JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -2 EXAMINATION- APRIL-2025

B.Tech-VI Semester (BT)

Course Code(Credits): 18B1WBT633 (3)

Max. Marks: 25

Course Name: Nano-Biotechnology Course Instructors:Dr. Abhishek

Max. Time: 1:3 Hour

Note: All questions are compulsory. Marks are indicated against each question in square brackets.

Q.No	Question	CO	Warks
Q1	A student decides to use a fluorophores (excitation source of 400 nm) for the	CO-3	2+1
	designing of fluorescence biosensor. After excitation he observed emitted		+2+1
	light at 450 nm and one more phospho-emission at 700 nm respectively.	<u> </u> 	
j	Calculate the stokes shift for this system. Explain the most likely reason for		
	the Stokes shift and factors that affect stokes shift. Also justify the role of IC	i i	
	and ISC in fluorescence spectroscopy.		
Q2	Take into consideration the ground and excited state electron spin	CO-3	i+3+1
	possibilities. In your opinion, do the energies of these spin states differ?		
	Which do you anticipate having less energy? If the spin state is defined as (2S		
	+ 1) where S represents the total electronic spin for the system, calculate the		
	spin multiplicity of ground, singlet and triplet excited state. Also explain why	,	
	is phosphorescence emission weak in most substances? [5]		
Q3	Numerous analytical techniques have been employed to determine the size of	CO-3	5
	nanomaterial, such as DLS, TEM, SEM, and AFM. Among them, the		
	technique of DLS can be widely employed for in situ measuring of		
	nanomaterial size due to several advantages. Illustrate the working principle		
	of DLS and signify the importance of Stokes-Einstein equation in size		
	determination. Also list-out the advantages of using DLS over TEM.		
Q4	There are various physical, chemical, biological and hybrid techniques	CO-3	5
	available to synthesize nanomaterials. The technique to be used depends upon	<u> </u>	
	the material of interest, type of nanostructure viz., zero dimensional, one		
	dimensional, or two dimensional material size, quantity etc. If you would like		
	to synthesize colloidal nanoparticles and thin film of nanomaterial, which		
	methods you will use and why? Explain in detail.		
Q5	Nanomaterials exhibit unique properties, including high Surface area to	CO-1	2
	volume ratio, enhanced optical, mechanical, magnetic, and electrical		
	characteristics. List out few important industrial applications of high Surface	, 	! ! !
- 06	area to volume ratio and enhanced optical properties of nanomaterials		
Q6	For a fixed total volume, if you will decrease the radius of a sphere by a factor	CO-1	2
L	of two then surface area of the sphere will increase by a factor of?		