

SECURITY IN INTERNET VOTING SYSTEMS USING
CRYPTOGRAPIHIC TECIINIQUES

Project Report submitted in partial fulfillment of the requirement for the degree of
Bacheior of Technology

In
Electronics and Communication Engineering
Under the supervision of
Prof. T.S. Lamba
By

Prateek Dhaka — 081002
Shashwat Jain — 081060
Sarvesh Kumgr__ Ya_dav - 081109

o0 .
Dy

To

LR
JAYPEE UNIVERSITY OF
INFORMATION TECHNOLOGY

Jaypee University of Information and Technology

Waknaghat, Solan — 173234, Himachal Pradesh

SV

CERTIFICATE

This is to certify that project report entitled “SECURITY IN INTERNET VOTING
SYSTEMS USING CRYPTOGRAPHIC TECHNIQUES™, submitted by Prateek Dhaka
(081002), Shashwat Jain (081060) and Sarvesh Kumar Yadav (081109) in partial
fulfillment for the award of degree of Bachelor of Technology in Elecuronics and
Communication Engineering o Jaypee University of information Technology.

Waknaghat. Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for

the award of this cr any other degree or diploina.

ZM G ba

Date: 2.9-5-20l2Z [!’ro/l‘. T.S. Lamba]

Dean (Academics & Research)

ACKNOWLEDGEMENT

This project is an outcome of our serious effort to implement “Security In Internet Voting

Systems Using Cryptographic Techniques™ as part of our Bachelor’s Degree Program.

Enhancing security in an interiet voting system, involving the concepts of network
security and cryptography, under guidance our esteemed mentor Prof. T.S. Lamba not
only cleared all our ambiguities but also generated a high level of interest in the subject.

We are highly grateful to him.

The prospect of working in a group with a high level of accountability fostered a spirit of
teamwork and created a feeling of oneness which thus motivated us to perform to the best

our ability and create a report of the highest quality.

To do only the best quality work, with utmost sincerity and precision has been our

constant endeavor.

This work has not been submitted partially or wholly to any other University or Institute

for the award of this or any other degree or diploma.

Pk
Date: 29 ~§-2 o19_ [Prateek Dhaka]

B

[Shashwat Jain]

5_\¢W

[Sarvesh Kumar Yadav]

Certificate

Acknowledgement
Table Of Contents
List Of Figures
List Of Abbreviations

A DS AGE e s e o S

TABLE OF CONTENTS

CHAPTER 1: Introduction

1.1
1.2
1.3
1.4
145
1.6

1.7

Internet VOting.ooovrvrioo o
Types Of Internet Voting...........oooeeiiiiiiiiiiiinn,
Technologies Behind Internet Voting.........ccocoooovininnnn.
The Current Debate: Issues And Challenge.................
SECHIY ISRUES s s snsmndp s s
DIeSIEN CIIEIR it somsms o msimmigg s s s
Cryptography In Internet Voting..............................

-CHAPTER 2: Electronic Voting Machine

2.1
272
2.3
24
2.5
2.6
2.7
2.8
2.9

INEEOAUCTION. 1
Overview OFEVM. it see e
Ballat LInitdetalSisassmmsammmnms s
Contro] LIttt smnamammprmieamsmmmomms s s
POIAE, . cmmi i s e e T A
CIOSIIEE Al e s s o pasasasssenpsgsns
Counting And Result.........oooi,
Sequence Of Operation Of Buttons.......c.cooeiiniiniennn,
B o) T T T L e———

CHAPTER 3: Public Key Cryptography

3.1
3.2
3:3
34
3.5
3.6

IRtroduction.o
Key Agreement....o.oooveoriiiiieein
[Tot 7 o] 2] Epe e e AR RS LR
Digital Signature.............ooooiin Seprvia s

Miller-Rabin Primality Test....................oe.

CHAPTER 4: Hash Functions
4.1
4.2
4.3

L I 1S T T —
Properties Of Hash Functions................oo
SHA-T.............. [SR

(SR

10
10
10
11
11
11
12

13
13

15
18
19
19
20
21

22
23
23
24
25
26

28
29
29

~

CHAPTER 5: Authentication

5.1 One Way Ciphers......oooiiiiiii e 33
52 Passwords And User Authentication............oovviiiiieiieannnn 33
53 Liapi PEOtOEL o mmapmesnasmmnsmsessmsvsorrasammoses 34

CHAPTER 6: Threshold Cryptography

6.1 IRtEGAUSEION. v csiais sors o BT s s R A 36
6.2 {IBT3 512514 0] ST m P tvaporot O Qe gt 36
6.3 Description........... R SRRRRRRR .1 ol L . 37

CHAPTER 7: Secure Transmission

7.1 T 38
7.2] ST ot S Mt (1 T D 41
7.3 HTTP ettt 42
7.4 HIT TP S s vuvevssermiamnunsarsmssomsssss s s s cass s s insas sasssssess 46

CHAPTER 8: Proposed Scheme

8.1 A G O s i o S S s 49
3.2 N ON I e AT s s A R R R 51
8.3 O I B o mimacsisstinss sincmshs i ASEESOA 53
Work Done And Future Work........cooiiiiii i 54
Appendix [Program Code (In JAVAJLcoviinimmmimsmnumsimimiisinress 55
References.............. I 2 L —— 13

¢
LIST OF FIGURES
Chapter 2:
Fig. 2.1 Overview
Fig. 2.2 Ballot Unit Details
Fig. 2.3 Ballot Unit Internal Parts
Fig. 2.4 Control Unit
Fig. 2.5 View Of Bottom Compartment
Fig. 2.6 Control Unit Display Section
| Fig. 2.7 Control Unit Candidate Set Section
f Fig. 2.8 Result Section
Fig. 2.9 Ballot Section
Fig. 2.10 Closing
Fig. 2.11 Counting And Result
Fig. 2.12 Sequence Of Operation Of Buttons
Chapter 3:
Fig. 3.1 Key Agreement
Fig. 3.2 Encryption
Fig. 3.3 Digital Signature
i Fig. 3.4 RSA Algorithm
Chapter 4:
Fig. 4.1 General Structure OF A Secure Hash Code
Fig. 4.2 SHA-1 Processing Of A Single 512 bit Block
Chapter 5:
Fig. 5.1 Login Protocol Using Passwords
£

Chapter 6:

Fig. 6.1 Secret Sharing (Threshold)

o =i

—y

——

Chapter 7:

Fig, 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4

Chapter 8:

Fig. 8.1
Fig: 8.2
Fig. 8.3

Structure Of FTP

SSL Handshake

HTTP Client As A State Machine
Browser [ntegration

Authentication
Voting
Counting

LIST OF ABBREVIATIONS

PIN Personal Identification Number
RSA Rivest Shamir Adleman
SSL Secure Socket Layer
! FTP File Transfer Protocol
| AES Advanced Encrypted Standard
DES Data Encrypted Standard
PB Private Key of User B
UB Public Key of User B
SHA Secure Hash Algorithm
TGP Transmission Control Protocol
EBCDIC Extended Binary Coded Decimal Interchange Cede
| ASCII American Standard Code for Information Interchange
EOF End Of File
IEETR Hyper Text Transfer Protocol
DB Data Base

¢
L4

ABSTRACT

Internet voting is currently one of the most intensely debated subjects in
information and communication technology, our project is to develop a secure internet

based voting system that would deliver a free and fair election.

By making use of various cryptographic protocols available to us, we have tried to
make internet voting systems as secure as possible. Main focus in the project is

securing the voting mechanism between the user and client.

SHA-1 hash algorithm is used for authentication of each voter at the time of login
process. Password entered by the voter during the login process is hashed using SHA-
I and is then sent over the internet to verity it with the hashed value of the password
stored for that particular voter at the server database. This process verifies whether the

voter is actually the person who he is trying to masquerade as.

