JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2025

B.Sc.-V Semester (M&C)

COURSE CODE (CREDITS): 24BS1MA511 (3)

MAX. MARKS: 25

COURSE NAME: Statistical Methods for Data Analysis

COURSE INSTRUCTORS: BKP

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

- (b) The candidate is allowed to make suitable numeric assumptions wherever required for solving problems.
- (c) Non-scientific calculators are allowed and statistical tables are given at the end of paper.

Q.		Question		CO	Marks
No.					
Q1.	A group of 10 B. Sc	. Computer Science	students participated in a coding	CO-2	6
	efficiency training pro-				
	time taken (in minute	complete a standard coding task			
	before and after the training is recorded as follows:				
	Student	Before Training (X1)	After Training (X2)		
	1	52	48		
	2	47	44		
	**** 3. ***	55	50		
	4	49	46		
	5	58	54		
* .	6	53	50		
	7	51	47		
	8	50	46		
	9	54	50		
	10	56	52		

	program significantly improved the students' coding performance.						
Q2.	A study was conducted among Computer Science students to examine whether CO-						
	the choice of programming language depends on the year of study. The data						
	collected from 90 students is summarized below:						
	Year of Study Python C++ Java Total						
	2nd Year 20 10 15 45						
	4th Year 10 15 20 45	Kar					
	Total 30 25 35 90	NJ					
	Use a Chi-Square test for independence at a 5% level of significance to						
	determine whether the preference for programming language is associated with						
	the year of study.						
Q3.	The following data show the engine load (X, in kg) and the corresponding fuel	CO-3	6				
	consumption rate (Y, in liters/hour) for a test conducted on a diesel engine in a						
	Mechanical Engineering laboratory:						
	Observation Engine Load (X) Fuel Consumption (Y)						
	1 10 2.5						
	2 20 3.0						
	3 30 3.6						
	4 40 4.1						
	5 50 4.7		į į				
	6 5.0	j					
	7 70 5.6						
	80 6.2	!					
	Use Karl Pearson's Coefficient of Correlation (r) to determine whether there is						
	a linear relationship between engine load and fuel consumption rate.						
Q4.	The following two equations represent the lines of regression between variables	CO-3	7				
	X and Y:						
1.1 6.	8X - 10Y + 66 = 0						
18.	40X - 18Y = 214						
	You are required to: (a). Calculate the means of X and Y.						
	(b). Identify which equation represents Y on X and which represents X on						
	Y.		·				
	(c). Find the regression equations of Y on X and X on Y in their standard						
	forms.						

t-Distribution Table (tv	vo-tailed, $\alpha = 0.05$)	Chi-Square (χ^2) Distribution Table ($\alpha = 0.05$)		
Degrees of Freedom	Critical t-value	Degrees of Freedom	χ ² Critical Value	
(df)	$(\pm t_{0.025})$	(df)	(0.05)	
1	12.706	1	3.841	
2	4.303	2	5.991	
3	3.182	3	7.815	
4	2.776	4	9.488	
5	2.571	5	11.070	
6	2.447	6	12.592	
7	2.365	7	14.067	
8	2.306	8	15.507	
9	2.262	9*****	16.919	
10	2.228	10	18.307	
15	2.131	12	21.026	
20	2.086	15	24.996	
25	2.060	20	31.410	
30	2.042			
40	2.021			
60	2.000	*		
∞ (large sample, Z)	1.960			