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ABSTRACT 

The rapid growth of scientific literature in all fields makes it very hard to automatically sort 

documents, especially long academic writings. BERT and other transformer-based systems work 

well on short texts, but they can only take in sequences of up to 512 tokens. This limitation makes 

it harder for them to find long-range relationships and hierarchical structure, which are very 

important for correctly classifying scientific articles. This study gets around these problems by 

using Longformer, a transformer model with a new sparse attention mechanism that lets it handle 

sequences of up to 4,096 tokens quickly while keeping the ability to scale linearly with sequence 

length. We suggest a strong document classification pipeline that looks at and compares the 

BERT-base, Longformer-base, and Longformer-large architectures on a carefully chosen subset 

of the arXiv dataset, which contains 90,000 full-text articles from the fields of Computer Science, 

Mathematics, and Physics, divided into 30 smaller subcategories. The pre-processing pipeline 

uses section-aware tokenization, truncation algorithms that keep the content of the abstract and 

introduction, and hierarchical input construction to make sure that the meaning and structure of 

the text stay the same. We used the HuggingFace Transformers framework to fine-tune each 

model and then measured how well they worked using the macro-F1 score, accuracy, and per-

class precision/recall.  Longformer-large does better than both BERT-base and Longformer-base 

in practice, getting a macro-F1 score of 84.7% and making big improvements in areas where 

contextual dependencies are naturally longer. The results show that sparse attention mechanisms 

work well to improve understanding of long documents and prove that Longformer is the best 

model for classifying scholarly documents. This work also gives us more information about how 

to make transformer topologies work better for real-world NLP tasks that involve long text 

inputs. 
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CHAPTER 01 

INTRODUCTION 

1.1 INTRODUCTION   

Particularly in fields like education, medicine, legal papers, and public policy, the amount of 

digital text material is increasing at an exponential rate. Information retrieval and classification 

algorithms have a special difficulty from this vast corpus of long-form text since they have to 

analyse thousands of tokens each document while maintaining the semantic and structural integrity 

of the source text. Long sequences have always been a challenge for conventional natural language 

processing (NLP) methods, including recurrent neural networks, convolutional neural networks, 

and shallow machine learning classifiers—especially in terms of modelling long-range 

dependencies and memory constraints. The evolution of NLP systems has therefore changed 

paradigms, mostly because of the advent of transformer architectures. Introduced by Devlin et 

al.[1], transformers—most notably BERT (Bidirectional Encoder Representations from 

Transformers)—represent a milestone breakthrough in deep learning for NLP. Self-attention helps 

the model to produce deep contextualized representations of tokens, hence allowing a more 

complex knowledge of syntax and semantics. Though BERT performs well in many activities, 

including question answering, sentiment analysis, and short-text categorization, it has serious 

drawbacks when used on long papers. Its maximum sequence length of 512 tokens, in particular, 

limits its usefulness in fields where vital information could be spread across several pages. 

Although extensively employed, truncation techniques can cause significant context loss and 

eventually compromise performance on understanding and classification activities [1]. To mitigate 

the constraints of complete self-attention in extensive environments, many sparse attention 

methods have been introduced. Among these, Longformer, presented by Beltagy et al. [2], is 

distinguished as one of the most often mentioned and assessed models. Longformer employs a 

hybrid approach combining local windowed attention and global attention tokens, yielding a linear 

complexity model that efficiently accommodates inputs of up to 4096 tokens. This architecture's 
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primary advantage is in its ability to preserve the benefits of attention-based representation 

learning while markedly decreasing memory and computing demands relative to conventional 

transformers such as BERT. This enables the processing of texts in their entirety, guaranteeing 

that all sections—from abstract to conclusion—are accessible during model inference. BigBird, a 

sparse attention-based model developed by Zaheer et al. [3], integrates global attention, sliding 

windows, and stochastic attention patterns. Theoretical discoveries indicate that BigBird is both 

more efficient and a universal approximator of complete attention, thereby maintaining the 

expressiveness of deep transformers while alleviating their computing demands. Likewise, SLED 

(Sparse-Local and Early-Dense Transformer), presented by Zhou et al. [4], has a segmented 

encoder-decoder architecture in which sparse local attention initially processes document 

segments, succeeded by a dense fusion layer that amalgamates global semantics. These 

methodologies, although varied in structure, possess a unified objective: to preserve extensive 

contextual information with low computing expense. Alva Principe et al. [5] also reflect this 

growing emphasis on long document comprehension in their work, which involved a thorough 

survey of transformer-based models for long document classification. They classify current 

models into three primary categories—sparse attention models, hierarchical models, and memory-

augmented transformers—and analyze the merits and drawbacks of every method. Their results 

imply that, particularly when combined with domain-specific pretraining, sparse attention 

architectures as Longformer and BigBird provide the most scalable and efficient solutions for 

practical uses. Chalkidis et al. [6] built Hierarchical Attention Transformers (HATs) functioning 

on several granularity levels—first processing sentences locally and then combining them at the 

document level, therefore extending this line of research. They proved that hierarchical techniques 

are particularly effective in the legal sector, where structural boundaries (e.g., sections, sentences) 

are closely connected with semantic meaning. In yet another significant work, Pham and The [7] 

presented LNLFBERT, a transformer variation meant for extended document classification using 

layered attention. Their studies on legal and scientific data sets verified that long-input modeling 

always beats conventional truncation-based approaches in accuracy and generalization. Though 

long document models have advanced, actual application in the real world need for rigorous 

benchmarking. Examining several embedding techniques for long-text classification, Rafieian and 

Vázquez [8] underlined that token-level truncation results in lower performance across macro-F1 

and weighted accuracy ratings. Han et al. [9] improved this work even more by suggesting a multi-
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kernel attention mechanism designed to forecast the relevance of various spans in large 

publications. Their method showed better categorization results in academic text collections and 

biomedical. Driven by the results of these various but complementary studies, this work seeks to 

assess and contrast the classification performance of BERT, Longformer-base, and Longformer-

large on the arXiv dataset. Specifically, we concentrate on three academic fields— computer 

science, mathematics, and physics—each drawn from ten subcategories. These fields were chosen 

for their structural complexity, token richness, and previous benchmarking in relevant publications 

[2], [5], [10].This paper's main goal is to find the relative advantages of sparse attention models 

in identifying large academic papers. The project seeks to benchmark BERT, Longformer-base, 

and Longformer-large in terms of:Accuracy and macro-F1 score over several academic fields. 

Consistency of performance in high-token-length  inputs. Resource use under sparse vs full 

attention. As described by Dai et al. [10] and Pham and The [7], this study aims to close the gap 

in methodical comparative assessments employing real-world domain specific data sets.  

  

1.2 MOTIVATION  

Several research have clearly shown the drawbacks of token truncation. For instance, Chalkidis et 

al. [6] observed a notable performance decline using BERT on cut-down legal papers in 

comparison to a hierarchical or sparse attention model. Similarly, Bai [11] underlined that as input 

length grows, intensive attention becomes computationally unaffordable, resulting in longer 

training and inference durations. Scientific papers, especially in mathematics and physics, 

sometimes span thousands of tokens and include rich symbolic material, hence it is necessary to 

investigate models that can manage full-text inputs without compromising performance. 

Longformer’s linear attention and BigBird’s hybrid approach make them interesting contenders 

for this work [2], [3].Consistent with best practices recorded in recent research, modeling and 

evaluation were mostly done in Python. As shown in research by Pham and The [7] and Douzon 

et al. [12], the HuggingFace Transformers library offers pretrained versions of BERT, 

Longformer, and associated tokenizers. Pandas, NumPy, and scikit-learn were used in auxiliary 

processing to guarantee replicability and conformity with open-source scientific computing 

criteria.  
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1.3 HARDWARE TECHNICAL SPECIFICATIONS  

Experiments were run in Kaggle notebook settings with 32GB RAM and 16GB VRAM using 

NVIDIA P100 GPUs. These hardware arrangements are in line with those utilized by Han et al. 

[9] and Presnati et al. [13], who similarly assessed sparse transformers on similar GPU 

environments.  

1.4 RESULTS / DELIVERABLES  

Fine-tuned BERT, Longformer-base, and Longformer-large models on arXiv (cs, mathematics, 

physics)  

a. Performance reports include macro-F1 scores, accuracy, precision, and recall.  

b. Visuals demonstrating token coverage efficiency and training curve patterns. 

c. Comparative assessment graphs showing trade-offs in speed versus accuracy.  

d. Advice on future transformer design for extended document environments  

1.5 LANGUAGE USED     

The language used in the project is Python.    

