JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2025

M.Sc.- II Semester (Microbiology)

COURSE CODE (CREDITS): 21MS1MB211 (03)

MAX. MARKS: 25

COURSE NAME: Enzymes & Bioprocess Technology

COURSE INSTRUCTORS: Dr. Saurabh Bansal

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q. No.	Question	
······································	Question	Mark
Q1	What are the important characteristics of an industrial microbial strain?	2
Q2 a.	Why culture preservation is important?	1
Q2 b.	How can periodic transfer on agar slants be used to maintain microbial cultures, and what are its drawbacks compared to modern preservation techniques?	2
Q3	What are the major steps involved in a strain improvement program? Give an example of strain improvement for solving an industrial-related concern.	3
Q4 a.	What are the advantages and limitations of using batch culture for industrial fermentation processes?	3
Q4 b.	A researcher observes a prolonged lag phase in their batch culture. What could be the potential reasons, and how might this issue be addressed?	2
Q5 a.	In a batch fermentation process, the initial substrate concentration is 50 g/L, and 40 g/L of the substrate is consumed to produce 10 g/L of biomass. Calculate the biomass yield coefficient $(Y_{X/S})$.	1
Q5 b.	A bioreactor operating in batch mode produces 30 g/L of product after 36 hours. Calculate the volumetric productivity (Q _P) of the process.	1
Q6 a.	What are the consequences of operating a chemostat above the critical dilution rate?	2
Q6 b.	Differentiate between Chemostat and a fed-batch culture.	3

Q7	Why is fed-batch culture preferred over batch culture for the production of secondary metabolites?	2
Q8 a.	A chemostat operates with a flow rate of 10 L/h and a working volume of 5 L. Calculate the dilution rate.	1
Q8 b.	If the maximum specific growth rate (μ_{max}) of the microorganism is 0.5 h ⁻¹ , determine whether washout will occur.	2