JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2025

B.Tech.-III Semester (ECE/ECS/EE VLSI)

COURSE CODE (CREDITS): 25B11EC313 (04)

MAX. MARKS: 25

COURSE NAME: Electronic Devices and Circuits

COURSE INSTRUCTORS: Dr. Shruti Jain

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	CO	Marks
Q1	a) Determine V_0 , I_1 , I_{D1} , and I_{D2} for the parallel diode configuration of Fig. 1 $ \begin{array}{cccccccccccccccccccccccccccccccccc$	CO1	4+1
Q2	 a) How does a transistor work as a switch? b) Differentiate between common base, common emitter, and common collector configurations. c) A transistor has β = 120 and base current = 20 μA. Calculate the collector current. d) Explain the cut-off, active, and saturation regions of transistor operation. Draw neat diagrams of input and output characteristics of CE, configurations, and mark the different regions of operation. 	CO2	1+1+1 +2
Q3	a) In a lab circuit, if the Q-point shifts into saturation and cutoff, what practical problem will you notice in the amplifier's output waveform?	CO3	1+2+2

c)	If the emitter current is 5 mA and $\alpha = 0.98$, calculate the base and collector currents Explain h -model of common emitter transistor to Sita. Draw its equivalent diagram too.		
ь	For the emitter bias network shown in Fig 3, determine I_B , I_C , V_{CE} , V_C , V_E , V_B , V_{BC} . Fig. 3 Why is voltage divider bias preferred invest amplifier circuits even though fixed bias is simpler? Ram designed a fixed-bias amplifier with $β = 100$, but the actual transistor has $β = 200$. What happens to the operating point?	CO2	3+1+1
	Determine the dc level of β and V _C for the network of Fig. 4. 18 V 10 μF Fig. 4 The same model, which biasing scheme ensures consistent performance in real circuits?	CO2	4+1