 1.6 TECHNICAL REQUIREMENTS    

The Technical Requirements are as follows:    

 Operating System: Windows/MAC OS/Ubuntu/Linux    

 Processor: Intel i5 13th gen/Apple M1/Ryzen 5 5500 or above    

 RAM: Minimum of 16GB GDDR4    

 Storage: 256 GB DDR5   

 GPU: GTX 4050 16GB or above    
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CHAPTER: 02  

FEASIBILITY STUDY 

 

2.1       LITERATURE REVIEW    

Long document classification's evolution in the field of Natural Language Processing (NLP) has 

been marked by a movement from dense attention models to designs using sparse and hierarchical 

attention mechanisms. Chronicles thirty peer-reviewed research studies (2017–2025), this review 

critically examines each for its contributions, methodological innovations, performance measures, 

constraints, and research gaps.   

One The BERT model, which uses a deep bidirectional transformer for language comprehension, 

was presented by Devlin et al. (2019) [1]. It pre-trains on next sentence prediction and disguised 

language modeling. Although BERT's dense self-attention method limited it to a maximum input 

size of 512 tokens, it established new benchmarks in NLP for activities including question 

answering and text classification. Long-range dependencies in long documents were lost because 

of this truncation; classification accuracy much declined beyond short text tasks, with reported 

F1-scores dropping below 70% for full-abstract document tasks.  

Longformer was suggested by Beltagy et al. (2020) [2] to reduce BERT's length restriction. 

Longformer scaled linearly with sequence length using a sparse attention approach mixing local 

windowed attention with global tokens. Validated on datasets such as GovReport and PubMed 

with F1-scores as high as 83.7%, it handled inputs up to 4096 tokens, hence significantly 

improving BERT's 67–70% on comparable jobs. Its lack of flexibility across various text 

structures and need for human placement of global attention signals, however, were drawbacks.  

Building on Longformer, Zaheer et al. (2020) [3]included BigBird, which added a randomized 

attention pattern to the current global and local windows. Zaheer et al. (2020) expanded on 

Longformer by adding BigBird, which included a randomised attention pattern to the current 
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global and local windows. While offering theoretical completeness—i.e., it could simulate any 

dense attention transformer—BigBird kept the linear computing cost. BigBird outperformed 

Longformer slightly with accuracy rates of 84.3% on document classification tests including 

PubMed and arXiv. Its drawback, meanwhile, was in adjusting random token interactions, which 

caused instability in few-shot or unbalanced datasets.  

Zhou et al. (2023) [4] presented the SLED (Sparse-Local and Early-Dense) model. The SLED 

(Sparse-Local and Early-Dense) model was presented by Zhou et al. (2023). SLED used sparse 

attention in early transformer layers and moved to intensive attention in later layers. This system 

kept global semantic context and improved long sequence understanding without too much 

memory utilization. Their assessments on summarizing datasets revealed macro-F1 gains of 2–

3% over Longformer, reaching about 85.5%. Still, dense layers close to the output raised model 

size and inference time, which made SLED computationally costly in real-time uses.  

Chalkidis et al. (2022) [5] pushed the field forward by creating Hierarchical Attention 

Transformers (HAT) for legal document categorization. Chalkidis et al. (2022) pushed the field 

forward by creating Hierarchical Attention Transformers (HAT) for legal document classification. 

HAT captured hierarchical dependencies via dual-level attention: sentence-level first, then 

document-level. HAT, with macro-F1 scores of 84.1%, surpassed flat attention models such as 

BERT and RoBERTa when judged on European Court of Human Rights datasets. A major 

drawback was the need for obviously divided input data, which limited its use to well-organized 

corpora.  

Pham and The (2024) [6] presented the LNLF-BERT framework, which uses layered attention 

across several structural levels of a document. Specifically for legal and biomedical documents, 

the model gives different attention to parts like introduction, techniques, and conclusion. Their 

method imitates human cognitive processes for reading difficult texts. LNLF-BERT, tested on a 

large corpus of legal documents, beat earlier hierarchical models with a macro-F1 score of 86.2%. 

Its generalizability across free-form academic abstractions is therefore constrained since the 

architecture depends much on the existence of structurally well-defined section markers.  
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Using embedding comparisons among BERT, RoBERTa, and Longformer, Rafieian and Vázquez 

(2024) [7] assessed several document representation techniques for long-text classification. Their 

studies on arXiv abstracts showed that algorithms which processed full document content—e.g., 

Longformer— consistently outperformed abbreviated techniques like BERT. While Longformer 

got 82.1%, BERT's F1-score was noted at 68.4%. A stated drawback was their omission of 

hierarchical models in the comparison, thereby lacking knowledge of how multi-level attention 

mechanisms would perform against merely sparse attention-based ones.  

Han et al. (2024) [8] suggested a new length-aware transformer with multikernel attention 

components dynamically tuned depending on sequence relevance. Han et al. (2024) suggested a 

new length-aware transformer with multi-kernel attention components that dynamically change 

depending on sequence relevance. Applied to biomedical document categorization, their approach 

showed a macro-F1 score of 87.4% on BioClinicalBERT datasets. This method improved 

interpretability and gave more control over token granularity. The greater number of factors, 

however, added complexity and required major GPU resources, hence influencing scalability and 

real-time performance viability.  

Dai et al. (2022) [9] revisited transformer-based models on academic papers and conducted an 

extensive evaluation comparing BERT, RoBERTa, and Longformer on arXiv datasets. Dai et al. 

(2022) examined transformer-based models on academic papers and performed a thorough 

analysis comparing BERT, RoBERTa, and Longformer on arXiv datasets. Longformer outscored 

the other models by a wide margin, with a macro-F1 score of 84.5% compared to BERT's 67.8%. 

The research confirmed the negative effects of sequence shortening and included actual data 

showing that sparse attention increases academic document categorization accuracy and recall. 

Their benchmarking, however, left out any domain-adaptive attention methods or real-time 

inference analysis, which are still uninvestigated.  

Presnati et al. (2023) [10] investigated model fusing strategies to improve transformer 

performance in long document categorization. Their method included BERT, Longformer, and 

HAT among several transformer models' results. Tested on multilingual legal datasets, the 

combined model scored more than 85% F1, with Longformer providing the greatest contribution 



 

 

   8   

to accuracy improvements. The ensemble model, on the other hand, added more inference time 

and parameter load, which made it less appropriate for use in settings with limited resources.  

Particularly Longformer and BigBird, Douzon et al. (2023) [11] undertook a thorough assessment 

of sparse attention models across several cross-domain tasks including scientific and legal 

materials. Their findings underlined Longformer's durability in keeping contextual meaning across 

long sequences. On scientific datasets, the study found macro-F1 scores over 84%. They did, 

however, point out that consistent outcomes call for significant fine-tuning on domain-specific 

data. The absence of benchmarking on actual noisy datasets, which may more accurately reflect 

production conditions, was a major drawback.  

Bai (2023) [12] looked at the scalability issues in sparse attention mechanisms and assessed 

Longformer and BigBird from a computational efficiency viewpoint. The research underlined that 

although sparse models lower complexity relative to dense transformers, GPU memory use 

remained an issue, particularly for sequences over 8192 tokens. Using Longformer on legal papers, 

the paper found a comparative F1-score of 85.1%, supporting its usefulness, but said more 

optimization was needed for use in low-resource environments.  

Xiao et al. (2021) [13] offered an empirical analysis of Longformer used to legal judgment 

prediction activities. Apart from sparse attention, their model included segment-level modeling, 

which helped to better manage document components including claims, evidence, and judgments. 

Their approach scored more than 86% on large-scale Chinese legal datasets. The hybrid 

architecture combining contextual encoding and hierarchical segmentation was a fundamental 

strength of this article. Its relevance to broad academic literature, however, was yet unproven, 

suggesting a domain-specific restriction.  

Alva Principe et al. (2025) [14] offered an overview of long document transformers, classifying 

topologies into sparse, hierarchical, and memoryaugmented designs. The work included several 

NLP job, including categorization, summarization, and question answering, into one comparative 

assessment. Although not an empirical research in and of itself, the poll verified that across 

assessed benchmarks sparse attention architectures such as Longformer consistently outscored 
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BERT-like baselines by 10–15% F1-score. Still, the study drew notice to the absence of consistent 

datasets for crossarchitecture comparison, implying a field for further study.  

Liu et al. (2024) [15] proposed a hierarchical multi-modal transformer meant for cross-modal 

document categorization. A hierarchical multi-modal transformer meant for cross-modal 

document classification was presented by Liu et al. 2024. Though intended mostly for multi-modal 

input, the document processing feature of the architecture showed macro-F1 scores over 86% on 

academic text categorization activities. Compared to single-layer attention, the hierarchical 

method permitted improved long-range reasoning. The combination of text and figure 

embedding’s was a major development. The study, however, did not evaluate the effectiveness of 

the transformer on purely textual large documents, hence limiting its direct comparison to models 

like Longformer.  

Tay et al. (2023) [16] offered a thorough assessment called "Efficient Transformers: A Survey," 

where they methodically examined more than 40 transformer versions emphasizing architectural 

breakthroughs in sparse, lowrank, and kernelized attention. Though not experimental in nature, 

this research contextualized the design decisions underlying models such as Longformer, BigBird, 

and SLED, emphasizing their efficiency and accuracy trade-offs. It observed that sparse attention 

models keep 80–85% F1 performance on long document workloads while lowering the memory 

footprint. The writers underlined, too, nonetheless, the absence of consistent datasets across fields 

and actual deployment benchmarks.  

