z - 0.6)$		
Q4	a. Prove the frequency-shifting property of the DTFT.	CO2	5
	b. Find the DTFT of $x[n] = (0.5)^n u[n]$.	ÇOZ	
Q5 🛝	Consider a discrete-time LTI system described by the equation:	CO4	5
	y[n] = 0.8y[n-1] + x[n] - x[n-1]		
	a. Determine the system function $H(z)$.		
	b. Find the poles and zeros of $H(z)$.	İ	
	c. Comment on the stability and causality of the system.		