Next is the voting process in which the voter casts his vote. After this, the vote is
encrypted using the RSA algorithim and is sent over the internet to the server database
where it is stored in the encrypted form till the counting process. Also. after the voter
has casted his vote, a flag assigned to the voter is given the value ‘1" to make sure that

he is not able to vote again.

When the voting process is completed, counting process begins. In this, since all the
votes are stored in encrypted forim, decryption of the votes is required. For the
decryption, in order to avoid the possibility of any election official trying to alter the .
outcome of the counting process by decrypting the votes himself and then changing
the votes in order to favor a particular candidate, threshold cryptography is employed

which makes sure that the decryption process could not take place without the

presence of a specified number of election officials.

=

1.1

1.2

1.3

CHAPTER 1

INTRODUCTION

Internet Voting

Among the many issues in the ongoing discussion about the Internet is its use in
the voting process. Because voting determines who runs the government and
entails two absolute requirements—the secret ballot and security from fraud—
the stakes are higher than for many other transactions routinely conducted via the
Internet. Public confidence about Internet security is increasing, but many feel
that voting online requires a degree of security from fraud beyond the current
standard for everyday Internet use.

Proponents of Internet voting suggest it could increase turnout, particularly
among younger voters who are familiar with Internet technology.

Types Of Internet Voting

Two types of Internet voting are possible, and both were used in voting trials in
2000 in local elections in USA. One methed, the more basic from a technical
standpoint, is Internet voting at a traditional polling site, with computer voting
machines connected to the Internet and where election officials authenticate
voters before ballots are cast. The other method, more technically advanced, is to
cast ballots over the Internet from remote locations using electronic
authentication and computer security technologies.

Both methods were used; voters couid cast their ballots from remote locations or
at any polling place. Some observers believe that remote Internet voting should
not be attempted until voters become comfortable with polling site Internet
voting and until procedures are well established to ensure accurate voter
authentication, ballot secrecy, and security.

Technologies Behind Internet Voting

Internet voting systems use several technologies to ensure authentication, secrecy,
and security. These include encryption and electronic signatures (methods that use
such techniques as passwords, personal identification numbers (PINs), smart
cards, biometrics, and digital signatures) to verify the identity of the voter and
provide data integrity (i.c., assurance that the data is not altered during. Other
computer security technologies. such_as_firewalls, antivirus programs. and

intrusion detection systems, are also used to prevent unauthorized hacker access to

computer systems used in the election process.

‘c,_h\% "

1.4 The Current Debate: Issues and Challenges

While the computer security technologies mentioned above are well established in
theory, they have not yet been used on a wide scale. Some government agencies,
large companies, and financial institutions use encryption, electronic signatures,
and other computer security techniques in conducting business transactions with
established suppliers and customers. Some analysts predict that computer security
technologies will proliferate at an accelerated rate in the next few years. Internet
voting systems could be phased in over time, from the use of Internet-connected
computers at state and local government-controlled polling sites, to remote
Internet voting from users’ home PCs. The new voting systems must also be user-
friendly enough that many voters will prefer to use the Internet method over the
traditional method of voting.

1.5 Security Issues

Protecting the voting process from electronic attacks is a fundamental challenge
both for vendors who design online voting systems and for election administrators
who run elections. As with current voting systems, any vulnerability that could
allow for voting more than once, changing a voted ballot or the election tally, or
otherwise compromising the integrity of the process, raises the potential for fraud.
In addition, Internet voting systems could be vulnerable to “denial-of-service”
attacks in which the system is flooded with e-mail messages, causing it to shut
down.

1.6 Design Criteria

Authentication: Only authorized voters should be able to vote.
Uniqueness: No voter should be able to vote more than once.
Integrity: Votes should not be able to be modified without detection.
Secrecy: No one should be able to determine how any individual voted.

Convenience: Voters should be able to cast votes with minimal equipment and
skills.
Cost-effectiveness: Systems should be affordable and efficient.

1.7 Cryptographic Techniques In Internet Voting

RSA : Encryption & Decryption

Hash Function : Authentication

Threshold Cryptography : Trust

SSL : Secure Transmission (using FTP or HTTP)

o o ®

o

i

L T B i

CHAPTER 2

ELECTRONIC VOTING MACHINE

2.1 Introduction

At present, elections in India are held by employing the use of Electronic Voting
Machines(EVM).This makes polling much fast and is more reliable than ballot
papers. The EVMs save considerable time, money and manpower. It also helps in

maintaining the secrecy of individual voting.

2.2 Overview Of EVM

The EVM as it looks.....

Ballot lUnit ?ontrol Unit

171

Fig. 2.1: Overview

It has mainly 2 units: Ballot and Control Units. Itoperates on a special battery and is
tamper-proof and is easily portable. Information recorded is retained in memory even

when the battery is removed. Manufactured by Electronics Corporation of India &

Bharat Electronics Ltd. and approved by Election Commission, India. Each EVM can

13

cater to a maximum of 64 candidates with 4 Ballot Units cascaded. The EVM can be

used for conducting “TWO” simultaneous polls.

2.3 Ballot Units Details

Ready Lamp
Slide Switch Window

Candidate’s Button

Candidate’s Lamp

Ballot Paper Screen

Fig. 2.2: Ballot Unit Details !}

The ready lamp glows when the unit is switched on. The slide switch is used to set the
no. of the unit, i.e. it is set to 1 if there are only 16 candidates and 1 for the first and 2
for the second if there are 17 to 32 candidates and so on.The candidate’s lamp glows

indicating to the voter that his/her vote is cast in favor of that candidate.After the

ballot paper is placed and aligned the screen is put in place and sealed.

Ready Lanﬁp

Slide Switch

Masking Tab

Fig. 2.3: Ballot Unit-Internal Parts 7l

Candidate button is the button which is pressed by the voter. Masking tab is used to
mask the candidate buttons which are not in use, i.e. if there are only 8 candidates the

remaining switches from 9 to 16 are masked and cannot be operated.

2.4 Control Unit

ON Lamp

Display Section -

i R@sult Section

Ballot Section -~
- Ballot Button

Total Button -~

Fig. 2.4: Control Unit ol

On'llamp glows when the unit is powered on. Busy Lamp glows when a ballot is
rél'é‘ﬁsed and a voter is in the process of voting. After the casting the lamp goes off
with a beep thus indicating that the vote is cast. Total button may be pressed at any
given time to know the total no of votes polled till then. Ballot button — pressing of

this button releases a vote in the ballot unit and also results in the busy lamp glowing.

Power Switch
Connector for
Auxiliary Unit

Bottorn Compartment
Cover

Fig. 2.5: View Of Bottom Compartment 171

Power Switch powers on / off the EVM. Connecter is for connecting the Ballot unit

with interconnecting cable. Auxiliary unit connector is used to connect second ballot

unit in case of two simultaneous polls.

4-Digit
Display Panel
ON Lamp
[| Busy Lamp
2-Digit
3 - Display Panel S8

Fig. 2.6: Control Unit Display Section 7l

16

Provision for

thread seal |

Latch

Power pack
compartment

Plug for Provision for
power pack Thread seal

Fig. 2.7: Control Unit-Candidate Set Section 17l

Candidate set button: For setting the no. of candidates in the poll. The Ballot unit and

the control unit are connected and powered on. This button is pressed and the

candidate button on the ballot unit corresponding to the last candidate is pressed.

Close
button

Clear button

8
Cantenl Uall

Result Il Inner Frames for
button latches Paper seal

Fig. 2.8: Result Section 17l

Close button is used to close the poll at the end of the appointed period. Once this

r .
button is depressed no more votes can be cast on this machine.
Result 1: To view the results of poll |
Result 2: To view the results of poll 2
Clear: Clears the data recorded in the voting machine — operable only after the results
are viewed at least once
Total button
Ballot button
: . 171
Fig. 2.9: Ballot Section
2.5 Polling
e The voter is identified from the voters list and records his presence by a signature or

thumb impression. The Presiding Officer presses the “Ballot” button on the Control
Unit permitting one vote. The voter then proceeds to the polling cubicle and after
perusing the béllo{ papér on the Ballot Unit, presses the key against the candidate of
his choice. A red lamp glows indicating to the voter that his vote has been cast in
favour of that candidate. The casting of the vote results in a beep in the Control Unit
indicatilng to the Presiding Officer that a vote has been cast. He then proceeds to

release another vote by pressing the “Ballot” button and the process continues.