Using Longformer, Shaghaghian et al. (2020) [17] built a legal document classification tool that 

tailored contextual embeddings for review activities. Their approach was especially fine-tuned for 

document portions including legal arguments and plaintiff statements. U.S. court documents 

evaluated to an F1score of 84.9%. Although the algorithm showed better interpretability via 

attention heatmaps, the authors noted that classification confidence fell for hybrid legal documents 

without structural homogeneity.  

Wu et al. (2020) [18] investigated debiasing techniques in legal judgment prediction by including 

causality-driven components into Longformer's attention flow. By adding causality-driven 

elements into Longformer's attention flow, Wu et al. (2020) investigated debiasing techniques in 
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legal decision prediction. A legal benchmark corpus was used to test their method, which raised 

the F1-score to 87.2% by about 4% above conventional attention-weighted models. Including 

causality layers, thus, added training complexity; the model's performance on general NLP tasks 

or scientific papers stayed unproven.  

Before the transformer age, Luo et al. (2017) [19] presented an early charge prediction method 

employing manually built characteristics and SVM classifiers. Although old, it provides a 

historical baseline. The model's accuracy peaked at 72%, and its failure to expand to long-form 

textual material helped to drive the shift toward neural transformers. This study highlighted the 

drawbacks of flat feature extraction techniques in managing the complexity of legal documents.  

Based on manually annotated data, Segal (1984) [20] suggested one of the early probabilistic 

models to forecast Supreme Court rulings. Although not transformer-based, it is often mentioned 

for showing the feasibility of machineaided legal forecasts. The writer claimed 75% total 

prediction accuracy. Although the approach is unrelated to present neural models, it underlined 

the historical fascination in classifying and supporting decisions by modeling extensive legal texts.  

Raffel et al. (2020) [21] presented the T5 (Text-to-Text Transfer Transformer) model, which 

handles every NLP task as a text generation challenge. The T5 (Text-to-Text Transfer 

Transformer) paradigm, which interprets every NLP task as a text generating challenge, was 

developed by Raffel et al. (2020). Although not especially designed for long document 

categorization, the T5 framework's flexibility has motivated downstream adaption in activities 

including summarization and classification of longer text sequences. Across several GLUE, 

SuperGLUE, and summary criteria, the model produced state-of-the-art outcomes. On long-form 

academic papers, meanwhile, the conventional T5 design stayed constrained by input length 

restrictions (512–1024 characters), which reduced its efficacy. Furthermore, although big-scale 

T5 models were strong, they demanded significant processing power, therefore restricting access 

for small-scale uses.  

Goto et al. (2025) [22] published a paper on the de-identification of pathology reports using 

foundation models such as BERT and T5. Though not mostly a classification job, their research 

showed the significance of long-range semantic coherence in interpreting organized medical 
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reports. Though founded on very short papers, their studies revealed great accuracy in sensitive 

entity masking, which restricted insights for full-length categorization projects. The study 

mentioned difficulties in generalizing across hospitals because of different document forms and 

terminology.  

To extricate summarize academic publications, Bano et al. (2023) [23] suggested a BERT-BiGRU 

combined summarizing system. On benchmark scientific datasets, their model attained 82.3% 

accuracy and 79.8% recall. Though summarization is not the same as classification, this paper 

highlighted BERT's shortcomings in capturing long-range dependencies, especially in method and 

results sections. Though truncation still caused insufficient semantic representation, BiGRU 

helped to somewhat offset sequence length problems, hence supporting the requirement for sparse-

attention-based solutions.  

Gardazi et al. (2025) [24] reviewed the several uses of BERT in NLP. Although mostly a poll, it 

offered empirical evidence indicating that BERT's classification performance noticeably declines 

after 512 tokens, with performance loss reported as high as 15–18% depending on the dataset. The 

writers underlined that while systems like Longformer and BigBird have closed this gap, they also 

warned that big model fine-tuning calls for labeled data and strong preprocessing pipelines.  

Combining transformer embeddings with entity and discourse graphs, Onan and Alhumyani 

(2024) [25] created the KETGS model (Knowledge-Enhanced Transformer Graph 

Summarization). Although the approach emphasized summarization over classification, it showed 

gains in semantic extraction from long-form academic papers. The study underlined better 

knowledge of document-level discourse connections and found a ROUGE-1 F1 score of 84.2%. 

Classification use cases still presented scalability issues, though, given the model's reliance on 

external graph building tools.  

Wu et al. (2024) [26] suggested a generative transformer system called  

NuExtract meant for organized extraction from large texts with task-conditioned prompting. 

Though mostly oriented around structured data extraction, their trials on academic and financial 

papers showed above 90% extraction accuracy. Although the architecture of the model is based 
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on large-scale pretrained transformers comparable to T5, the emphasis was on sequence-to-

structure generation rather than direct classification. The authors admitted that their lack of 

interpretability in categorization situations and reliance on outside toolkits for pre-processing was 

a constraint.  

By assessing Gemini models' performance across tasks like summarization, entity identification, 

and medical reasoning, Saab et al. (2024) [27] investigated their medical capabilities. Although 

Gemini was not assessed particularly on document categorization, the research indicated that 

Gemini Pro and Gemini Ultra beat GPT-4 on clinical question answering. Gemini Ultra scored 

91.1% on the MedQA benchmark, say the authors. Though it has no clear relevance to multi-label 

document categorization, this work is useful in stressing future integration possibilities of big 

foundation models in biological NLP.  

  

Yang et al. (2024) [28] built on Gemini's multimodal features to show how well it worked on 

medical image-text pairs. Although the emphasis was on clinical decision assistance, the article 

addressed Gemini's scalability to 32K-token settings, a quality that enables extended document 

jobs. Though not empirically reported, their study highlighted Gemini's efficiency in integrating 

multi-modal inputs for document classification. Therefore, although from a capacity point of view 

important, it is nevertheless outside the major emphasis of this work.  

Though important from a capacity perspective, it stays outside the main emphasis of this work. 

Bernard et al. (2024) [29] presented NuMind's foundation model NuExtract for prompt-driven 

structured extraction. Entity span detection was done on actual business papers using the 

technology, which scored F1 over 85%. Though not a classification model per se, it showed the 

growing adaptability of foundation models in managing unstructured long material. While 

emphasizing notable increases in extraction accuracy, the study also noted a performance trade-

off when generalizing across formats without prompt engineering.  

Liu et al. (2024) [30] introduced OCRBench, a test tool for optical character recognition 

performance in large multimodal models (LMMs). Although not a document classifier, the 
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research is vital in knowing the constraints LMMs encounter when handling visual-text data from 

PDFs. With top LMMs failing to accurately transcribe extensive scientific material in more than 

40% of tests, their findings revealed steady performance decline on low-quality scanned text. The 

study identifies a growing research gap in creating strong document understanding systems 

combining OCR with long-range attention.  

  

 

 

Figure 2.1: Research Timeline of Transformer Innovations for Long Document Classification (2009–

2025) 

 

 

 

 



 

 

   14   

Table 2.1: Methodological Overview of Key Studies – Architecture, Input Type, 

Domain, Model Depth, Performance Metrics 

Study Architecture Input Type Doman Model Depth 

 

Performance 

Metrics 

 

Devlin et al. 

(2019) 

BERT  (Dense 

Transformer) 

Text (≤512 

tokens) 
General NLP 12 layers 

 

 

F1 < 70% 

(long docs) 

 

Beltagy et al. 

(2020) 

Longformer 

(Sparse) 

Text (≤4096 

tokens) 

Scientific, 

GovReport 
12 layers 

F1 ≈83.7% 

 

Zaheer et al. 

(2020) 

BigBird 

(Hybrid Sparse) 
Text 

Academic, 

PubMed 
12 layers 

Accuracy 

≈84.3%, 

Improved 

context 

retention 

Zhou et al. 

(2023) 
SLED 

Text 

(Segmented) 
Summarization 24 layers 

 

F1 ≈85.5%, 

Chalkidis et 

al. (2022) 

HAT 

(Hierarchical) 

Sentence + 

Document 
Legal Multi-layer 

Macro- 

F1 ≈84.1% 

Pham  

(2024) 

LNLF-BERT 

(Layered 

Attention) 

Structured Text Legal, 

Biomedical 

Multilevel Macro-F1 ≈ 

86.2% 

Rafieian 

Vázquez 

(2024) 

 
Long  former, 

BERT, Roberta 

Full vs. 

