JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2025

B.Tech-I Semester (ECE)

COURSE CODE (CREDITS): 3

MAX. MARKS: 25

COURSE NAME: SCIENCE AND TECHNOLOGY OF MATERIALS (18B1WPH531)

COURSE INSTRUCTORS: Haresh Raval

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	СО	Marks
Q1	a. Explain why not all materials are magnetic materials.	CO [3]	2
	b. Using Atomic theory, discuss the origin of magnetic moment		4
00	and subsequent quantizations including space quantization.	00[4]	<u> </u>
Q2	a. A paramagnetic material has 10^{28} atoms/m ³ . The	CO[4]	2
	magnetic moment of each atom is $1.8 \times 10^{-23} \text{Am}^2$.		
	Calculate the paramagnetic susceptibility at room		
	temperature (300 K).		
	b. Consider a helium atom in its ground state (1 s). The mean		3
	radius in the Langevin formula may be approximated by		
	Bohr radius $0.529 \dot{A}$. The density of helium is 0.178 kg/m^3 .		
	Calculate the diamagnetic susceptibility of a helium atom.		
Q3	In how many components does the energy level of an unpaired	CO [4]	5
	electron with orbital angular momentum quantum number $l=1$		
	splits into, in the presence of an external magnetic field. Show proof.		
Q4	a. Derive the expression of internal electric field due to long	CO [3]	3
	one dimensional array of atomic dipoles at the location an		
İ	atom in the array.		1
	b. In a drop of water of radius 10 ⁻³ m, the molecular dipoles		3
	are pointed in the same direction. If the dipole moment of the water molecule is 6.1×10^{-30} Cm. Calculate the		
	polarization.		
	(molar mass of water M=18.015 g/mol)		
Q5	State the Curie's law and Curie-Weiss law for magnetic materials. What	CO [2]	3
	are the key differences between these laws.		
	$k_B = 1.38 \times 10^{-23} J/K$, $e = 1.6 \times 10^{-19} C$, $m_e = 9.1 \times 10^{-31} kg$,		
	$\mu_0 = 4\pi \times 10^{-7} H/m, \epsilon_0 = 8.85 \times 10^{-12} F/m, \qquad \mu_B = 9.27 \times 10^{-24} Am^2$		