JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT Make-up Examination-Nov-2025

COURSE CODE (CREDITS): 25B11CE313 (4)

MAX. MARKS: 25

COURSE NAME: Fluid Mechanics

COURSE INSTRUCTORS: Ashish Kumar

MAX. TIME: 1 Hour 30 Minutes

Note: Note: (a) All questions are compulsory.

(a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c) Use of Calculator is allowed

O 37	O Che of Calculator is allowed	1, 5	
Q.No	Question (A)	ĆO	Marks
Q1(a)	Explain Newtonian and Non-Newtonian fluid with suitable example.	1	2
Q1 (b)	A flat plate of area 2.0 m ² is pulled with a speed of 0.4 m/s relative to another plate located at a distance of 0.25 mm from it. Find the force required to maintain this speed, if the fluid separating them is having viscosity as 1.5 poise.	1	4
Q2 (a)	How do we measure the pressure of fluid? Differentiate between simple manometer and differential manometers.	2	2
Q2 (b)	As shown in the figure 1, pipe M contains carbon tetrachloride of specific gravity 1.59 under a pressure of 1.5 x 10 ⁴ N/m ² and pipe N contains oil of specific gravity 0.8. If the pressure in the pipe N is 1.8 x 10 ⁴ N/m ² and the manometric fluid is mercury, find the difference x between the levels of mercury. CARBON TETRA CHLORIDE (Sp.Gr. 1594) 1-5m 1-5m	2	4
Q3	An orifice meter with orifice diameter 15 cm is inserted in a pipe of 30 cm diameter. The pressure difference measured by a mercury manometer fitted on the two sides of the orifice meter gives a reading of 50 cm of mercury.	4	4

	Find the rate of flow of water when the co-efficient of discharge of the meter = 0.6.		
Q4	A circular plate 3.0 m diameter is immersed in water in such a way that its greatest and least depth below the free surface are 4 m and 1.5 m respectively. Determine the total pressure on one surface of the plate and position of the centre of the pressure.	2	4
Q 5	The velocity vector in a fluid flow is given by $V = 2x^3i - 5x^2yi + 4tk$	3	5
-	Find the velocity and acceleration of a fluid particle at $(1,2,3)$ at time $t=1$	4	,
	ig 186		
	The state of the s		

The state of the s

Control of the contro