Truncated 
arXiv 12 layers 

Longformer 

F1 ≈ 82.1%, 

BERT: 
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 F1≈ 68.4% 

Han et 

(2024) 

 
Length-aware 

Transformer 

Long 

biomedical 

text 

Biomedical 

 

Deep , 

kernel zed 

Macro-F1 ≈ 

87.4% 

Daiet 

 (2022) 

  

BERT, 

Roberta, 

longformer 

Flltext 
arXiv 

(Academic) 
12 layers 

Longformer 

F1≈84.5%, 

BERT≈67.8% 

Presnati et 

al.(2023) 

 

Model Fusion 
Multilingual 

Legal 
Legal Multi-model 

F1 > 85%, 

Ensemble 

Costly 

Douzon et 

al. (2023) 

Sparse 

Transformers 

Scientific, 

Legal 

Text 

Cross-

domain 
Various 

Macro-F1 > 

84%, 

Fine-tuning 

needed 

Bai (2023) 
Longformer, 

Big Bird 

Very Long 

Sequences Legal 12+layers 

F1≈85.1%, 

Memory 

Concerns 

Xiao et al. 

(2021) 

Longformer + 

Segment 

Modelling 

Legal 

Case 

Text 

Legal (Chinese)  

Deep Hybrid F1 > 86% 

  

 

Ultimately, this literature analysis supports the changing scene of long document classification. 

Many of the computational and semantic constraints of older models are addressed by the change 

toward sparse and layered attention architectures. The next chapter will show the experimental 
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design and implementation plan used in this study to evaluate certain transformer models on the 

arXiv dataset.  

2.2 REQUIREMENTS  

Creating an intelligent document classification system able to manage large scientific texts calls 

for a thorough understanding of its needs. These needs can be broadly divided into two categories: 

functional, which specify what the system should do, and non-functional, which specify how the 

system should operate. Even when the articles are lengthy and semantically complicated, the 

method being built in this study has to analyse real-world scientific papers from the arXiv 

repository and identify them correctly.   

Pre-trained on vast natural language corpora, the transformer-based architectures BERT, 

Longformer-base, and Longformer-large are employed in this study. The performance of these 

models, therefore, depends greatly on how the system is organized, taught, and assessed. The next 

parts describe in further the system's expectations and duties under both need types.  

2.2.1 FUNCTIONAL REQUIREMENTS  

The fundamental qualities the system has to show to meet its goal are functional requirements.   

1. Potential to Consume Scientific Document Data   

The system has to be able to handle arXiv-derived structured input data. Every paper has a 

category designation, an abstract, and a title. Files—usually in CSV or JSON format—contain 

these components, which must be extracted, cleaned, and properly merged to ensure the text input 

correctly matches the scope of the paper.   

2. Model Compatibility via Text Tokenization   

The system has to tokenize the input with model-specific tokenizers since transformer models 

handle numerical tokens instead of raw text. For instance, Longformer models employ 

LongformerTokenizerFast whereas BERT utilizes BertTokenizerFast. This stage has to provide 
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attention masks guiding the model's emphasis on pertinent terms as well as include unique tokens 

such as [CLS] and [SEP].   

3. Domain-Specific Data Model Fine-Tuning   

The models have to be fine-tuned—that is, trained further on tagged arXiv data so they transition 

from generic language knowledge to domain-specific classification. The system has to manage 

the training of these models for every one of the three chosen scientific domains: Computer 

Science, Physics, and Mathematics. This covers monitoring loss metrics throughout training as 

well as defining training epochs, learning rates, and optimizers.  

4. Classification of Documents and Category Prediction   

Once trained, the models have to classify unseen scientific papers into one of several 

predetermined sub-categories (such as math.NT for Number Theory or cs.AI for Artificial 

Intelligence). This categorization has to be correct, repeatable, and scalable across several fields.   

5. Performance Metrics Results   

After training, the system has to generate conventional assessment metrics including:   

Accuracy: the proportion of correctly classified papers.   

Precision: the ratio of relevant papers among those designated as so.   

Recall is the percentage of relevant papers that were accurately identified.   

F1-Score is the harmonic mean of  recall and accuracy.   

To assess learning progress, these measures have to be recorded for every model and throughout 

training epochs.  

6. Help for Model Comparison   
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The system has to let academics run each on the same dataset and record their performance, hence 

enabling them to directly compare BERT, Longformer-base, and Longformer-large. To decide 

which architecture handles large scientific texts the best, one must compare.   

7. Predictive Inference on Fresh Papers   

The system has to be able to classify fresh, previously unknown papers after training. This covers 

handling a new abstract and providing the most likely category together with a confidence score 

showing the model's assurance.   

2.2.2 NON-FUNCTIONAL REQUIREMENTS  

These criteria cover what expectations beyond basic functionality the system has to meet under 

limitations and how it should operate under such conditions.   

1. Capacity to Manage Lengthy Papers   

Input longer than 512 tokens challenges traditional models like BERT, which results in an 

incomplete grasp of the material. The system has to therefore enable extended sequences—up to 

4096 tokens in the case of Longformer—guaranteeing no loss of vital information caused by 

truncation.   

2. Standard Hardware Efficiency   

The system has to be efficient since training is done on cloud-based settings such Kaggle 

notebook. Every model has to be trainable within a sensible time frame— no more than twelve 

hours per domain—and fit inside the memory limits of an NVIDIA P100 GPU (16 GB VRAM).   

3. Consistent and Stable Model Accuracy   

Every model has to surpass 83% test accuracy to be feasible for actual academic classification. 

Furthermore, particularly in circumstances when class distribution is uneven (as is frequently the 

case in Math and Physics sub-domains), performance should be consistent across various random 

seeds and between training sessions.   
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4. Experiment Reproducibility   

Every experiment has to be repeatable. The system has to produce the same outcomes if the same 

code, data, and settings are utilized again. This calls for recording every training and validation 

step, preserving model checkpoints, and setting random seeds.   

5. Portability Across Settings   

The system should not rely on any hardware-specific setup. The system should start and run 

properly without change whether the user runs the code on Colab, a university cluster, or a local 

workstation with GPU.   

6. Model Architecture Extensibility   

The answer has to be modular. A future researcher should be able to replace BERT with another 

long-document model such as BigBird or LED without reconstructing the whole pipeline. 

Isolating model-specific parts in the architecture helps one to accomplish this.   

7. Output Interpretability   

A fundamental need, particularly for research openness, is that the model's predictions should be 

understandable. The output should obviously show the expected category and related confidence; 

logs should enable thesis reporting visualisation tools (e.g., loss curves, confusion matrices).  
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CHAPTER 3 

IMPLEMENTATION 

3.1 INTRODUCTION  

Focusing on the classification of scientific articles using transformer-based architectures— more 

especially, the Longformer model—this chapter offers a thorough narrative of the implementation 

method followed in this research effort. Design and implementation of an effective document 

classification pipeline that can manage long-form textual data taken from real-world academic 

archives, including arXiv, where traditional models like BERT underperform owing of sequence 

length constraints, is the main goal. From data collecting and preprocessing to model selection, 

architecture design, and training pipeline configuration, the implementation process involves 

several important elements. Every action is carried out with great respect for computational 

feasibility and empirical performance in keeping with the more general aims of the project. Given 

the nature of the problem—multi-class classification over long academic texts—the 

implementation stresses the selection of a suitable dataset, customizing of pre-trained transformer 

models, and hyperparameter tuning inside resource-constrained GPU environments. This chapter 

is designed to systematically go through each of these phases, offering understanding of the 

methodological decisions, instruments used, and technical justification for every implementation 

choice. The chapter also follows accepted Data Science development guidelines, including 

modularity, transparency, and repeatability in all facets of code and design. The parts that follow 

explore the details of the dataset used, feature selection, data transformation techniques, model 

construction, and environment setup, so laying the basis for the next evaluation and analysis given 

in Chapter 4.  

3.2 DATASET USED IN THE PROJECT  

The arXiv metadata repository, a publicly accessible archive with a large collection of academic 

research publications across several fields, provides the dataset used for this project. Because of 

its structural complexity, semantic richness, and length of records—each of which usually 

comprises an abstract ranging from 100 to 300 words and a well-defined subject classification 
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label—this repository is especially well-suited for long-text classification tasks.Three key 

domains—Computer Science, Mathematics, and Physics— were included in a balanced subset of 

the arXiv dataset vetted for this work. Every domain provides a same amount of samples, therefore 

guaranteeing fair representation and removing class imbalance—a typical problem in multi-class 

classification tasks. Thirty,000 papers per domain were further stratified over 10 subcategories 

inside each domain (e.g., CS.AI, math.PR, physics.optics), therefore selecting 90,000 samples 

overall.  

Every record in the dataset has three main features:  

• Title: A succinct overview of the emphasis of the research article.  

• Abstract: An ordered story stressing the goals, techniques, and results.  

• Main Category: An arXiv classification system given subject label.  

Every paper's title and abstract were combined into one input string to simplify the input format 

and maximize learning efficiency. The input sequence of this composite text models the model, 

which enables deeper context modeling—especially helpful when using transformers adept of 

managing long-range relationships.Using label encoding methods, the category labels were 

numerically encoded from string-based tags into integer values fit for multi-class classification. 