18

P

2.6 Closing

The cap on the “Close Button” is removed and the button pressed. The cap is then

replaced. The unit is then switched “Off” and the interconnecting cable disconnected.

Fig. 2.10: Closing "'

2.7 Counting And Result

The Power pack / Battery is checked for health by pressing the TOTAL Button.After
getting ready to note down the result, the green paper seal over RESULT-1 Button is
pierced and RESULT-1 Button is pressed to display the results.

Fig. 2.11: Counting And Result bk

The results are then noted.

Lk

5 2.8 Sequence Of Operations Of Buttons

81

Fig. 2.12: Sequence Of Operation Buttons

20

|

i ;

!

|
_

> 2.9 Attacks On EVM

a) Substituting Look-Alike CPUs: Since code burned in the CPU cannot be verified,

anyone can change the CPU with coded CPU working in a dishonest way.

b) Substituting Circuit Boards: Instead of replacing the CPU with a fake one the

entire circuit board of the control unit can be changed.

¢) Tampering with the EEPROMs: Since in an EVM, votes are stored in
EEPROMs, anyone can erase it and manipulate i in its own way, thereby changing

the outcome of the voting process.

oin ';LBE.S._O_‘_’_[C)

otV .
\IQJ\/-‘”

CHAPTER 3

PUBLIC KEY CRYPTOGRAPHY

3.1 Introduction

The data transferred from one system to another over public network can be protected
by the method of encryption. On encryption the data is encrypted by any encryption
algorithm using the ‘key’. Only the user having the access to the same ‘key’ can
decrypt the encrypted data. This method is known as private key or symmetric key
cryptography. There are several standard symmetric key algorithms defined.
Examples are AES, 3DES etc. These standard symmetric algorithms defined are
proven to be highly secured and time tested. But the problem with these algorithms is
the key exchange. The communicating parties require a shared secret, ‘key’, to be
exchanged between them 1o have a secured communication. The security of the
symmetric key algorithm depends on the secrecy of the key. Keys are typically of a
large number of bits in length, depending on the algorithm used. Since there may be
number of intermediate points between the communicating paities through which the
data passes, these keys cannot exchanged online in a secured manner. In a large
network, where there are hundreds of system connected, offline key exchange seems
too difficult and even unrealistic. This is where public key cryptography comes to
help. Using public key algorithm a shared secret can be estabiished online between
communicating parties without the need for exchanging any secret data.

[n public key cryptography cach user or the device taking pait in the communication
have a pair of keys, a public key and a private key, and a set of operations associated
with the keys to do the cryptographic operations. Only the particular user/device
knows the private key whereas the public key is distributed to all users/devices taking
part in the communication. Since the knowledge of public key does not compromise
the security of the algorithms, it can be easily exchanged online.

A shared secret can be established between two communicating parties online by
exchanging only public keys. Any third party, who has access only to the exchanged
public information, will not be able to calculate the shared secret unless it has access
to the private key of any of the communicating parties.

3.2 Key Agreement

Key agreement is a method in which the device communicating in the network
establishes a shared secret between them without exchanging any secret data. In this
method the devices that need to establish shared secret between them exchange their
public keys. Both the devices on receiving the other device’s public key performs key
generation operation using its private key to obtain the shared secret.

Let P be the private key of a device and U(P, C) be the public key. Since public key is
generated using private key, the representation U(P, C) shows that the public key
contain the components of private key P and some constants C where C is known by
all the device taking part in the communication.

Consider two devices A and B. Let PA and UA(PA, C) be the private key and public
key of device A, and PB and UB(PB, C) be the private key and public key of device B
respectively. Both device exchanges their public keys. Device A, having got the
public key of B, uses its private key to calculate shared secret;

KA=Generate_Key (PA, UB (PB, C))

Device B, having got the public key of A, uses its private key to calculate the shared
secret;

KB=Generate_Key (PB, UA (PA, C))

Privale Koy = Py Privale Key w Py
Public Key UgPy,] UalPy, € Public Key = UylPg, €}
A UnPy, € B
Ky = Generate Key {(Fe, UgPy, C) K = Generate Key [Fa UalPs T))

Fig. 3.1 : Key Agreement 161

The key generation algorithm *Generate_Key” will be such that the generated keys at
the device A and B will be the same, that is shared secret KA=KB=K(PA, PB, C).
Since it is practically impossible to obtain private key from the public key any
middleman, having access only to the public keys UA (PA, C) and UB (PB, C), will
never be able to obtain the shared secret K.

3.3 Encryption

Encryption is a process in which the sender encrypts/scrambles the message in such a
way that enly the recipient will be able to decrypt/ descramble the message.

Consider a device B whose private key and public key are PB and UB respectively.
Since UB is public key all devices will be able to get it. For any device that needs to
send the message ‘Msg’ in a secured way to device B. it will encrypt the data using

B's public key to obtain the cipher text ‘Ctx’. The encrypted message. cipher text, can
only be decrypted using B’s private key. On receiving the message the B decrypts it
using its private key PB. Since only B knows its private key PB none other including
A can decrypt the message.

i iy ,

i |
i | i
i ! b i

o
W

O = E:_‘ rll:i’}'_f‘tlji"i_:g, L{;} D e b '((".25{; i HE{?‘}'Q:{ .: i!, ?{; }

Fig. 3.2: Encryption 161

3.4 Digital Signature

Using Digital signature a message can be signed by a device using its private
key to ensure authenticity of the message. Any device that has got the access to the
public key of the signed device can verify the signature. Thus the device receiving the
message can ensure that the message is indeed signed by the intended device and is
not modified during the transit. If any the data or signature is modified, the signature
verification fails.

Private Kay = P
Public Key = U

Ui !
Sgn = Signiisg, | g ——— Status » YVerifyiSe

Fig. 3.3: Digital Signature

For e.g. if a device A need to ensure the authenticity of its message, the device A
signs its message using its private key PA. The device A will then send the message
‘Msg’ and signature ‘Sgn’ to device B. The device B, on receiving the message, can
verify the message using A’s public key UA and thereby ensuring that the message is
indeed sent by A and is also not tampered during the transit. Since only the device A
knows its private PA key, it is impossible for any other device to forge the signature.

3.5 RSA

RSA is a public key algorithm that is used for Encryption, Signature and Key
Agreement. RSA typically uses keys of size 1024 to 2048. The RSA standard is
specified RFC 3447, RSA Cryptography Specifications Version 2.1.

3.5.1 RSA Encryption

Parameter generation

R1. Select two prime numbers p and q.

R2. Find n=p*q, Where n is the modulus that is made public. The length of n is
considered as the RSA key length.

R3. Choose a random number e as a public key in the range 0<e< (p-1) (q-1) such that
- ged(e,(p-1)(g-1))=1.

R4. Find private key d such that ed=1(mod (p-1)(g-1)).

Encryption

Consider the device A that needs to send a message to B securely.

RS. Let e be B's public key. Since e is public, A has access to e.

R6. To encrypt the message M, represent the message as an integer in the range
0<M<n.

R7. Cipher text C = M”e mod n, where n is the modulus.

Decryption

R8. Let C be the cipher text received from A.

R9. Calculate Message M = C~d mod n, where d is B’s private key and n is the
modulus.

