JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2025

M.Tech-2nd Semester (CSE/IT)

COURSE CODE (CREDITS): 10M11CI212(3)

MAX. MARKS: 25

COURSE NAME: ADVANCED OPERATING SYSTEMS

COURSE INSTRUCTORS: Dr. Pankaj Dhiman

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

	je. seving proceeds			.	
Q.No		Question		CO	Marks
Q1	Consider the following	processes with Time (Quantum = 2. Compute	2	7
	average Completion	Time (CT), Turnarou	nd Time (TAT), and]	
			in which time quantum		
	performs better and wh	y?			
	Process	Arrival Time (ms)	Arrival Time (ms)		
	P1	0	10		
	P2	0	6		
	P3	1	7		
	P4	3	4		
	P5	5	5		
Q2	What is a critical sec	ction problem in IPC	Explain how a race	3	4
•		ulti-threaded environme			
	<u> </u>				
Q3	Why does Peterson's A	Algorithm work only for	r two processes? Can it	3	4
	be extended for more th	an two processes?			
Q4	Consider this program	and compute the total	number of processes	1	3
	created (Child and Pare	nt process).	•		}
	#include <stdio.h></stdio.h>				
	#include <unistd.h></unistd.h>				
	int main() {				
	for (int $i = 0$; $i < 3$; $i+$	-+) {			
	fork();				
7. 1.	} 				
	printf("Hello\n");				
	return 0;				
Q5	}			2	7
Q3	Consider the following	processes with himset to	imes and arrival times.	Z	/
	Apply the Shortest 1				
	algorithm. Compute a	C	` /		
	argorium. Compute a	verage Completion 11	ine (Cr), rumanound		<u> </u>

Process	Arrival Time (ms)	Arrival Time (ms)
P1	0	12
P2	2	4
P3	3	6
P4	5	5
P5	8	2