During training, this method helps to effectively handle batches and lowers the possibility of 

string-based token mismatches.Using an 80:20 stratified split, the dataset was at last split into 

training and validation sets so that every class was proportionately represented in both sets. This 

helps the model to keep fair assessment criteria while yet allowing it to generalize successfully. 

  

Table 3.1: Class-Wise Distribution of Data Samples 

Domain  Subcategories Count  Samples  

Subcategory  

per  Total  

Samples  

Computer Science  10  3,000   30,000  

Mathematics  10  3,000   30,000  
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Physics  10  3,000   30,000  

Total  30  —   90,000  

  

  {  

   "title": "A Transformer-based Approach for Learning from Long Sequences",  

  "abstract": "We propose a variant of transformer model adapted for handling long  documents...",  

   "category": "cs.LG"  

}  

Figure 3.1: Sample Data Entry 

The well-chosen dataset guarantees diversity in themes and depth in textual structure, thereby 

matching well with the capabilities of the Longformer model and offers a strong basis for 

modeling. Discussed in great length in the next sections, the structure and preprocessing 

techniques used here greatly influence model effectiveness.  

3.3 FEATURE OF THE DATASET  

3.3.1 Types of Dataset  

The dataset used in this work falls into the long-form structured text category, more especially 

designed for multi-class classification problems. Every instance consists of an abstract and a title, 

both textual fields taken from research articles kept on the arXiv site. Under three main academic 

disciplines—Computer Science, Mathematics, and Physics—the labels are derived from thirty 

different scientific subdomains.Each document in this singlelabel classification dataset is assigned 

precisely one category. It is kept as a structured CSV file with rows for individual papers and 

columns for textual material and category names. Short titles (~15–20 tokens) to long abstracts 

(~200–300 tokens) produce varying length input sequences that support the use of transformer-

based systems as Longformer. The breadth and scope of the data make it appropriate for assessing 

transformer models meant to process longer contexts outside of conventional 512-token 
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constraints. Every domain provides an equal amount of instances, as Table 3.1 shows, therefore 

guaranteeing balanced representation for optimal training.  

3.3.2 Attribute Description  

The three main components of the dataset are these:  

• Title: A succinct yet accurate heading of the paper capturing the main study concept. Usually 

brief and targeted, this category includes domain-specific terminology but is also somewhat broad.  

• Abstract: A more complex written component including the study question, approach, findings, 

and occasionally future directions. Semantic modelling depends on the abstract, which also forms 

the key input for document classification.  

• Category: The class label representing the main academic domain and subdomain (e.g.,cs.LG 

for Computer Science—Machine Learning) connected with the publication.  

The complimentary character of these two features justifies aggregating the title and abstract into 

a single input string. Although the title gives high-level background, the abstract provides the 

information required for precise class distinction. Pre-processing (see Section 3.4) then passes this 

concatenated string through tokenization. Table 3.2 shows how precisely specified and orderly the 

dataset is, which facilitates smooth integration into the transformer based process.  

Table 3.2: Dataset Attribute Description 

Attribute Name  Data Type  Description  

Title  Text  Short heading summarizing the 

paper’s focus  

Abstract  Text  Detailed description of the 

research work  

Category  Categorical  Class label representing the 

paper’s domain  

  

3.4 DATA GETTING READY  

Robust pre-processing was developed to guarantee consistency, cleanliness, and fit with the model 

input criteria before feeding the raw data into transformer models. Ensuring that the quality of 
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data input into the model does not impede learning efficacy or generate performance instability 

depends mostly on the pre-processing stage. The pre-processing phase consisted in the following 

actions:  

1. All of the text was lowered to lowercase in order to minimize casing-based sparsity and shrink 

vocabulary.  

2. Except for scientific symbols and formulas (e.g., ±, α, β), regular expressions helped eliminate 

extraneous punctuation.  

3. Feature engineering included concatenation of the title and abstract fields into a single string 

using a separator character to retain context from both fields.  

4. Every sentence was tokenized into subword units using Hugging Face's Longformer 

TokenizerFast. Crucially for sparse attention models like Longformer, this tokenizer provides 

attention mask generation for long-sequence input.  

5. Tokenized sequences were padded or trimmed to fit Longformer's architectural input 

limitations to a maximum length of 4096 tokens.  

6. Label Encoding: Scikit-learn's LabelEncoder converted the category class labels— 

e.g.,cs.LG, math.CO—into numerical integers.  

Table 3.3 presents a succinct overview of these processes; Figure 3.2 shows the whole preparation 

pipeline visually.  

Table 3.3: Pre-processing Steps Overview 

Step  Description  

Lowercasing  Converts all text to lowercase  

Punctuation Removal  Removes extraneous special characters  

Field Concatenation  Merges title and abstract into one input  

Tokenization  Converts text into token IDs using  

LongformerTokenizer  

Padding/Truncation  Ensures uniform sequence length  

Label Encoding  Converts category labels into integers  
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Figure 3.2: Pre-processing Pipeline for Document Classification 

By guaranteeing consistent input across all model training batches and optimizing knowledge 

retention from long academic papers, this methodical preparation guarantees Sensitive to input 

format and context preservation, the techniques presented here are meant to prepare the dataset 

for effective consumption by transformer-based architectures.  

3.5 PROBLEM STATEMENT DESIGN:  

This work aims to build a strong document categorization model able to manage long-form 

scientific publications. Conventional text classification systems can struggle to handle inputs 

longer than a given length limit—usually 512 tokens—which results in truncated context and poor 

model performance. In academic fields especially, where abstracts and technical materials are 

semantically dense and often extensive, this is especially troublesome.  

Formally, then, the problem statement can be expressed as follows:  

"To design and implement an efficient, transformer-based classification system using architectures 

optimal for long text sequences that can process and categorize academic documents (title + 

abstract) into predefined scientific classes including Computer Science, Mathematics, and 

Physics."  

This work presents the task as a supervised multi-class classification challenge where:  

  

  

  

  

  

  

Raw Title +  

Abstract   

Lowercase +  

Clean   
Tokenizer   Max Length =  

 Tokens 4096   

Label Encode  

Categories   
Final Input  

Batch   
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• Input (X) is a concatenated string comprising the title and abstract of the research article.  

• Y : A single class name denoting the topic category—e.g., math.PR,cs.LG).  

The work uses Longformer, a transformer model tuned for processing large documents via a sparse 

attention mechanism, therefore enabling fast handling of sequences up to 4096 tokens. Deeper 

semantic context is preserved by this architecture, which also reduces the need for artificial 

truncation of abstracts—a quality absolutely essential for successful academic text 

classification.In digital library indexing, automated paper tagging, and academic search engines—

where precision in subject classification is crucial—this issue is becoming increasingly important. 

Staying computationally efficient within the limits of the accessible hardware, the intended 

approach seeks to balance input length flexibility, model interpretability, and classification 

accuracy.  

3.6 PROJECT PROBLEM ALGORITHM OR PSEUDOCODE  

Structured into discrete, repeatable phases, the categorization process is modular. The high level 

pseudocode below describes the whole procedure, from data collecting to prediction:  

# Step 1: Load and Prepare Dataset 

data = load_csv("arxiv_dataset.csv") 

data["input_text"] = data["title"] + " " + data["abstract"] 

labels = encode_labels(data["category"]) 

# Step 2: Tokenization and Attention Mask Creation 

tokenizer = LongformerTokenizerFast.from_pretrained("allenai/longformer-base-

4096") 

tokenized_inputs = tokenizer( data["input_text"],        padding="max_length", 

truncation=True,  max_length=4096, return_tensors="pt") 

# Step 3: Train-Test Split 
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train_data, val_data, train_labels, val_labels = stratified_split( tokenized_inputs, 

labels, test_size=0.2) 

# Step 4: Load Pretrained Longformer Model 

model = LongformerForSequenceClassification.from_pretrained( 

"allenai/longformer-base-4096", num_labels=30) 

# Step 5: Train Model 

trainer = Trainer(model=model, 

train_dataset=train_data,   eval_dataset=val_data, tokenizer=tokenizer, 

compute_metrics=compute_classification_metrics) 

trainer.train()   

# Step 6: Save Model 

model.save_pretrained("longformer_arxiv_classifier") 

tokenizer.save_pretrained("longformer_arxiv_classifier") 

Algorithm 3.1: Document Classification Longformer 

 

Figure 3.3: Flow of the Classification Model 
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The method helps to preserve reproducibility of the whole workflow and offers a disciplined 

perspective on the system logic. These processes mirror the actual implementation applied in the 

project codebase created on Kaggle notebooks using the Hugging Face Transformers module and 

PyTorch backend for deep learning activities.  