3.5.2 RSA Key Agreement

Since public key cryptography involves mathematical operation on large numbers,
these algorithms are considerably slow compared to the symmetric key algorithm.
They are so slow that it is infeasible to encrypt large amount oi data. Public key
encryption algorithm such as RSA can be used to encrypt small data such as ‘keys’
used in private key algorithm. RSA is thus used as key agreement algorithm.

Key agreement algorithm

For establishing shared secret between two device A and B

R10. Generate a random number, key, at device A.

R11. Encrypt key by RSA encryption algorithm using B’s public key and pass the
cipher text to B

R12. Al B decrypt the cipher text using B's private key (o obtain the key.

| Key Generation
- Selectp, q p, q both prime, prq
- Calculate n=pxq
Calculate o(n) = (p-1)x(q-1)
' Select integer e ged(d(m)e)=1; 1<e<o(n)
Calculate d
Public key KU={e,n}
Private key KR = {d, n}

Encryption
 Plaintext: M<n
- Ciphertext:

| Decryption
- Ciphertest; &
 Plaintext: M = C! (mod n)

" TFig. 3.4 RSA Algorithm 1

3.6 Rabin-Miller Primality Test

The Miller—Rabin primality test or Rabin—Miller primality test is a primality test
which determines whether a given number is prime.

First, a proposition about square roets of unity in the finite field ?‘/(P?:‘, where p is
prime and p > 2. Certainly 1 and —1 always yield 1 when squared mod p; call these
trivial square roots of 1. There are no nontrivial square roots of 1 mod p (a special
case of the result that, in a field, a polynomial fas 1o more zeroes than its degree).
show this, suppose that x is a square root of I mod p. Then:

TA
10

:3 =1 (mod p)

(0 — D) (x+1)=0 (mod p).

7
£
I
L
i
!

In other words, p divides the product (x — 1) (x + 1). It thus divides one of the factors
and it follows that x is either congruent to | or —1 mod p.

Now, let # be an odd prime. Then n—1 is even and we can write it as 2", where s and
o o= T L F
d are positive integers (d is odd). For each @ & (Z/nZ) cither
! 3
=1 (modn)
or
o g \ 5 " ;
a- “=-1 (mod nlorsome V< v < s~ 1.
1 ; :
a7t =1 (modn)
By the proposition above, if we keep taking square roots of a" "', we will get either 1
or —1. If we get —1 then the second equality holds and we are done. If we never get

~1, then when we have taken out every power of 2, we are left with the first equality.

If we can find an a such that
kf ;
a"#1 (mod n)
and
2 : - o
a““# -1 (mod n)oran0<r <s—1
then n is not prime. We call @ a witness for the compositeness of n (sometimes
misleadingly called a strong witness, although it is a certain proof of this fact).
Otherwise « is called a strong har, and n is a strong probable prime to base a. The
term "strong liar" refers to the case where n is composite but nevertheless the
equations hold as they would for a prime.
Example
Suppose we wish to determine it n =221 is prime. We write n — | = 220 as 2%.55, s0
that we have s = 2 and ¢ = 55. We randomly select a number a such that @ < n, say a =

174. We proceed to compute:

A modn=174"mod 221 =474 1,n—1
e " modn=174"mod221=220=n-1,

Since 220 = —1 mod n. We try another random a, this time choosing a=137:

“modn=137"mod 221 =188 # ,n—1
e &''modn=137""mod 221 =205#n - 1.

Hence 137 is a witness for the compositeness of 221, So. 221 is not prime.

CHAPTER 4

HASH FUNCTIONS

4.1 Definition

A hash function is an algorithm that maps large data sets to smaller data sets.
The values returned by a hash function are called hash values. A hash function
accepts a variable-size message M as input and produces a fixed-size output, referred
to as a hash code H(M).

Yy ¥ Yy
b b ' Jal,
Loy Loy
W= _n [[]
oV R o o - T B s o
7o (,.VI / ('1);7 I
-
IV = litial value {.= Number of input biocks
OV, o Chaining variable s Length of hash code
¥, o= i Blook b= Length of imput block

Compresston algonihin

Fig. 4.1 : General Structure Of A Secure Hash Code 18l

The hash algorithm involves repeated use of a compression function, f, that takes two
inputs (ann -bit input from the previous step, called the chaining variable, and a b-bit
block) and produces an n-bit output. At the start of hashing, the chaining variable has
an initial value that is specified as part of the algorithm. The final value of the
chaining variable is the hash value. Often, b > n; hence the term compression.

The hash function can be summarized as follows:

CVo =1V = initial n-bit value

CVi=1CVil, Yil) 1iL

H(M)=CVL

where the input to the hash function is a message M consisting of the blocks Yo,
Yo lorsg YLl

4.2 Properties Of Hash Functions
The ideal cryptographic hash function has four main or significant properties:

* it is easy to compute the hash value for any given message.
» it is infeasible to generate a message that has a given hash.
* itis infeasible to modify a message without changing the hash.

+ itis infeasible to find two different messages with the same hash.

4.3 SHA-1

4.3.1 Introduction

SHA stands for "secure hash algorithm". For a message of length < 2764 bits, the
SHA-1 produces a 160-bit condensed representation of the message called a message
digest. The message digest is used during generation of a signature for the message.
The SHA-1 is also used to compute a message digest for the received version of the
message during the process of verifying the signature.

4.3.2 Message Padding

The SHA-1 is used to compute a message digest for a message or data file that is
provided as input. The message or data file should be considered to be a bit string,.
The length of the message is the number of bits in the message (the empty message
has length 0). If the number of bits in a message is a multiple of 8, for compactness
we can represent the message in hex. The purpose of message padding is to make the
total length of a padded message a multiple of 512. The SHA-1 sequentially processes
blocks of 512 bits when computing the message digest. The following specifies how
this padding shall be performed. As a summary, a "1" followed by m "0"s followed by
a 64-bit integer are appended to the end of the message to produce a padded message
of length 512 * n. The 64-bit integer is i. the length of the original message. The
padded message is then processed by the SHA-1 as n 512-bit blocks.

4

Suppose a message has length | <27 Before it is input to the SHA-1, the message is

padded on the right as follows:

a. "1" is appended.

Example: if the original message is "01010000", this is padded to "010100001".

b. "0"s are appended. The number of "0"s will depend on the original length of the
message. The last 64 bits of the last 512-bit block are reserved for the length | of the

original message.

|
|
!
| - |
| |

Example: Suppose the original message is the bit string
01100001 01100010 G1100011 01100100 01100101.

After step (a) this gives

01100001 01100010 01100011 01100100 01100101 1.

Since | = 40, the number of bits in the above is 41 and 407 "0"s are appended, making
the total now 448. This gives (in hex)

61626364 65800000 60000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000.

c. Obtain the 2-word representation of I, the number of bits in the original message. 1T
| < 2% then the first word is all zeroes. Append these two words to the padded
message.

Example: Suppose the original message is as in (b). Then I = 40 (note that 1 is
computed before any padding). The two-word representation of 40 is hex 00000000
00000028. Hence the final padded message is hex

61626364 65800000 00000000 00000000 V0000000 V0000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000028.

The padded message will contain 16 * n words for some n > 0. The padded message
is regarded as a sequence of n blocks My , M, ..., My, where each M; contains 16
words and M, contains the first characters (or bits) of the message.

4.3.3 Computing The Message Digest

The message digest is computed using the final padded message. The computation
uses two buffers, each consisting of five 32-bit words, and a sequence of eighty 32-bit
words. The words of the first 5-word buffer are labeled A,B,C.D,E. The words of the
second 5-word buffer are labeled Ho, Hi. H, Hs, Hy. The words of the 80-word
sequence are labeled Wo, Wi...., Wo. A single word buffer TEMP is also employed.

To generate the message digest, the 16-word blocks M, Ma,..., M, defined in Section
4 are processed in order. The processing of each M, involves 80 steps.

Before processing any blocks, the {H;} are initialized as follows: in hex,
Ho = 67452301

H, = EFCDAB&9
H, = 98BADCFE
Hiz = 10325476

Hy = C3D2EIF0.

