(45)

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2025

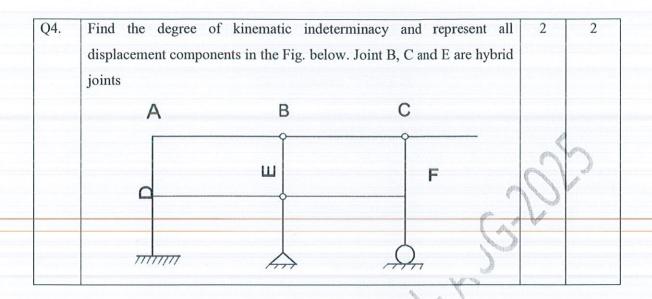
M.Tech-1st Semester (CE)

COURSE CODE (CREDITS): 25M1WCE114 (3)

MAX. MARKS: 15

COURSE NAME: FINITE ELEMENT METHOD

COURSE INSTRUCTORS: DR SAURAV


MAX. TIME: 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required

for solving problems

Q.No	Question	CO	Marks
Q1	A uniform bar with length L and cross-sectional area A is fixed at the		
	top and suspended vertically from a roof. A point load P is applied at		
	the free (lower) end. Using the Rayleigh-Ritz method, determine the	1	5
	stress at any cross-section along the length of the bar. Given:		
	$E=2\times10^5 \text{ N/mm}^2$, L=10m, and a cylindrical specimen of diameter 20		
	mm, compute the stress and strain at the mid-span when subjected to a		
	load P=50kN.		
Q2	A uniform beam fixed at both ends carries a central concentrated load		
	P. Find the central deflection due this loading condition assuming the		
	trail function as		2
	$y = y_0 [1 - \cos(2\pi x / L)]$	1	3
	Where y_0 = Ritz parameter. L= length of the beam		
Q3.	What do you understand by degree of freedom? Deduce an equation to	2	5
	formulate stiffness matrix in member coordinate system for space frame member having 2 nodes.		