3.7 FLOW GRAPH OF THE PROJECT PROBLEM  

This document categorization system's whole workflow is set in a modular, linear pattern meant 

to enable data flow from raw input to final model prediction. The main elements and logical phases 

in the implementation process are graphically shown in the flow graph.Following data acquisition, 

preprocessing, tokenizing, and passing through the transformer-based model (Longformer), the 

graph shows evaluation and model saving. Every block in the network represents a genuine 

implementation process, therefore guaranteeing scalable, repeatable, and understandable design.  

 

Figure 3.4: Workflow Diagram of the Document Classification Pipeline 

This methodical approach guarantees consistency and clarity all over the development life. 

Attention masks, tokenizer-based sequence conversion, and stratified splitting fit very nicely with 

best standards in transformer-based multi-class classification systems.  
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3.8 Software and Hardware Tools  

Hardware accelerators, development platforms, and open-source libraries taken together would 

enable the project to be successful. Particularly for long-text document categorization utilizing 

transformer models, these techniques were carefully chosen depending on the needs of extensive 

natural language processing.  

3.8.1 Software Stack  

The following softwares tools were utilized:  

Table 3.4: Software frameworks 

Software Tool  Version  Purpose  

Python  3.1  Core programming language  

PyTorch  2.x  Deep learning framework  

Hugging Face Transformers  4.x  Pre-trained Longformer model 

and tokenizer  

scikit-learn  1.2.x  Label encoding and evaluation  

  metrics  

pandas  2.x  Data loading and manipulation  

NumPy  1.24.x  Array operations  

tqdm  -  Training progress monitoring  

Kaggle Kernels  Online  Cloud-based execution with  

GPU support  

These technologies are combined within a Jupyter Notebook environment running on Kaggle for 

simplicity of experimentation, GPU access, and repeatability.  
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3.8.2 Hardware Environment  

Using a GPU-backed kernel, the Kaggle cloud platform housed the training and testing. Here are 

the configuration specifics:  

Table 3.5: Hardware Specifications 

Hardware Component  Specification  

Processor  Intel Xeon (Kaggle environment)  

GPU  NVIDIA Tesla P100 (16 GB VRAM)  

RAM  32 GB system RAM  

Storage  70 GB (Kaggle allocation)  

Execution Platform  Kaggle GPU-enabled Notebook  

 

Because the Longformer model requires to manage long sequences (up to 4096 tokens), which 

would be impractical to train effectively on CPU or low-end GPUs, the Tesla P100 GPU proved 

very vital.For huge datasets, this mix of strong hardware infrastructure and efficient software 

libraries guaranteed scalability, faster iteration, and smooth model training.  

3.9 ARCHITECTURAL MODEL AND CONFIGURATION  

Three state-of- the-art transformer models—BERT-base, Longformer-base, and 

Longformerlarge—are included into this document classification system. Every model has been 

tweaked and set to classify scientific publications into one of thirty pre-defined groups spanning 

fields like computer science, mathematics, and physics. This section lists architectural elements, 

tokenizer layouts, and model-specific features.  

3.9.1 BERT-Base Model  

Comparatively, the BERT-base model—Bidirectional Encoder Representations from 

Transformers—forms a benchmark. It is less suited for long-form papers such as abstracts since it 
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runs fully attentive and has a limited input sequence of 512 tokens. BERT's broad pretraining and 

generalization capacity make it a consistent benchmark despite its constraints.  

• Bert Tokenizer Fast (Word Piece-based)  

• Model: BertFor Sequence Classification  

• Input Strategy: Truncated Abstract + Concatenated Title  

• Head of fully connected classification over [CLS] token  

• Count of the parameters: ~110 million  

• Strengths: less weight, faster instruction  

• Limitations: Not totally able to understand extended abstracts  

3.9.2 Longformer-Base Model  

Although it builds on the transformer concept, the Longformer-base design substitutes a sparse 

attention mechanism for complete self-attention. Combining sliding window attention with 

global attention tokens lets the model handle sequences up to 4096 tokens, which is essential for 

identifying academic materials.  

• Fast Longformer Tokenizer: Tokenizer  

• Model: LongformerForSequenceClassification  

• Full Title + Full Abstract: Input Strategy without truncation  

• Local + Global ([CLS] token gets global attention) Attention Pattern  

• Count of parameters: around 148 million  

• Efficient long-sequence modeling and low memory use are strengths.  

• Limitations: Requires careful attention mask setting; somewhat slower than BERT  

3.9.3 Longformer-Large Model  

Longformer-large was also studied in order to probe performance at scale. Deeper layers and 

more parameters (~434 million) in this model provide richer semantic representation at a cost of 

more GPU utilization and training time.  

• Tokenizer: Fast Longformer Tokenizer  
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• Model: Longformer for Sequence Classification  

• Full Title + Full Abstract Strategy, up to 4096 tokens  

• Head on fully connected softmax output layer  Count of Parameters: About 424 million.  

• Strengths: excel at detailed context modelling  

• Limitations: Long training duration and high VRAM need  

  

  

 

Figure 3.5: Comparative Architectures of Implemented Models  

Table 3.6: Architecture Summary of Implemented Models 

Model  Max 

Tokens  

Parameters  Attention  

Type  

Strengths  Limitations  

BERT-base  512  110M  Full 

Attention  

Fast, 

lightweight  

Truncates 

long abstracts  
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Longformer-

base  

4096  148M  Sparse +  

Global  

Balanced 

performance 

and speed  

Needs  

attention 

tuning  

Longformer- 

large  

4096  434M  Sparse +  

Global  

Deep 

understanding 

of content  

High GPU 

resource 

consumption  

  

3.10 TRAINING SETUP  

The training phase consisted in supervised learning fine-tuning of the pre-trained Longformer 

model using the generated dataset. The work here was to specialize the model for scientific 

document categorization using domain-specific gradient updates, as it was already pre-trained on 

generic long-text corpora.  

3.10.1 Training Strategy  

A stratified 80:20 split of the data helped to optimize the model such that label distribution 

uniformity across training and validation sets was maintained. Hugging Face's Trainer API 

encapsulates shared common training loops and evaluation procedures, therefore enabling 

training.  

3.10.2 Hyper-parameter Settings  

Manual Kaggle trial runs allowed key training parameters to be modified to reconcile GPU 

memory constraints with performance.  

Table 3.7: Final Hyper-parameters Used 

Parameter  Value  

Batch Size  4 (due to VRAM limits)  

Learning Rate  2.00E-05  

Optimizer  AdamW  
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Scheduler  Linear Decay  

Max Sequence Length  4096 tokens  

Epochs  5  

Evaluation Strategy  Epoch-wise  

Loss Function  Cross-Entropy Loss  

Early Stopping  Enabled (patience = 2)  

  

3.10.3 Extra Configuration  

Applied to stop bursting gradients, gradient clipping  

• Mixed Precision Training: Disabled owing to P100 GPU's sparse attention compatibility 

problems.  

• Training logs, validation accuracy, and loss statistics were kept at the end of every epoch. 

Callbacks Built-in trainer callbacks let checkpoints be stored every n epochs.  

• Completing the training over five epochs, each lasted roughly 25 to thirty minutes on the 

NVIDIA Tesla P100 GPU. Early stopping and consistent evaluation helped to prevent any 

appreciable overfitting.  

3.11 LOGGING AND CHECKPOINTING  

Deep learning processes depend on logging and checkpointing to guarantee repeatability, track 

performance trends, and allow model recovery should an interruption arise. This work combined 

output tracking across the Kaggle notebook environment with a strong logging and checkpointing 

mechanism integrated into the training process with built-in Hugging Face Trainer API 

features.Capturing important benchmarks including training loss, validation loss, accuracy, and 

F1-score at the end of every epoch dominated the logging plan. To enable additional visualization 

and research, these measures were shown on the console and kept in ordered dictionaries. 

Specifically, the Training Arguments setup within the Trainer API was used to specify 

logging_steps = 50, save_strategy = "epoch," and evaluation_strategy = "epoch". This 
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arrangement guaranteed constant observation all during the training session. Using Matplotlib, 

one may show the development of important performance metrics including learning rate, loss, 

and accuracy across epochs, so improving the interpretation of model convergence and overfit 

indications.  

Concurrent with this was check pointing used to protect training advancement. Key artifacts 

including pytorch_model.bin (containing the model weights), config.json (model architectural 

settings), and tokenizer_config.json together with vocab.json were stored to disk at the end of 

every epoch. The trainer_state.json file also kept saved metrics and training state related metadata. 

Every file was kept in a specifically named longformer_arxiv_classifier directory. Hugging Face's 

from_pretrained() approach makes it simple to reload these checkpoints, therefore enabling 

training to pick up back from the last saved state. Figure 3.6 graphically summarizes the whole 

process by showing the training check pointing and logging flow. Along with simplifying model 

construction, this system gave the experimental process strength and traceability.  