!

L

|

|
—

e —

Y, Cv,

7100
A

7\ yb C F“ =
. K, W[ih..19]
24 steps

A B O gl gl
15, [, W[20...39]
20 steps

vs wB yC ¢ yE

B ' 13, K, W[40...59]
20 steps
L

A B gC gD gl

15 K, W[aD...79]

20 steps

)

;

)

)
siekids

1A
adddition €53 is nod 27

Fig. 4.2: SHA-1 Processing Of A Single 512 Bit Block
(SHA-1 Compression Function) '*

Now M, Ma, ... , M, are processed. To process M, we proceed as follows:

a. Divide M; into 16 words Wo, W1, ..., Wjs, where Wy is the left-most word.

b. Fort=16to 79 let W, = S](Wx-s XOR W3 XOR W_1; XOR W 6).

c.Let A= HU. B= I’ll. C= Hj, D= [’IL E= H4.

d.Fort=0to 79 do
TEMP = S°(A) + f;(B,C,D) + E+ W+ K;;

E=D;D=C; C=S"(B); B=A;A=TEMP;
e. LetHp=Hp+ A, H = Hy+B, H,=H,+C, Hy= Hs + D, Hy=Hs + E.
After processing M,, the message digest is the 160-bit string represented by the 5

words
Ho Hy Hy Hy Hy.

4.3.4 Applications

I. SHA-1 forms part of several widely used security applications and
protocols, including TLS and SSL, PGP, SSH, S/MIME, and [Psec.

2. SHA-1 hashing is also used in distributed revision control systems
such as Mercurial, and Monotone to identify revisions, and to detect
data corruption or tampering.

3. The algorithm has also been used on Nintendo's Wii gaming console
for signature verification when booting.

—

|
|
f
t.

CHAPTER 5

AUTHENTICATION

5.1 One Way Ciphers

A one-way cipher is an irreversible function f from plaintext to ciphertext. It is
computationally infeasible to systematically determine a plaintext message M
from the ciphertext C = f{M).

One-way ciphers are used in applications that do not require deciphering the data. One
such class of applications involves determining whether there is a correspondence
between a given message M and a ciphertext C stored in the system.This
correspondence is determined by computing f(M), and comparing the result with C.
For this to be effective, f should be one-to-one, or at least not too degeneiate.
Otherwise, a false message M' may pass the test f{(M") = C.

A one-way cipher can be implemented using a computationally secure block
encryption algorithm E by letting '

f(M) = EM(Mo),
where Mo is any given, fixed message. The message M serves as the key to E. As
long as E is secure, it is computationally infeasible to determine the enciphering
key M with a known plaintext attack by examining pairs (MO0, EM(Mo)).

5.2 Password Storage

To avoid storage of passwords, some operating systems (e.g. UNIX. LINUX) store a
hash of the password rather than storing the password itself. During authentication.

: ﬂe system verifies that the hash of the password entered matches the hash stored in

e password database. If the intruder somehow obtains a password hash, he or she
can use any password that generates the same hash. However, the intruder still needs
to produce such a password, which, depending on the hashing algorithm strength, may
be a very difficult cryptographic problem. :

Often. the hashed password is retrieved from the actual password together with a
password salt. Then, the hash together with the salt is stored.

5.3 Login Protocol

Suppose a user logs into the system and supplies password P. If P is transmitted from
the user's terminal to the system in the clear, it could be compromised on the way
(e.g., by wiretapping). [t may not even make it to the system: a program masquerading
as the login procedure might trick the user into typing ID and P.

As a solution to this problem, Feistel, Notz, and Smith describe a login procedure that
does not expose the user's password, and allows the user and system to mutually
authenticate each other, They assume each user A has a private key on some digital
storage medium (e.g., a magnetic-stripe card) which can be inserted into A's terminal,
and that a copy of the key is stored on file at the system. To log into the system, A
transmits ID in the clear (for simplicity, we assume ID = A). The system responds
with a "challenge-reply” test that allows A to determine whether the communication is
"live" (and not a replay of an earlier login), and allows the system to establish A's
authenticity.

5.3.1 Login Protocol Using Passwords
1. A transmits [D = A to S.

2. S sends to A:

x = EA(T), where T is the current date and time, and EA is the enciphering
transformation derived from A's private key. '

Key File
A] kes
5| key

Password Jile

Al rin

-

@ 1 ogin Complete”™ .

Svstem 5'1

1

Fig. 5.1: Login Protocol Using Passwords

e

3. A deciphers X to get T, and checks that T is current. 1f it is, A replies to S by
sending

Y = EA(T , P) where P is A's password.

4. S deciphers Y to get T and P. It checks T against the time transmitted to A in Step
2.and checks f(P) against the password file. If both check, the login completes

successfully.

5.3.2 Login Protocol Using Digital Signature

The above protocol is easily modified for a public-key system. In Step 2, the system S
uses its private transformation D s (for sender authenticity) to create X = Ds(T),
which A can validate using S's public transformation E s. In Step 3, A uses the
system's public enciphering transformation (for secrecy) to create Y = Es(T, P). Only
S can decipher Y to obtain A's password and complete the login. Note that A's private
transformation (i.e., digital signature) can be used for authentication instead of A's

password; in this case, the protocol becomes:
1. A transmits [D = A to S.

2. S sends to A:

X= Ds(T), where T is the current date and time, and D s is S's private
transformation.

3. A computes Es(X).= T using S's public transformation, and checks that T is
current. I it is, A replies to S by sending

Y = DA(T), where D A is A's private transformation.

4. The system validates Y using A's public transformation E A. 1f it is valid, the login
completes successfully.

ossible weakness with the digital signature protocol is that users can be
rsonated if their private keys are stolen. The password protocol has the advantage
that memorized passwords are less susceptible to theft than physical keys. provided
users do not write them down. The digital signature protocol can be enhanced by
combining it with passwords or with a mechanism that uses personal characteristics
(e.g., a handprint) for identification. If passwords are used, then A sends to S DA(T).

Es(T, P) in Step 3 of the protocol.

CHAPTER 6
THRESHOLD CRYPTOGRAPHY

6.1 Introduction

In cryptography, a cryptosystem is called a 'threshold cryptosystem', if in order
to decrypt an encrypted message a number of parties exceeding a threshold is required
to cooperate in the decryption protocol. The message is encrypted using a public key
and the corresponding private key is shared among the participating parties. Let » be
the number of parties. Such a system is called (7,n)-threshold, if at least of these
parties can efficiently decrypt the ciphertext, while less than / have no useful
information. Similarly it is possible to define (1,n)-threshold signature scheme, where
at least ¢ parties are required for creating a signature.

