JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION-2025

PhD II Semester (CE)

COURSE CODE (CREDITS): 24P1WCE232 (3)

MAX. MARKS: 25

COURSE NAME: Characterization of Materials

COURSE INSTRUCTORS: Dr. Saurav MAX. TIME: 1.5 Hour

Note: (a) All questions are compulsory.

(b) Marks are indicated against each question in square brackets.

Q.No	Question	CO	Marks
Q1	(a) Describe the fundamental principle behind X-ray diffraction. Explain how the	2	7
	diffraction angle is related to the inter planar spacing of crystal planes.		
	(b) Define Bragg's Law and explain its significance in X-ray diffraction analysis. What		:
	factors affect the intensity of diffracted X-rays in a crystalline material?		
Q2	For a cubic crystal, the inter planar spacing (d) for a plane is given by the equation:	2	4
	$rac{1}{d^2} = rac{h^2 + k^2 + l^2}{a^2}$		
	Where notations have their usual meanings. Given that the lattice constant is 3.615 A°,		
	for Copper (FCC structure) calculate the inter planer spacing for 211 plane and 220		
	plane.		
Q3.	A diffraction pattern shows a peak at $2\theta = 38.52^{\circ}$. The X-ray wavelength used is 1.5406	2	3
	Å (Cu Kα). Using Bragg's law, calculate the inter planar spacing d for the plane		
	corresponding to this peak.		
Q4.	(a) Discuss the importance of sample preparation in XRD analysis.	2	7
	(b) What are the effects of poor sample grinding or sample mounting in X-ray		
	diffraction studies?		
05		2	1
Q5.	Calculate the theoretical density of a metal having a face-centered cubic (FCC) crystal	2	4
	structure. The atomic mass of the metal is 58.69 g/mol, and the lattice constant		
	is a=3.61A°. Assume that the metal has an FCC structure and Avogadro's number		
	is 6.022×10 ²³ atoms/mol.		
L		l	<u> </u>