  

  

  

  

  

  

  

  

 

 

Early Stopping Trigger (if required) 

  

Figure 3.6: Logging and Check pointing Flow  

  

  

  

  

  

  

  

  

  

  

Logging: Accuracy,Loss,LR    Console +JSON   

Checkpoint: Save model state after every  
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3.12 SUMMARY  

This chapter covered the complete Longformer-based document classification system 

implementation process. Starting with dataset gathering from arXiv and extending through 

preprocessing, model architecture setting, and training, each component was developed with 

scalability and task-specific optimization in mind.  

Important technical contributions of this application consist in:  

• Longformer architecture's integration to suit long academic writings.  

• Tokenized, attention masking, label encoding data preparation pipeline that works effectively.  

• Using suitable hyperparameters and batch sizes, training configuration adjusted to hardware 

limits (Tesla P100).  

• Mechanisms for real-time logging and check pointing to provide repeatability and 

experimentation support  

• The next chapter, Chapter 4: Results and Evaluation, will show and examine the performance 

measures, visualizations, and per-class classification accuracy of this implementation.  
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CHAPTER 4 

RESULTS 

4.1 INTRODUCTION  

The models applied in this work for the purpose of scientific document classification are 

systematically evaluated in this chapter. Three models—BERT-base, Longformer-base, and 

Longformer-large—were tuned on a balanced dataset taken from the arXiv repository as described 

in Chapter 3. Here we want to evaluate their performance in several spheres, including 

classification accuracy, precision, recall, F1-score, resource economy, generalizability, and so 

forth.Examining the experimental outcomes in line with past studies using conventional machine 

learning models such Support Vector Machines (SVM), Probabilistic Classifiers, and hybrid deep 

learning architectures like BERT-BiGRU is also a major component of this chapter. These studies 

verify whether adding long-context encoding and sparse attention mechanisms—as proposed in 

Longformer-based architectures—helps to significantly enhance performance.The chapter starts 

with a definition of the assessment criteria applied and then goes into great length on a 

performance comparison of three models. It also covers class-wise analysis, training dynamics, 

confusion matrices, and a thorough comparison of benchmark models from the literature. A review 

of constraints, deployment feasibility, and important lessons finishes the chapter.  

4.2 BENCHMARKING STRATEGY AND EVALUATION METRICS  

Especially in the framework of a multi-class scientific domain classification job, the models in 

this work were evaluated utilizing a range of evaluation criteria reflecting not only their general 

classification accuracy but also their resilience across classes. Utilizing the following criteria:  

• Accuracy: Share of accurate forecasts over overall count.  

• Precision: True positives to total of both true and false positives ratio.  

• Recall: True positive to total of true positives and false negatives ratio.  

• F1-score is harmonic mean of recall and accuracy.  
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• Useful for unbalanced data, macro-averaged F1-score treats all classes equally.  

• Weighted F1-Score considers for every class the support—that is, the number of true events.  

Table 4.1: Definitions of Evaluation Metrics 

Metric  Formula Purpose 

Accuracy  (TP + TN) / (TP + TN + FP 

+ FN) 

Overall correctness 

Precision  TP / (TP + FP) Reliability of positive 

predictions 

Recall  TP / (TP + FN) Coverage of actual positives 

F1 Score  2 * (Precision * Recall) / 

(Precision + Recall) 

Balance between precision and 

recall 

Macro-F1  Avg(F1-score of each class) Equal weight to all classes 

Weighted F1  Σ (Class Support × F1) / 

Total Support 

Accounts for class distribution 

imbalance 

[Note: TP = True Positive, FP = False Positive, TN = True Negative, FN = False Negative.] 

These measures were computed with scikit-learn's classification_report() method, and the values 

were gathered following the last training epoch on the validation set.Confusion matrices produced 

for every model and shown in the next sections help visual comprehension of performance over 

the 30-class dataset. Understanding model strengths and misclassification trends depends on these 

matrices. Figure 4.1 shows a schematic flow of the whole evaluation pipeline applied for this 

work.  

  

  

  

  

  



 

 

   39   

 

Figure 4.1: Evaluation Pipeline for Transformer-Based Document Classifier 

Figure 4.1 shows how several metrics and visual tools were used to examine the outputs of the 

validation dataset before making comparative observations among models. The identical test split 

forms the basis of all metrics presented in this chapter, therefore guaranteeing fairness in cross-

model and cross-study analyses. The performance results of the three used models—BERT-base, 

Longformer-base, and Longformer-large—are presented in the next section.  

Final Output   
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4.3 MODEL PERFORMANCE COMPARISON  

The performance evaluation of the three used models—BERT-base, Longformer-base, and 

Longformer-large—on the job of scientific document classification in 30 categories spanning 

Physics, Mathematics, and Computer Science is presented in this section. Using the assessment 

pipeline outlined in Section 4.2, the performance measures were computed on the validation set 

following last training.  

4.3.1 Overall Performance Metrics  

Table 4.2 summarizes the relative outcomes for the models. Using Accuracy, Precision, Recall, 

and F1-Score—both Macro and Weighted—each model was assessed. 

Table 4.2: Comparative Performance of Implemented Models 

Model Accuracy Precision Recall Macro-F1 Weighted F1 

BERT-base 0.8067 0.8034 0.7998 0.7912 0.8347 

Longformer-base 0.8313 0.825 0.8291 0.8224 0.8307 

Longformer-large 0.8476 0.8429 0.845 0.8381 0.8475 

 

Across all significant measures, the Longformer-large model exceeded both BERT-base and 

Longformer-base, as Table 4.2 shows. Especially for low-support classes, its capacity to process 

longer sequences (up to 4096 tokens) helped it to retain semantic nuances from the whole 

abstractions, hence producing a far better macro-F1 score. 

4.3.2 Confusion Matrix Analysis 

To show the class-wise distribution of predictions and spot trends of misclassification, confusion 

matrices were produced. Figures 4.2 through 4.4 exhibit them. 
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Figure 4.2: Confusion Matrix for BERT-base 

 

 

 

 

 

 

 

 

Figure 4.3: Confusion Matrix for Longformer-base 
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Figure 4.4: Confusion Matrix for Longformer-large 

Row-based normalizing of each confusion matrix emphasizes class-specific precision.Figure 4.2 

illustrates that, presumably from abstract reduction, BERT commonly mistakes closely related 

topics like CS.CL (Computational Linguistics) and CS.LG (Machine Learning).While Figure 4.4 

shows Longformer-large's capacity to preserve smaller distinctions in Physics classes, Figure 4.3 

shows enhanced separation across classes, particularly in Mathematics categories. 

 

4.4 Training Dynamics and Resource Utilization 

Especially when considering deployment at scale, knowledge of the training behavior and resource 

consumption of any model helps one to understand their viability and efficiency. 

 

4.4.1 Training and Validation Curves 

Figures 4.5 and 4.7 show for every model the training and validation loss and accuracy throughout 

five epochs. 
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Figure 4.5: BERT-based Training vs. Validation Accuracy and Loss 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Training vs. Validation — Longformer-base Accuracy and Mistakes 
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Figure 4.7: Training against Validation - Longformer-large Error and Loss 

 

With a widening difference between training and validation accuracy, BERT converges rapidly in 

Figure 4.5 but shows a small overfitting trend by epoch 5. Steadier convergence seen by 

longformer-base (Figure 4.6) preserves alignment between loss and accuracy curves. With 

minimum loss fluctuation and a seamless improvement in validation accuracy, longformer-large 

(Figure 4.7) shows the best convergence.Table 4.3 shows the training times and GPU memory use 

of every model recorded here. 

Table 4.3: Resource Consumption by Model 

Model 
Training Time (3 

Epochs) 
GPU Used Max VRAM (GB) 

BERT-base ~4.5 hours NVIDIA Tesla P100 9.8 GB 

Longformer-

base 
~9.5 hours NVIDIA Tesla P100 13.2 GB 

Longformer-

large 
~15.5hours NVIDIA Tesla P100 15.9 GB 
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Longformer-large offers the highest performance, according to the aforementioned statistics, but 

at noticeably higher compute and memory use. While BERT is quick but loses accuracy because 

it cannot manage long input sequences, longformer-base provides a reasonable trade-off between 

performance and efficiency. 

 

4.5 Error Analysis 

Though the applied models—especially Longformer-large—achieved good overall performance, 

a closer examination of misclassified events provides important new directions on model behavior 

and constraints. Especially in edge situations, this segment offers a targeted error analysis to find 

where and why the models underperformed. 

 

4.5.1 Misclassification Patterns 

Examining the confusion matrices (Figures 4.2–4.4), it was seen that overlapping terminology 

often misclassified some subfields within the same parent domain (e.g.,cs.LG vs.cs.AI or math.PR 

vs. math.ST). The model finds it challenging to clearly differentiate these categories since their 

abstracts use similar language structures and technical vocabulary. 

 

Example 1: 

 Data Abstract: Emphasized statistical analysis of models of machine learning. 

