JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2025

B.Tech-II Semester (CSE/IT/ECE/CE)

COURSE CODE (CREDITS): 24B11MA211 (04)

MAX. MARKS: 25

COURSE NAME: Engineering Mathematics II

COURSE INSTRUCTORS: NKT, RAD, BKP, MDS

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	CO	Marks
Q1	The temperature distribution of a rod of length 2 units is	CO-1	5
	f(x) = x, 0 < x < 2.	(0-1	٥
	(a) Sketch the <i>odd extension</i> of f(x) over (-2, 2).		
			1
	(b) Determine the half-range Fourier sine series for $f(x)$ over $(0,2)$		ł
			ļ
Q2	Find the general solution of $\left(\frac{d^2}{dx^2} + 3\right)^2 y = 0$.	CO-2	2
	$dx^2 + 3$		_
Q3	Find the general solution of	<u> </u>	
(-	<u></u>	CO-2	5
	$x^2 \frac{d^2 y}{dx^2} + y = 3x^2$]	
04	Colve the City is 100 to 1		
Q4	Solve the following differential equation using the method of variation of parameters:	CO-2	6
	$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^x$		
	$\frac{\partial a_{x}}{\partial x} = \frac{\partial a_{x}}{\partial x} + \frac{\partial a_{x}}{\partial x}$		
Q5	Find the general solution of	CO 2	
		CO-2	3
	$(2x+1)^2 \frac{d^2y}{dx^2} - 2(2x+1)\frac{dy}{dx} - 12y = 6x$		
			ŀ
Q6	Find the power series solution of the following differential equation about	CO-2	4
	the point $x = 0$	50-2	7
	$\frac{d^2y}{dx^2} - x\frac{dy}{dx} - y = 0$		
	$\frac{dx^2}{dx^2} - x \frac{dx}{dx} - y = 0$		
			ľ