Threshold versions of encryption schemes can be built for many public encryption
schemes. The natural goal of such schemes is 1o be as secure as the original scheme.
Such threshold versions have been defined for:

« RSA

« Pallier cryptosystem

o Damgard-Jurjk-cryptosystem
« El-Gamal

6.2 Definition

-n parties share the ability of performing a cryptographic operation (€.¢. creating a

 digital signature)

f pany t of those n parties can perform the operation jointly

-any t-1 (or less) parties cannot perform the operation

6.3 Description
For t out of n parties to construct a secret :
f(x) =a(0) +a(ly*x +... +a(t-1)*x"(t-1)
a(0) : secret
a(1)...a(t-1): random numbers

share s(i) : (x(1).y(1)) with y(i) = f(x(i)) : x(i) #0

}
|
Fig. 6.1: Secret Sharing (Threshold) 2l
Any 2 points determine the line, hence the secret {(0)
1
With just | point, the secret could be any point on the y —axis
!
I
i
f
|
|
l |

CHAPTER 7

SECURE TRANSMISSION |

7.1 FTP

7.1.1 Introduction

File Transfer Protocol (FTP) is a standard network protocol used to transfer files
from one host to another host over a TCP-based network, such as the Internet. FTP
is built on aclient-server architecture and utilizes separate control and data
[connections between the client and server. ‘
FTP operates on the application layer of the OSI model, and is used to transfer files il
! using TCP/IP. In order to do this an FTP server needs to be running and waiting for "
f incoming requests. The client computer is then able to communicate with the server
on port 21. This connection, called the control connection, remains open for the
duration of the session, with a second connection, called the data connection, either
opened by the server from its port 20 to a negotiated client port (active mode) or
opened by the client from an arbitrary port to a negotiated server port
(passive mode) as required to transfer file data. The control connection is used for
session administration (i.e.. commands, identification. passwords) exchanged
between the client and server using a telnet-like protocol.
FTP can be run inactive or passive mode, which determine how the data
connection is established. In active mode. the client sends the server the IP address
and port number on which the client will listen. and the server initiates the TCP
connection. In situations where the client is behind a firewall and unable to accept &
incoming TCP connections, passive mode may be used. In this mode the client
sends a PASY command to the server and receives an 1P address and port number in ‘
return. The client uses these to open the data connection to the server. ;

5 FTP Control Connection

Y,G@ « Must be functioning for Data transfer to occur.

' < Control connection utilized the TELNE'T protocol.

« Special FTP commands and responses — the FTP Protocol
« Text (ASCI) Command line oriented

——

control coniection

Fig. 7.1: Structure Of FTP 181

While transferring data over the network, four data representations can be used:

« ASCII mode: used for text. Data is converted, if needed, from the sending host's
character representation to "8_bit ASCIi" before transmission, and (again, if
necessary) to the receiving host's character representation. As a consequence,
this mode is inappropriate for files that contain data other than plain text.

» Image mode (commonly called Binary mode): the sending machine sends each
file byte for byte, and the recipient stores the byte stream as it receives it. (Image
mode support has been recommended for all implementations of FTP).

. EBCDIC mode: use for plain text between hosts using the EBCDIC character
set. This mode is otherwise like ASCII mode.

« Local mode: Allows two computers with identical setups to send dataina

proprietary format without the need to convert it to ASCII

7.1.2 Transmission Modes

There are three modes: one which formats the data and allows for restart
procedures; one which alsc compresses the data for efficient transfer; and one which
passes the data with little or no processing. In this last case the mode interacts with
the structure attribute to determine the type of processing. In the compressed mode.
the representation type determines the filler byte. All data transfers must be
completed with-an-end-of-file- (EOF) which mav be explicitly stated or implied by
the closing of the data connection.

s STREAM MODE:
The data is transmitted as a stream of bytes. There is no restriction on the

representation type used: record structures are allowed.

¢ BLOCK MODE
The file is transmitted as a series of data blocks preceded by one or more
header bytes.
e COMPRESSED MODE
There are three kinds of information to be sent: regular data, sent in a byte
string; compressed data, consisting of replications or filler; and control
information, sent in a two-byte escape sequence.

7.1.3 Connections

The server protocol interpreter shall "listen” on Port L. The user or user protocol
interpreter shall initiate the full-duplex control connection. Server- and user-
processes should follow the conventions of the Telnet protocol as specified in the
ARPA-Internet Protocol Handbook. Servers are under no obligation to provide for
editing of command lines and may require that it be done in the user host. The
control connection shall be closed by the server at the user's request after all
transfers and replies are completed.

When data is to be transferred between two servers, A and B the user-PI, C, sets up
control connections with both server-PI's. One of the servers. say A. is then sent a
PASV command telling him to "listen" on his data port rather than initiate a
connection when he receives a transfer service command. When the user-PI receives
an acknowledgment to the PASV command, which includes the identity of the host
and port beiug listened on, the user-Pl then sends A's port. a, to B in a PORT
command; a reply is returned. The user-PI may then send ihe corresponding service
commands to A and B. Server B initiates the connection and the transfer proceeds

The data connection is to be closed following a data transfer where closing the
connection is not required to indicate the end-of-file, the server must do so
immediately. Waiting until after

a new transfer command is not permitted because the user-process will have already

tested the data connection to see if it needs to do a "listen".

7.2 SSL
7.2.1 Introduction

The Secure Sockets Layer (SSL) is a commonly-used protocol for managing the
security of a message transmission on the Internet. SSLL. uses a
program layer located between the Internet's Hypertext Transfer Protocol (HTTP)
and Transport Control Protocol (TCP) layers. SSL is included as part of both the
Microsoft and Netscape browsers and most Web server products. The "sockets" part
of the term refers to the sockets method of passing data back and forth between a
client and a server program in a network or between program layers in the same
computer. SSL uses the public-and-private key encryption system from RSA, which
also includes the use of a digital certificate.

The SSL protocol allows client/server applications to communicate across a
network in a way designed to prevent eavesdropping and tampering. Since most
protocols can be used either with or without SSL it is necessary to indicate to the
server whether the client is making a SSL connection or not. There are two main
ways of achieving this, one option is to use a different port number for SSL
connections. The other is to use to the regular port number and have the client
request that the server switch the connection to SSL using a protocol specific

nechanism.

7.2.2 Handshake

During this handshake, the client and server agree on various parameters used to

establish the connection's security.

» The handshake begins when a client connects o a SSL-enabled server
requesting a secure connection and presents a list of supported Cipher
Suites(ciphers and hash functions).

« From this list, the server picks the strongest cipher and hash function that it also
supports and notifies the client of the decision.

+ The sever sends back its identification in the form of a digital certificate. The
certificate usually contains the server name, the trusted certificate authority(CA)
and the server's public_encryption key.

» The client may contact the server that issued the certificate (the trusted CA as
above) and confirm the validity of the certificate before proceeding.

» In order to generate the session keys used for the secure connection, the client

encrypts a random number with the server's public key and sends the result to

the server. Only the server should be able to decrypt it, with its private key.

From the random number. both parties generate key material for encryption and

decryption.

Client/Browser

- e

Fig. 7.2: SSL Handshake "*

7.3 HTTP

The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed.
collaborative, hypermedia information systems. HTTP is the foundation of data
communication for the World Wide Web. Hypertext is a multi-linear set of objects,
building a network by using logical links (hyperlinks) between the nodes (e.g. text
or words). HTTP is the protocol to exchange or transfer hypertext.

7.3.1 HTTP Session

An HTTP session is a sequence of network request-response transactions. An HTTP
client initiates a request by establishing alransmission Control Protocol (TCP)
connection to a particular port on a server (tvpically port 80: see List of TCP and
UDP port numbers). An HTTP server listening on that port waits for a client's
request message. Upon receiving the request, the server sends back a status line,
such as "HTTP/1.1 200 OK", and a message of its own. The body of this message is

typically the requested resource, although an error message or other information
may also be returned.

7.3.2 HTTP Session State

HTTP is a stateless protocol. A stateless protocol does not require the server to
retain information or status about each user for the duration of multiple requests.
For example, when a web server is required to customize the content of aweb
page for a user, the web application may have to track the user's progress from page
to page. A common solution is the use of HTTP cookies. Other methods include
server side sessions, hidden variables (when the current page contains a form), and
URL-rewriting using URI-encoded parameters.

e.g., /index.php?session_id=some_unique_session_code.

The HTTP Client as a State Machine

BEGIN
ERROR; ‘EI’I’DI’ NEED
FAILURE CONNECTION
oK
Error NEED
REQUEST ~ ;
miaiss 8.5
) OK Error
E 401 '
g, SENT 5 “| NEED ACZESS
N REQUEST | AUTH.
301,202 200,203

Error MNEED
' BODY

- QK

REJIRECTION ’ i NO DATA) GOTDA™A
T

I

Fig. 7.3: HTTP Client As A State Machine

7.3.3 Secure HTTP

There are three methods of establishing a secure HTTP connection: HTTP
Secure, Secure Hypertext Transfer Protocol and the HTTP/1.1 Upgrade header.
Browser support for the latter two is, however, nearly non-existent, so HTTP Secure
is the dominant method of establishing a secure HTTP connection.

