JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -1 EXAMINATION- 2025

B.Tech. -VI Semester (BI)

COURSE CODE (CREDITS): 18B1WBI632 (3)

MAX. MARKS: 15

COURSE NAME: Data Warehousing and Mining for Bioinformatics

COURSE INSTRUCTORS: Ekta Gandotra

MAX. TIME 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c) Calculator is allowed.

	M. A.					*** *	
Q. No.			Quest	ion		CO	Marks
Q1.	a. Analyze the key characteristics of a data warehouse and evaluate how it					CO1	[3]
	supports the KDD process in extracting valuable insights for decision-						
	making.						
	b. Consider the data: 25, 30, 45, 50, 60. Apply Min-Max normalization						[2]
	method on this data to scale the values between -1 and 1.						' '
Q2.	a. Consider two text documents represented as term frequency vectors in					CO3	[2]
ζ	a 6-dimensional space:						[~]
	Doc1 = $(2,3,0,5,7,1)$, Doc2 = $(4,1,2,6,3,2)$						
;	Compute the cosine similarity of these two documents. Also interpret						
	the results.						
							[2]
	b. Consider the daily step count (in thousands) of two fitness enthusiasts						[2]
	over five days:						
	Person A = (7, 10, 12, 9, 11), Person B = (8, 9, 14, 10, 12) Compute						
	the Manhattan distance between their step counts. Interpret the results						
	in terms of the similarity of their physical activity levels.						
Q3.	a. How do you determine the value of k in the k-NN algorithm? What are					CO4	[2]
	the drawbacks of choosing a value of k that is too small?						
Α,	b. Given the dataset below, apply ID3 algorithm to determine the root						[4]
1	node of the decision tree.						
		Age	Income	Buy Product?			
		Young	High	No	,		
		Young	Low	Yes			
		Middle	High	Yes			
		Middle	Low	Yes			
		Old	High	Yes			
		Old	Low	No			