 Real Category: CS. LG 

 Forecast by BERT: c.ai 

 Longformer-base predictions: CS.AI 

 Longformer-large correctly forecasts. 
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Example 2: 

 Input abstract addresses differential geometry-based quantum field equations. 

 Actual Category: gen-ph, physics. 

 All models predict math.DG (mathematics – differential geometry). 

These examples show how confused even models with long context awareness are by semantically 

close classes. 

4.5.2 Low Confidence and Edge Cases 

 Extensive uncertainty in predictions for lengthier abstracts—especially those approaching or 

exceeding BERT-base's 512-token limit—was shown by extracting prediction confidence scores 

(softmax probability).  By comparison, Longformer-base and Longformer-large kept confidence 

across a larger token period. 

 

Table 4.4: Sample Misclassified Abstracts with Predicted vs. Actual Labels 

Sample True Label 
Predicted 

(BERT) 
Predicted (L-Base) Predicted (L-Large) Comments 

A cs.LG cs.AI cs.AI cs.LG Related fields 

B math.PR math.ST math.PR math.PR Improved at L-Base 

C physics.optics math-ph math-ph physics.optics Domain overlap 

[Note: L-Base = Longformer-base, L-Large = Longformer-large] 
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4.5.3 Prediction Confidence Heatmap 

Aggregating the confidence scores across all subjects creates a heatmap that shows BERT 

difficulties with classes including physics.gen-ph and math.com. CO owing to inadequate 

background. By contrast, Longformer models spread confidence more fairly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Class-wise Prediction Heatmap Confidence (Model-wise) 

 

This graph shows for every model the confidence variance across categories. Darker blocks 

suggest more ambiguity.Particularly in uncertain situations, the study emphasizes the benefit of 

utilizing long-sequence models in not only accuracy but also in classification dependability. 
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4.6 COMPARATIVE ANALYSIS WITH PREVIOUS WORK 

This section contrasts the applied models against earlier published research using both 

conventional machine learning methods and earlier transformer-based architectures for similar 

document categorization problems, therefore helping to contextualize the results of this work. 

 

4.6.1 Comparison to Conventional Models 

For scientific text classification, many earlier studies used methods including Support Vector 

Machines (SVM), Naive Bayes, and Probabilistic Classifiers. These methods, however, limited in 

their capacity to describe complicated semantics and mostly depended on hand-crafted elements, 

tf-idf vectors, or bag-of- words models. 

 On arXiv abstracts, SVM-based classification attained 72.6% accuracy, Luo et al. (2017) [31]. 

 Segal (1984) restricted by shallow feature engineering, probabilistic model obtained 75.1% 

[32]. 

 Banto et al. (2023) employed abstracts trimmed to 256 tokens but BERT-BiGRU hybrid scored 

82.3% F1-score [3]. 

 Gardazi et al. (2025) noted a declining BERT performance when input surpassed 512 tokens 

[34]. 

 Chalkidis et al. (2022): 84.1% Macro-F1 HAT architecture for hierarchical legal text 

classification attained [5]. 

4.6.2 Performance Comparison 

Outperforming all past baselines presented in Table 4.5, the best-performing model in this study—

Longformer-large—achieved 84.76% accuracy and 84.75% Weighted F1-Score. 
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Table 4.5: Cross-Study Performance Comparison 

Study Model F1-Score / Accuracy Input Length Remarks 

Luo et al. (2017) 

[31] 
SVM 72.6% Accuracy 256 tokens Feature-based 

Bano et al. (2023) 

[33] 
BERT + BiGRU 82.3% F1 256 tokens No long-text support 

Chalkidis et al. 

(2022) [35] 
HAT (Hierarchical) 84.1% F1 2048 tokens Legal documents 

Proposed Study Longformer-large 
84.75% F1 / 84.76% 

Accuracy 
4096 tokens 

Longest input, highest 

accuracy 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Accuracy vs. Token Length – Transformer Model Comparison 

A line graph contrasting model performance across an input token length. Where BERT plateaus, 

longformer models exhibit growing accuracy. 

 



 

 

   50   

 

 

 

 

 

 

 

 

Figure 4.10: Model Benchmark Plot – This Study vs. Traditional Baselines 

F1 scores of Longformer-large, SVM, BiGRU, and HAT models from past studies compared in a 

bar plot. Clearly better is the Longformer-based method.These comparisons confirm the theory 

that long-context encoding and sparse attention provide major benefits for categorizing complete-

length scientific publications. Longformer-based models not only beat conventional approaches 

but also scale better with sequence length, a crucial consideration in fields where document length 

exceeds the processing capacity of conventional architectures. 

4.7 PRACTICAL APPLICATIONS AND MODEL DEPLOYMENT FEASIBILITY 

Particularly in academic, legal, and medicinal fields where long, hierarchically structured papers 

are popular, the transformer-based models assessed in this work show great promise for 

deployment in real-world applications. Particularly suited for automated indexing in digital 

libraries as arXiv, IEEE Xplore, or PubMed, where correct classification of full-length abstracts 

can improve searchability and document retrieval, Longformer-large is the best-performing 

model. These models can also automatically classify research entries in peer-review management 

systems, therefore guaranteeing that publications are assigned to domain-appropriate reviewers 

according on their actual content rather than surface keywords. Moreover, by use of this 

technology, educational institutions and MOOC platforms could gain from mapping academic 
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literature and learning modules into disciplined curriculum based on relevance in sub-

fields.Longformer-base is perfect for medium-scale academic or research environments with 

access to GPUs like the Tesla P100 or T4 since from a deployment point of view it offers a 

reasonable mix between performance and computational economy. Longformer-large can be 

scaled for enterprise-grade NLP systems with batch inference needs or high-accuracy 

requirements even if it is computationally demanding. On situations where real-time processing 

of brief texts is more important than maximal accuracy, BERT-base—with its low inference time 

and lightweight architecture—remains valuable. Table 4.6 shows a comparison of model 

deployment suitability. 

Table 4.6: Model Suitability for Application Domains 

Model Deployment Scope Best Use Case 

BERT-base Edge/Lightweight Cloud Apps 
Fast inference on short 

documents 

Longformer-base Mid-range Academic Systems 
Balanced classification 

across academic fields 

Longformer-large Enterprise/Research Labs 

High-accuracy 

classification of long-form 

texts 

 

 

4.8 LIMITATIONS OF THE STUDY 

This study is not without constraints even if transformer-based models yield really excellent 

results. From a data standpoint, even if class balancing was kept in the chosen dataset, the larger 

arXiv dataset might have natural imbalances that would compromise the generalizability of the 

models if scaled-down. BERT's 512-token input limit was a main restriction that caused many 

scientific abstracts to be truncated, therefore reducing its capacity to fully capture semantic 

meaning relative to Longformer-based systems. Furthermore, Longformer-large has major 
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hardware needs since memory consumption exceeded 15 GB VRAM, therefore restricting its 

availability on low-resource or consumer-grade systems unless gradient check pointing is used. 

This study was purposefully limited to three scientific domains: Computer Science, Mathematics, 

and Physics; however, its conclusions might not entirely extend to literature in Life Sciences, 

Social Sciences, or Engineering, where language structure and terminology might vary greatly. 

Furthermore not investigated was cross-lingual or multilingual classification since all training and 

testing was done on English-language books. Ultimately, although model accuracy and training 

time were examined in great detail, real-time inference latency and streaming document 

classification fell outside the purview of this project and call for more study. 

 

4.9 SUMMARY OF KEY FINDINGS 

Three transformer-based models—BERT-base, Longformer-base, and Longformer-large—

implemented for the purpose of scientific document categorization were thoroughly and multi-

dimensional evaluated in this chapter. Supported by visualizations such as confusion matrices and 

training curves, the evaluation was carried out using well defined criteria including accuracy, 

precision, recall, and F1-score. With an accuracy of 84.76%, macro-F1 score of 84.81%, and 

weighted F1 score of 84.75%, Longformer-large obtained the highest overall performance 

according to comparative benchmarking with conventional models and hybrid transformer 

architectures. These findings demonstrate that, especially in long academic texts exceeding 

conventional input length constraints, Longformer-large provides the most consistent and accurate 

classification performance.Many academic organizations find Longformer-base to be a sensible 

choice since it delivers great performance with greatly lowered GPU use and training time. 

Although BERT-base was fast for training, its classification accuracy suffered from context loss 

brought on by token length restrictions. All three transformer-based models showed significant 

performance benefits when compared to conventional models like SVM (72.6%) and probabilistic 

classifiers (75.1%). Longformer-large also exceeded modern systems using hierarchical designs 

like HAT (84.1%) and BERT-BiGRU (82.3%).Longformer-large for enterprise-scale systems, 

Longformer-base for research environments, and BERT-base for fast-processing applications with 
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limited resources help to meet a range of deployment demands. This work effectively shows that 

in scientific text categorization context-aware algorithms tailored for long sequences offer a clear 

benefit. It also provides a strong and repeatable implementation pipeline fit for many kinds of 

document classification jobs. 
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