JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2025

M.Tech-1st Semester (CE)

COURSE CODE (CREDITS): 25M1WCE114 (3)

MAX. MARKS: 25

COURSE NAME: FINITE ELEMENT METHOD

COURSE INSTRUCTORS: DR SAURAV

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c)Use of Non Programmable Scientific Calculator is allowed

Q.No	Questions	CO	Marks
Q1	Derive and analyze the relationship between the natural coordinate (ξ) and	3	5
	Cartesian coordinate (x) for a two-noded bar element, <i>Illustrate and</i> compare the graphical variation of the shape function expressed in terms of	3	3
	ξ, L ₁ , and L ₂ .		
Q2	Formulate the shape functions for a Constant Strain Triangle (CST) element		
	using a polynomial function approach. Show all intermediate steps clearly.	3	5
Q3	Develop the general equation to obtain the shape function of a two-noded		
	bar element in terms of the natural coordinate (ξ). Explain each step	. 3	5
	involved in the derivation.		
Q4.	Explain the strain-displacement matrix approach for a bar element, and		
	derive the corresponding strain-displacement matrix [B] for a bar element of	3	5
	length L. Interpret the physical significance of each term in [B].		
Q5.	A one-dimensional two-noded element has end coordinates $x_1 = 0$ mm and		
	$x_2 = 200$ mm. Calculate the natural coordinates (L ₁ and L ₂) for a point	3	5
	located at $x = 75$ mm, and verify that $L_1 + L_2 = 1$.		