JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2025

B.Tech- III Semester (CE)

(4)

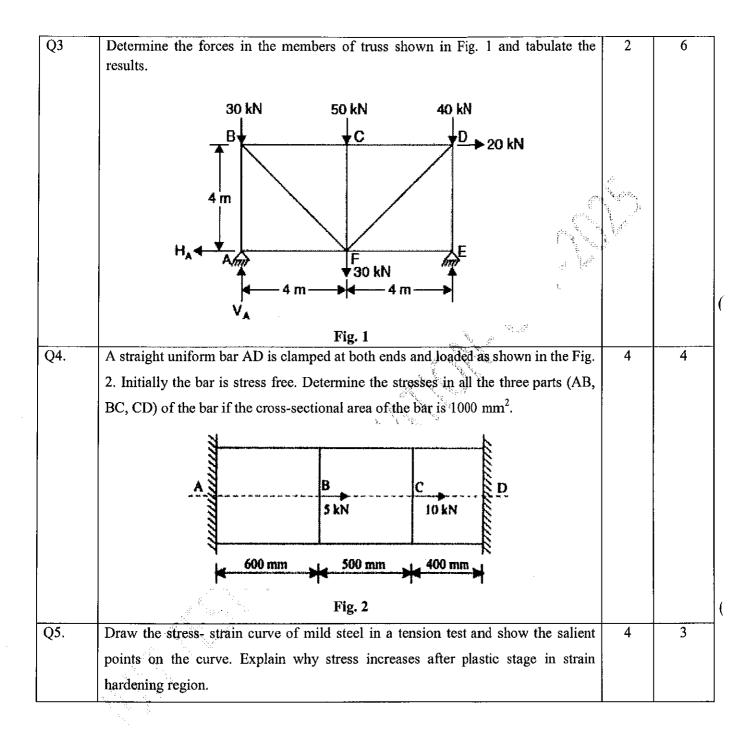
COURSE CODE (CREDITS): 25B11CE311

MAX. MARKS: 25

COURSE NAME: ENGINEERING MECHANICS

COURSE INSTRUCTORS:

DR SAURAV


MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c)Use of Non Programmable Scientific Calculator is allowed

Q.No	Question	CO	Marks
Q1	A circular rod of length L tapers uniformly from diameter d1 at one end to d2 at the	4	5+2
	other. The rod is subjected to an axial load P and has a modulus of elasticity E.		
	a) Apply the concept of deformation under axial loading to derive an expression		
	for the total change in length of the uniformly tapering rod.		
	b) For a bar tapering from (d + a) to (d - a) over a length L, compare the actual		
	extension with that calculated by assuming a uniform cross-section of average		
	diameter d, and hence determine the percentage error.		
Q2	A hollow steel tube is required to carry an axial compressive load of 160 kN. The	4	5
	yield stress for the steel is 250 N/mm ² , and a factor of safety of 1.75 is to be		
	applied in the design.		
	Three classes of tubes, each with an external diameter of 101.6 mm, are available:		
	Class Thickness (mm)		
·	Light 3.65		
	Medium 4.05		
	Heavy 4.85		
	a) Apply the concept of axial stress and factor of safety to calculate the safe load-		
	carrying capacity of each tube section.		
	b) Analyze and compare the results obtained for the light, medium, and heavy		
	tubes to identify which section provides adequate strength under the given loading		
	conditions.		

