JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- May 2018

B.Tech VI Semester

COURSE CODE: 10B11EC612

MAX. MARKS: 35

COURSE NAME: VLSI TECHNOLOGY AND APPLICATIONS

COURSE CREDITS: 04

MAX. TIME: 2 Hrs

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

1.

[CO1, CO2, CO3, CO4, CO5][1 * 10 =10]

- I. Show analytically by using equations how the gate capacitance is affected in terms of scaling factor S using full scaling method.
- II. Specify the colors for *n*-diffusion, metal 1 layer, polystlicon and demarcation line in stick diagram.
- III. Find the region of operation for the MOSPET working with following parameters: $V_G = -1V$, $V_S = 2V$, $V_D = -3V$, $V_{th} = -1.5V$?
- IV. In general, p-MOS in series implement a gate. How many n-MOS transistors are in logic diagram of NAND 3 gate?
- V. Does the substrate bias effect, affect CMOS circuits? How.
- VI. What is the formula for C_{GD} and C_{GB} in saturation region for oxide related capacitance? Assume overlap length
- VII. If $V_{OH} = 4.5 V$, $V_{OL} = 0.3 V$, $\gamma = 0.38 V^{1/2}$ and $\left|2\phi_f\right| = 0.6 V$. Find the threshold voltage for load assuming this value is used in calculation of V_{IL} . Assume $V_{TO} = 0.8 V$.
- VIII. Give the formula for voltage equivalence factor (K_{eq}) and zero bias capacitance (C_{J0}) .
- IX. Find i as a function of v for the circuit shown in Fig 1 for linear and saturation region. Neglect the effect of λ on v_{DS} - i_D in the saturation region.

Fig 1

- X. Assuming linear load, draw the logic diagram for $\overline{AB+CD}$.
- 2. A NOR3 gate uses identical n-MOS and p-MOS with an aspect ratio of 4 for each MOS. The n-MOS process trans-conductance is $120\mu\text{A/V}^2$, and the threshold voltage of 0.55V. A power supply of 5V is chosen for the circuit. Find the value of p-MOS process transconductance needed to create a gate where the case of simultaneous switching gives the midpoint of 2.4V. Assume $V_{tp} = -0.9\text{V}$.
- 3. For the CMOS inverter $V_{\text{Tn}} = 0.5 \text{V}$, $V_{\text{Tp}} = -0.5 \text{V}$, $k_{\text{n}} = 80 \mu \text{A/V}^2$, $k_{\text{p}} = 40 \mu \text{A/V}^2$ and $V_{\text{DD}} = 3.3 \text{V}$, $(\text{W/L})_{\text{n}} = (\text{W/L})_{\text{p}} = 4$.
 - Find the transition points for the p-MOS and n- MOS
 - Find v_i , when $v_0 = 0.5$ V
 - Find v_i when $v_0 = 2.8$ V
 - Give the conditions for Symmetric CMOS inverter.

[CO4]
$$[2 + 1.5 + 1.5 + 1 = 6]$$

- 4. Explain the different steps of fabrication for enhancement n-type IGFET. [CO5] [5]
- 5. Draw the stick diagram of the logic expression $f(A, B, C) = \overline{A(B+C)(A+B)}$ using CMOS logic. Find the equivalent CMOS inverter circuit for simultaneous switching of all input, assuming that $(W/L)_n = 15$ for all *n*-MOS transistor and $(W/L)_p = 20$ for all *p*-MOS transistor.

 [CO5] [5]
- What are pass transistors? Derive *pull up to pull down* ratio if one of the inverter is fed to another inverter through a series of three pass transistors. Assume $V_{th} = 0.2V_{DD}$, $V_{thdep} = -0.6V_{DD}$ and $V_{thp} = 0.3V_{DD}$. [CO6][1 + 3 = 4]