JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

B.Tech-VI Semester (CSE/IT)

COURSE CODE (CREDITS):19B1WCI635 (2)

MAX. MARKS: 35

~ COORSE NAME: Architecting Distributed Cloud Applications

COURSE INSTRUCTORS: Dr. Nishant*, Dr. Arvind.

MAX TIME. Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	CO	Marks
Q1	a) A microservice-based application is being upgraded using rolling	4	5+2
	updates. List the steps involved and analyze the impact of a partial		
denna.	failure during the upgrade process.		
	b) Why are rolling updates preferred in high-availability systems?	municipality (no	or encountry comes
Q2	A storage service handles three data types:	4	5
	- Hot data: 1 TB		
	- Warm data: 3 TB		
	- Cold data: 6 TB		
	If storage costs are as follows:		
	Hot: \$0.02/GB, Warm: \$0.01/GB, Cold: \$0.004/GB		
	Calculate the total monthly storage cost. Recommend a strategy to		
	optimize costs without compromising availability.	4	4+2
Q3	a) A leader election mechanism using leases has the following	4	412
	parameters:		
	- Lease duration: 10 seconds		
	- Heartbeat interval 3 seconds		
	If the leader node crashes after 7 seconds, estimate the time delay		
	before a new leader is elected. Discuss how this impacts the		
	availability of the system.	lan	
	b) Explain with an example how disaster recovery mechanisms can	The second second	NO ENERGY CONTROL
	minimize data loss in object storage.		
Q4	a) Describe how point-in-time recovery works in cloud-managed	4	3+3
	database services like Amazon RDS or Azure SQL.		
	b) During a Rolling Update, a company updates 5% of their 100		
	instances at a time. Each batch update takes 15 minutes. How long		
	will it take to complete the entire rolling update?		
	will it take to complete the chine forming apatite.		
Q5	Define the following:	4	5
	i. Rolling updates		
	ii. Graceful shutdown of a service	Series .	
	II. Oluvolui biluudo IIII ol a saattaa		

	iii. Service configuration
	iv. Data temperature
	v. Object storage
Q6	a) A microservice application is deployed using a rolling update 4 3+3
	strategy. During an update, 2 out of 5 instances crash.
	1. Analyze the system behavior.
	2. Suggest two ways to ensure safer deployments.
7000000000	b) A company is planning to deploy a Blue-Green deployment
	strategy for their application updates. They have two environments:
a contract	Blue (current production) and Green (staging). If the deployment to
AT	the Green environment takes 30 minutes and the switch from Blue to
	Green takes 10 minutes, how much total downtime will the users
	experience during the deployment?