JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2025

B.Tech-I Semester (CSE/IT/ECE/CE/BT/BI)

COURSE CODE (CREDITS): 24B1WEM831(2)

MAX. MARKS: 25

COURSE NAME: SOFT COMPUTING PARADIGMS

COURSE INSTRUCTORS: MUNISH SOOD

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	CO	Marks
Q1	Suppose we have a simple fuzzy inference system to control the speed	2	5
	of a fan based on the temperature in a room. The input temperature is	2	
1	crisp and ranges from 0 to 100 degrees Fahrenheit. The output fan		
	speed is also crisp and ranges from 0 to 10. The system has three fuzzy	r.	
	sets for the temperature input: "Cold", "Warm", and "Hot". The		
	following rules govern the system:		
	 IF temperature is Cold THEN fan speed y = 0.03x+2 IF temperature is Warm THEN fan speed y = 0.05x 		
	1		
	3. IF temperature is Hot THEN fan speed $y = 0.04x+1$ Suppose the input temperature is 65 degrees Fahrenheit. What should		
	the output fan speed be according to the Sugeno fuzzy inference		
	system? Use triangular membership function.		
	bystom. Ose triangular momorismp ranetion.		
Q2	Compare two sensors based on their detection level and Gain settings.	1	5
`		_	·
	Gain Setting Detection Detection		
	level of level of		
	Sensor 1 sensor 2		
	0 0		
	10 0.2 0.45		
	20 0.35 0.25		
	30 0.65 0.70		
	40 0.75 0.95		
03	0.1 0.1		
Q3	Given a fuzzy relations $\tilde{R} = \begin{bmatrix} 0.3 & 0.4 \\ 0.5 & 0.2 \end{bmatrix}$ between two fuzzy sets	2	4
18 ₁	$\tilde{\varphi} = \tilde{\varphi} = 0.2$		
4.3	\widetilde{X} and \widetilde{Y} . Similarly $\widetilde{S} = \begin{bmatrix} 1 & 0.2 & 0.4 \\ 0.8 & 0.3 & 0.7 \end{bmatrix}$ between two fuzzy sets		
	Y and Z. Obtain fuzzy relation T as a composition between fuzzy	İ	
	relations using Max-Product composition.		
Q4	Write short notes on	4	6
	a) Multi Layer Perceptron		
	b) Convolutional Neural Network		
05	c) Radial Basis Function Neural Network Find the membership value assignment for an isoggales right and le	3	5
Q5	Find the membership value assignment for an isosceles right angle triangle given by $\mu = \{70,60,50\}$ in degrees.	3	3
	mangic given by $\mu = \{70,00,00\}$ in degrees.		