JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2025

B.Tech. -III Semester (CSE/IT/CSECS/FSSD/AIDS/AIML/UXUI)

COURSE CODE (CREDITS): 25B11MA314 (4)

MAX. MARKS: 25

COURSE NAME: Mathematical Foundations for Artificial Intelligence and Data Science

COURSE INSTRUCTORS: RAD, BKP, SST

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required for solving problems

(c) Use of a scientific calculator is allowed.

Q. No.	Question	CO	Marks
Q1	Consider the subspace W = Span $\{w_1, w_2, w_3\}$ of \mathbb{R}^4 :	1	5 ·
_			
	$\begin{bmatrix} \mathbf{w}_1 &= \begin{pmatrix} 3\\1\\-1\\3 \end{pmatrix}, \mathbf{w}_2 &= \begin{pmatrix} -5\\1\\5\\-7 \end{pmatrix}, \mathbf{w}_3 &= \begin{pmatrix} 1\\1\\-2\\8 \end{pmatrix}.$		
			·
	Using the Gram-Schmidt process, construct an orthogonal basis for W.		
Q2	Consider the following 2 rectangular matrix:	1	4
	$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$		
]	
	a) Determine the singular values of A.		
	b) Compute singular value decomposition (SVD) of A.		
Q3	Successful implementation of a new system is based on three	2	4
	independent modules. Module-1 works properly with probability 0.96.		
	For module-2 and module-3, these probabilities are 0.95 and 0.90		
	respectively. Compute the probability that at least one of these three		
	modules fails to work properly.	2	4
Q4	The Reviews editor for a certain scientific journal decides whether the review for any particular book should be short (1-2 pages), medium	2	4
4	1 % (A)		
37.30	(3, 4 pages), or long (5-6 pages). Data on recent reviews indicates that 60 % of them are short, 30 % are medium, and the other 10 % are long. Reviews are submitted in either Word or LaTeX. For short reviews, 80		
7	Reviews are submitted in either Word or LaTeX. For short reviews, 80		
35	% are in Word, whereas 50 % of medium reviews are in Word and		
	30 % of long reviews are in Word. Suppose a recent review is		
	randomly selected.		
	a) What is the probability that the selected review was submitted		
}	in Word format?		
	b) If the selected review was submitted in Word format, what is		
	the probability of it being long?		<u> </u>

Q5	A web server receives requests from users that can be of three types: static page request $(X = I)$ with probability 0.5; database query $(X = 2)$ with probability 0.3, file upload $(X = 3)$ with probability 0.2. The random variable X denotes the type of request received in a time unit. Evaluate the following: a) Expectation of X. b) Variance of X.	
Q6	A web application records the response time T (in seconds) of a server for processing a request. The response time is modeled as a continuous random variable with the following probability density function:	
·	$f(t) = \begin{cases} 2t, & 0 < t < 1 \\ 0, & elsewhere \end{cases}$	
	 a) Verify that f(t) is a valid probability density function b) Find the cumulative distribution function of the response time. 	