JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- APRIL-2025

COURSE CODE(CREDITS): 21B1WMA831 (3)

MAX. MARKS: 25

COURSE NAME: Soft Computing & Optimization Algorithms

COURSE INSTRUCTORS: Dr. B. K. Pathak

MAX. TIME: 1 Hour 30 Min.

Note:

(a) All questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required for solving problems

Q.No.				Quest	ion				CO	Marks
Q1	A fuzzy inference system produces the following fuzzy output set for the variable "Speed (km/h)" after applying fuzzy rules:									
	Speed (km/h)	10	20	30	40	50	60	70		4
	Membership	0.2	0.5	0.8	1.0	0.8	0.5	0.2	CO-2	
	Value (µ)						,			
	Use the following (a) Centroid									
	(b) Mean of									
	As a B.Tech stu									
	logic system to									
	set for the tern function. The tri									
	Minimun									
	 Peak batt 									
	Maximur									
Q2	Answer the follo	CO-2	5							
	(a) Write th "Battery I									
	(b) If the cur									
	in the fuz									
	(c) If the batt									
	(d) Also plot the graph of the triangular membership function for the fuzzy set "Battery Level is High".									

Q3	Let the universe of discourse be X={10, 20, 30, 40, 50} and let fuzzy set	CO-3	T
	$Q=\{(10, 0.2), (20, 0.4), (30, 0.6), (40, 0.8), (50, 1.0)\}$		4
	(a) Find the strong α -cut set of fuzzy set Q for $\alpha = 0.4$, 0.6, and 0.8.		
	(b) Find the level set of fuzzy set Q.		
Q4	You are solving a maximization problem with the objective function	CO.5	2
	$f(x)=2x+3$ Where $x \in [0,15]$. Each chromosome is encoded using 4-bit binary		
	representation.		
	(a) Convert the binary chromosome 1010 into its decimal form and		
	calculate its fitness value.		
	(b) What is the fitness of chromosome 0111?		
	Consider the following population of 4 chromosomes used in a Genetic		*
	Algorithm. Each chromosome is evaluated using the objective		5
	function $f(x) = x^2$.		
İ	Chromosome Binary		
	C1 001		
Q5	C2 010		
	C3 100	CO-5	
	C4 111		
	(a) Calculate the total fitness of the population.		
	(b) Calculate the selection probability for each chromosome using		
	roulette wheel selection.		
	(c) Which chromosome is most likely to be selected, and why?		
Q6	Write the Key components of evolutionary algorithms. Also plot the flow	CO-4	5
	chart of genetic algorithm.		