JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2025

B.Tech-III Semester (CSE)

COURSE CODE (CREDITS): 25B11CI315 (3)

MAX. MARKS: 25

COURSE NAME: Theory of Computation

COURSE INSTRUCTORS: ARV*, MNK, NSA, RMS, SKS, SMA

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Quarties	<u> </u>	135 3
Q1	Question	CO	Marks
Ų1	Consider the language $L = \{ww^R \mid w \in \{a,b\}^+\}$, where w^R is the reverse of string w.	3	5[2+3]
	(a) Classify this language in the Chomsky Hierarchy and specify why it		
	belongs to that specific type of Chomsky Hierarchy.		
	(b) Construct a respective grammar that generates L.		
Q2	Consider the Context-free grammar (CFG) G below with start Symbol S:	3	5 [2+3]
	$S \rightarrow aSb \mid X$		
	$X \rightarrow aX \mid Xb \mid a \mid b$		
	(a) Describe L(G) and give a short, clear derivation pattern (step-by-step) that		
	shows how the productions build strings in the language.		
	(b) For the string "aaabb", show all derivations (or parse trees / leftmost		
	derivations) needed to decide whether the grammar is ambiguous or		
01	(b) For the string "aaabb", show all derivations (or parse trees / leftmost derivations) needed to decide whether the grammar is ambiguous or unambiguous for that string, and state your conclusion.		
Q3	Construct the Context-Free Grammar (CFG) for the following languages:	3	5[2+3]
	(a) The set of all even integers up to 998.		
<u> </u>	(b) $L = \{a^n b^m : n \ge 2, m \ge 3\}$		
Q4	Consider the given grammar G ({S, A, B, C, D, E}, {a, b}, P, S) where P is	3	5[2+2+1]
,	given by		
	$S \to aAa \mid bBb \mid \epsilon$		
	$A \rightarrow C a$		
	$B \to C b$		
	$C \to CDE \mid \epsilon$		
	$D \to A B ab$		
	(i) Construct a CFG G ₁ by eliminating ε-productions from G.		
1	(ii) Construct a CFG G ₂ by eliminating Unit productions from G ₁		
OSA	(iii) Construct a CFG G ₃ by eliminating any useless symbols from G ₂ .		
Q5 N	(a) How many steps are required to generate a string of length 'n' if:	3	5[2+3]
	(i) The given grammar is in CNF.		
	(ii) The given grammar is in GNF.	.	
	(b) Convert the following CFG in GNF.	ĺ	
!	$A \rightarrow Aa \mid Bb$		
	$B \rightarrow Bc \mid d$		