Jaypee University of Information Technology, Waknaghat

TEST-2 Examination - October 2025

B.Tech - VII Semester (ALL)

Course Code/Credits: 22B1WMA731/3

Max. Marks: 25

Course Title: Linear Algebra for Data Science & Machine Learning

Course Instructor: RAD

Max. Time: 90 mins

Note: (a) ALL questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required.

) #
Q.No	Question	CO	Marks
Q1	In the following problems, check to see if each set is a subspace of	CO-1	4
,	the corresponding vector space. Justify your answer.	# F	
		ħ.	
٠.	$\left(\begin{array}{cc} \text{(a) } \mathbf{S}_1 \ = \ \left\{\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \in \mathbb{R}^2 \ : \ x_1 \leq x_2 \right\} \subset \mathbb{R}^2.$		
	$ \text{(b) } \mathbf{S}_2 \ = \ \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & -a \end{array} \right) \ : \ a \in \mathbb{R} \right\} \subset \mathbb{R}^{2 \times 2}. $		
Q2	Consider linear transformation $\mathbf{T}: \mathbb{R}^2 \to \mathbb{R}^3$ defined as $\mathbf{T}(x) = \mathbf{A}x$,	CO-2	4
	/ 1 -3 \ / 3 \		
	where $\mathbf{A} = \begin{pmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{pmatrix}$. Find $x \in \mathbb{R}^2$ such that $\mathbf{T}(x) = \begin{pmatrix} 3 \\ 2 \\ -5 \end{pmatrix}$ Let $\mathbf{W} = \operatorname{span}\{\mathbf{w}_1, \mathbf{w}_2\}$ be a subspace of \mathbb{R}^4 generated by		
Q3	Let $\mathbf{W} = \operatorname{span}\{\mathbf{w}_1, \mathbf{w}_2\}$ be a subspace of \mathbb{R}^4 generated by	CO-2	4
	$\mathbf{w}_1 = egin{pmatrix} 1 \ 2 \ 1 \ 0 \end{pmatrix}, \mathbf{w}_2 = egin{pmatrix} 0 \ 0 \ 0 \ 1 \end{pmatrix}.$		
	(a) Find a basis for W		
	(a) I int a basis for		
	(b) Find a basis for the orthogonal complement of W.	,	
Q4	In data science and engineering applications, one often needs to project a vector onto a subspace defined by linear constraints. Consider the vector $\mathbf{v} = (1, 1, 1)$ in \mathbb{R}^3 .	CO-2	4
· 4.	(a) Determine the subspace W defined by the equations:		
	x+y+z = 0		
	x-y-2z = 0		
	(b) Find orthogonal projection of v onto the subspace W . This corresponds to finding the closest feasible vector to v .		

Q.No	Question	CO	Marks
Q5	Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ defined by	CO-2	4
	$\mathbf{T}(x_1, x_2, x_3) = (x_1 - x_2 + x_3, x_2 - x_3, x_1, 2x_1 - 5x_2 + 5x_3).$		
	(a) Determine the range space (image) of T.		
	(b) Compute the null space of T. Verify Rank-Nullity Theorem.		
Q6	Consider the basis $\{u_1, u_2, u_3\}$ for a subspace W of \mathbb{R}^4 :	CO-3	5 .
	$u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, u_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 1 \end{pmatrix}, u_3 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix}.$		
	(a) Use the Gram–Schmidt process to construct an $orthogonal$ $basis$ for the subspace \mathbf{W} .		
	(b) Normalize the orthogonal basis to an orthonormal basis.		