## JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

## **TEST -2 EXAMINATION- 2025**

B. Tech-I Semester (CSE/IT/ECE/CE)

COURSE CODE (CREDITS): 25B11MA113 (4)

MAX. MARKS: 25

COURSE NAME: Mathematics-I

COURSE INSTRUCTORS: PKP\*,MDS,NKT,RKB

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required

for solving problems.

|       | for solving problems.                                                                                                                                                                                                                                                                                                                                                                                                                        |     |       |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| Q.No. | Question                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO  | Marks |
| Q1    | Evaluate $\lim_{(x,y)\to(0,0)} \frac{2y^4x}{y^8+6x^2}$                                                                                                                                                                                                                                                                                                                                                                                       | CO1 | 3     |
| Q2    | In a database query optimizer, suppose that the cost function of executing a query is modeled implicitly by the relation $xz + ylogx - x^2 - 4 = 0$ ; where x represents the number of indexing operations, y represents query depth (number of joins), and z represents the data block size. Find the sensitivity/rate of change of the indexing operations x with respect to changes in the data block size z at the point $(1, -1, -3)$ . | CO1 | 3     |
| Q3    | Examine the function $f(x, y) \Rightarrow x^3 + y^3 - 3axy$ for maximum and minimum values.                                                                                                                                                                                                                                                                                                                                                  | CO2 | 3     |
| Q4    | The temperature T at any point $(x, y, z)$ in space is $T = 400xyz^2$ . Find the highest temperature at the surface of a unit sphere $x^2 + y^2 + z^2 = 1$ using Lagrange's method                                                                                                                                                                                                                                                           | CO2 | 4     |
| Q5    | A fluid flows through a pipe with circular cross-section of radius 1. The axial velocity distribution across the cross-section is given by $v(x,y) = 4 - (x^2 + y^2).$ The volume flow rate through the cross-section is defined as $Q = \iint v(x,y) dA$                                                                                                                                                                                    | CO3 | 3     |

| Q6 |                                                                                                                                                      |     |   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| •  | For the double integral                                                                                                                              |     |   |
|    | $\int_0^1 \int_{x^2}^{\sqrt{x}} (x + y^2) dy dx$                                                                                                     | СОЗ | 3 |
|    |                                                                                                                                                      |     |   |
|    | <ul><li>a) (Sketch) Draw the region R and clearly shade it.</li><li>b) By changing the order of integration, evaluate the double integral.</li></ul> |     |   |
|    | , , , , , , , , , , , , , , , , , , , ,                                                                                                              |     |   |
| Q7 | Heim the Petric Course for the second of $f^{\pi/2}$ in 11, 12, decreased                                                                            | CO3 | 3 |
|    | Using the Beta/Gamma function evaluate $\int_0^{\pi/2} \sin^{11}x \cos^{12}x dx$ .                                                                   |     |   |
| Q8 | Using Gamma function evaluate $\int_0^1 (x \ln(1/x))^{1/3} dx$ .                                                                                     | CO3 | 3 |
|    |                                                                                                                                                      | L   |   |
|    |                                                                                                                                                      |     |   |
|    |                                                                                                                                                      |     |   |
|    |                                                                                                                                                      |     | - |
|    |                                                                                                                                                      |     |   |
|    |                                                                                                                                                      |     |   |
|    |                                                                                                                                                      |     |   |
|    |                                                                                                                                                      |     |   |
|    |                                                                                                                                                      |     |   |
|    |                                                                                                                                                      |     |   |
|    |                                                                                                                                                      |     |   |
|    |                                                                                                                                                      |     |   |
|    | a f                                                                                                                                                  |     |   |
|    |                                                                                                                                                      |     |   |
|    |                                                                                                                                                      |     |   |
|    |                                                                                                                                                      |     |   |
|    |                                                                                                                                                      |     |   |
| *  |                                                                                                                                                      |     |   |
|    |                                                                                                                                                      |     |   |
|    |                                                                                                                                                      |     |   |
|    |                                                                                                                                                      |     |   |
|    |                                                                                                                                                      |     |   |
|    |                                                                                                                                                      |     |   |
|    |                                                                                                                                                      |     |   |