7.3.4 Request Message

The request message consists of the following:

= A request line, for example GET /images/logo.png HTTP/1.1, which requests

a resource called /images/logo.png from the server.

s Headers, such as Accept-Language: en

= Anempty line.

= An optional message body.
The request line and headers must all end with <CR><LF> (that is, acarriage
return followed by a line feed). The empty line must consist of only <CR><LF> and
no other whitespace. Although <CR><LF> is required <LF> alone is also accepted
by most servers. In the HTTP/1.1 protocol, all headers except Host are optional.
A request line containing only the path name is accepted by servers to maintain
compatibility with HTTP clients before the HTTP/1.0 specification in RFC 1945,

7.3.5 Response Message

The response message consists of the following:

« A Status-Line (for example HTTP/I.1 200 OK. which indicates that the

client's request succeeded)

= Headers, such as Content-Type: text/html

= Anempty line

» An optional message body
The Status-Line and headers must all end with CR+LF (a carriage return followed
by aline feed). The empty line must consist of only CR+LF and no
other whitespace.

7.3.6 Example Session

Below is a sample conversation between an HTTP client and an HTTP server
running on www.example.com, port 80.

Client request

_ GET /index.html HTTP/1.1 cr vr

Host: www.example.comcr ur

CR LF

A client request (consisting in this case of the request line and only one header) is
followed by a blank line, so that the request ends with a double newline, each in the
form of a carriage return followed by aline feed. The "Host" header distinguishes
between various DNS names sharing a single 1P address, allowing name-based virtual
hosting. While optional in HTTP/1.0, it is mandatory in HTTP/1.1.

Server response

HTTP/1.1 200 OK

Date: Mon, 23 May 2005 22:38:34 GMT

Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)
Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT
Etag: "3f80f-1b6-3e1cb03b"

Accept-Ranges: none

Content-Length: 438

Connection: close

Content-Type: text/html; charset=UTF-&

The ETag (entity tag) header is used to deiermine if a cached version of the requested
resource is identical to the current version of the resource on the seiver. Content-
Type specities the Internet media type of the data conveyed by the HTTP message,
while content-length indicates its length in bytes. The HTTP/1.1 webserver publishes
its ability to respond to requests for certain byte ranges of the document by setting the
header Accept-Ranges: bytes. This is useful, if the client needs to have only certain
portions of a resource sent by the server, which is calledbyte serving.
When Connection: close is sent in a header. it means that the web server will close the
TCP connection immediately after the transfer of this response.

Most of the header lines are optional. When Content-Length is missing the length is
determined in other ways. Chunked transfer encoding uses a chunk size of 0 to mark
the end of the content. Identity encoding without Content-Length reads content until
the socketisclosed:

A Content-Encoding like gzip can be used to compress the transmitled data.

7.4 HTTPS

Hypertext Transfer Proiocol Secure (HTTPS) is a combination of the Hypertext
Transfer Protocol(HTTP) with the SSL/TLS protocol. It provides encrypted
communication to prevent eavesdropping and secure identification of a network web
server to know which web server you are really talking to. Historically, HTTPS
connections were primarily used for payment transactions on the World Wide Web, e-
mail and for sensitive transactions in corporate information systems.

During connecting to a website HTTPS makes it possible to know whether you are
talking to the right server and profects from passive and active network attacks such
as Man-in-the-middle attacks. During a session it can protect against eavesdropping
and tampering with the contents of the site or with the information you send to the
sitc. As an example HTTPS can protect from an adversary replacing downloadable
content on a site with malware.

HTTPS is especially important over unencrypted Wi-fi as it is completely insecure by
design and attacks on unencrypted Wi-fi networks are relatively common.

7.4.1 Overview

HTTPS is a URI scheme which has identical syntax to the standard HTTP scheme,
aside from its scheme token. However, HTTPS signals the browser to use an added
encryption layer of SSL/TLS to protect ihe traffic. SSL is especially suited for HTTP
since it can provide some protection even if only one side of the communication
is authenticated. This is the case with HTTP transactions over the Iniernet, where
typically only the serveris authenticated (by the client examining the
server's certificate).

The main idea of HTTPS is to create a secure channel over an insecure network. This
ensures reasonable protection from eavesdroppers and man-in-the-middle attacks.
provided that adequate cipher suites are used and that the server certificate is verified
and trusted.

Web browsers know how to trust HTTPS websites based on certificate authorities that
come pre-installed in their software. Certificate authorities (e.g.
VeriSign/Microsoft/etc.) are in this way being trusted by web browser creators to
provide valid certificates. Logically. it follows that a user should trust an HTTPS
connection to a website if and only if all of the following are true:

I. The user trusts that the browser software correctly implements HTTPS with
correctly pre-installed certificate authorities.

2. The user trusts the certificate authority to vouch only for legitimate websites.

3. The website provides a valid certificate, which means it was signed by a
trusted authority.

4. The certificate correctly identifies the website (e.g.. when the browser visits
"hitps://example.com”, the received ceitificate is properly for "Example Inc.”
and not some other entity).

5. Either the intervening hops on the Internet are trustworthy, or the user trusts
that the protocol's encryption layer (TLS/SSL) is sufficiently secure against
eavesdroppers.

7.4.2 Browser Integration

Most browsers display a warning if they receive an invalid certificate. Older
browsers, when connecting to a site with an invalid certificate, would present the
user with a dialog box asking if they wanted to continue. Newer browsers display
a warning across the entire window. Newer browsers also prominently display the
site's security information in the address bar. Extended validation certificates turn
the address bar green in newer browsers. Most browsers also display a warning to
the user when visiting a site that contains a mixture of encrypted and unencrypted
content.

| Youare connected to
. hsbc.co.uk
| which is run by
HSEC Holdings plc

London
London, GE

Verified by WeriSign, Inc,

o

Your conneckion b this web site is encrypted ko prevent

g Lz eavesdropping. fe: na
Leryi

| More Information.. |

18]

Fig. 7.4: Browser Integration

The Electronic Frontier Foundation, opining that "In an ideal world, every web
request could be defaulted to HTTPS", has provided an add-on called "HTTPS
Everywhere™ Tor Mozilla Firefox that emables HTTPS by default for hundreds of
frequently used websites. A beta version of this plugin is also available for Google
Chrome and Chromium.

7.4.3 Difference From HTTP

HTTPS URLs begin with "https://" and use port 443 by default,
where HTTP URLs begin with "http:/" and use port 80 by default.

HTTP is unsecure and is subject to man-in-the-middle and eavesdropping attacks,
which can let attackers gain access to website accounts and sensitive information.
HTTPS is designed to withstand such attacks and is considered secure against
such attacks (with the exception of older deprecated versions of SSL).

7.4.4 In Case Of Compromised Private Key

A certificate may be revoked before it expires, for example because the secrecy of
the private key has been compromised. Newer versions of popular browsers such
as Google Chrome, firefox, Opera and Internet Explorer on Windows
Vista implement the Online Certificate Status Protocol (OCSP) to verify that this
is ot the case. The browser sends the certificate's serial number to the certificate
authority or its delegate via OCSP and the authority responds, telling the browser
whether or not the certificate is still valid.

7.4.5 Limitations

Because SSL operates belew HTTP and has no knowledge of higher-level
protocols, SSL servers can only sirictly present one certificate for a particular
IP/port combination. This means that, in most cases, it is not feasible to use name-
based virtual hosting with HTTPS. A soiution called Server Name
Indication (SNI) exists, which sends the hostname to the server before encrypting
the connection, although many older browsers do not support this extension.
Support for SNI is available since Firefox 2, Opera 8, Safari 2.1, Google Chrome
6. and Internet Explorer 7 on Windows Vista.

A sophisticated type of man-in-the-middle attack was presented at the Blackhat
Conference 2009. This type of attack defeats the security provided by HTTPS by
changing the htips: link into an http: link, taking advantage of the fact that few
Internet users actually type "https" into their browser interface: they get to a
secure site by clicking on a link, and thus are fooled into thinking that they are
using HTTPS when in fact they are using HTTP. The attacker then communicates
in clear with the client.

In Mav, 2010, a research paper by researchers from Microsoft Research and
Indiana University discovered that detailed sensitive user data can be inferred
from side channels such as packet sizes. More specifically, the researchers found
that an eavesdropper can infer the illnesses/medications/surgeries of the user, her
family income and investment secrets, despite HTTPS protection in several high-
profile. top-of-the-line web applications in healthcare, taxation, investment and
web search.

CHAPTER 8

PROPOSED SCHEME

8.1 Authentication

User Name Password
Verification
Proceed To e ,
: Of LoginID <
Voting Process -

- using DB

Fig. 8.1: Authentication

Steps Involved

e Step 1.

a. The user will make a login through the website. First he / she

has to enter the User Name.

b. After that. the user will have to wait till he/she gets a response

from the website.

* Hash Value Of

Password

~ User Name +

Hashed
Password

Step 2.

a. Challenge-response protocol [article 5.3.1] is used to ensure live
communication.

b. For this purpose, server will send the current date and time
encrypted with the user’s private key.

¢. Then the user will decrypt the encrypted message sent by the
server using his/her public key to make sure that the date and
time sent by the server is current.

d. When live communication is verified by the user, then the user
has to enter his/her password.

Step 3.

a. Hash Value of Password using salting and SHA-1 [article 4.3] is

calculated on the computer in which the details are entered.

b. Hash Value will alter the length of the password making it more

difficult for any intruder to guess it, hence, more secure.

Step 4. Hashed password and current date and time in encrypted
form is then transferred to the server tor verification.

Step 5. At the server end,
a. Server first verifies the date and time sent from the user end.
b. Using DB, the details of the user are checked.

¢. If found invalid, the process terminates else there is a

successful login and the user is forwarded to the voting menu.

50

8.2 Voting

Ballot L ~ Confirmation

Forward Encrypted Encryption Of

Fig. 8.2: Voting

Steps Involved

s Step L. _
a. After the user has been verified from the DB side, a webpage

will appear before him/her.
b. Names along with the Symbols of different candidates
appearing for the Election will be displayed on that webpage.
¢. User will have to click against the option of the intended

candidate.

Step 2.
a. Then a confirmation window will appear before the user which

will ask for confirmation from the user.
b. The user will confirm his/her vote else he will be redirected

back to Step 1(b).

Step 3.
a. After the confirmation the vote is encrypted using RSA

algorithm [article 3.5] .

b. Here the term vote means a string created by taking a part of
candidate’s name + party’s name + salt (some constant).

¢. Since only the head of the election commission knows what
exactly is being encrypted as vote. Therefore, it is very much
difficult for any intruder to guess whose vote is it.

Step 4.

a. Encrypted vote is sent to the DB.

b. At the DB, flag value (of the user who just casted the vote) will
be raised in order to make sure that a re-attempt is not made.

8.3 Counting

Threshold

> Counting
~ Cryptography ~

DB

g

Fig. 8.3: Counting

Steps Involved

e Step L.
a. After the Voting process is over, it is time for the counting of

votes. Threshold Cryptography {chapter 6] is adopted here.
b. A minimum number of election officials must be present to start

the counting process.
¢. Then the data is decrypted and the votes are counted.

e Step 2. When the Counting Process is over. the results will be
available on the website, showing the number of votes secured by

each and every candidate.

WORK DONE AND POSSIBLE IMPROVEMENTS

Work Done

1. Coverage of all the relevant theory

2. Implementation of basic command line based working model

Possible Improvements

1. Graphic user interface based model so as to make it more user friendly

2. The concept of servers and browsers is required to be implemented. After
that key exchange methods should be integrated. (|

3. Inclusion of hiometry (such as fingerprint etc.) will make the system more
accurate.

APPENDIX

[PROGRAM CODE (IN JAVA) |

1. Signln.java : For User Login

import java.io.*;

import java.util.*;
import java.math.*;
import javax.crypto.®;
import java.security.*;
import PasswordField.*;
import Login.*;

import RSA.*;

class Signln

f
§

public static void main(String args[])throws IOException

/
1

char password[] = null;
System.out.printin("User Name: ");
BufferedReader br=new BuftfcredReader(new
InputStreamReader(System.in));
String name=br.readLine();
password = PasswordFjeld.getPassword(System.in, "Password: ");
String pass=String.valueOf(password);
Boolean a=Login.login(name,pass);
if(a==true)
{

String n,p,c,str;

int ch=0;

Boolean temp=true;

while(temp==true)

{
System.out.println("\n\nS.NO.\INAME\t\t\tPARTY\n\n"};
FileReader fr=new FileReader("List.txt");
» BufferedReader brl=new BufferedReader(fr);

int i=1;
| while((str=brl-readLine(})!=null)
- {

StringTokenizer st=new
StringTokenizer(str,";");
n=st.nextToken();
p=st.nextToken();
c=st.nextToken();

System.out.printIn(i+"\"+n+"\0\t"+p);
1+,
B
fr.close();
System.out.printin("\n\nEnter The S.No. Of The
Candidate You Want To Vote: ") ;
ch=Integer.parselnt(br.readLine());
while(ch<l || ch>=i)

{
System.out.println("\nWrong Choice. Enter
Again: ");
ch=Integer.parselnt(br.readLine());

}

System.out.printin("\nEnter Again To Confirm: ");
int cnf=Integer.parselnt(br.readLine());
if(cnf==ch)

{
temp=false;
System.out.println("\n\t\tYour Vote Has Been
Successfully Casted \m\\\t THANK YOU");
FileReader fr1=new FileReader("DB.txt");
BufferedReader br2=new BufferedReader(frl);
FileWriter fw=new FileWriter(" Temp.txt");
PrintWriter pw=new PrintWriter{fw);
String nm,pwd; :
int flI=1;
while((str=br2.readLine())!=null
{
StringTokenizer st1=new
StringTokenizer(str,";");
nm=stl.nextToken();
if(nm.equals{name))
{
pwd=stl.nextToken();
pw.printin(nm+";"+pwd+";"+{1);
¥
else
pw.printin(str);
}
frl.close();
fw.close();
File obl=new File("DB.txt");
File ob2=new File{" Temp.txt");
obl.delete();
cb2.renameTo(obl);
J
else

System.out.printIn("\n \n\n\t\t\tlnputs Do Not Match.
Enter Again.");

FileReader fr2=new FileReader("List.txt");
BufferedReader br3=new BufferedReader(1r2);
str="";

for(int i=0;i<ch;it++)

str=br3.readLine();

fr2.close();

StringTokenizer st=new StringTokenizer(str,";"):
n=st.nextToken();

p=st.nextToken():

c=st.nextToken();

Biglnteger[] enc_vote=RSA.encrypt(c);

File Writer fw 1=new File Writer(" Votes.txt",true);
PrintWriter pw 1=new PrintWriter(fwl);

int j;

for(j=0;j<enc_vote.length-1;j++)
pw.print(enc_vote[j]+";");

pw I.println(enc_vote[j]);

fwl.close();

——

N

2. Login.java : Imported By Signln.java.

package Login;
import java.io.®;
import java.security.*;
import java.util.*;
public class Login

[
L

public static final String Hash_const= "hash-my-pass";
public static void signup(String username, String password) throws
I0Exception

{

String temp = Hash_const + password;

String hashedPassword = generateHash(temp);

int flag=0;

File Writer fw=new FileWriter("DB.txt" true);
PrintWriter pw=new PrintWiiter(fw);
pw.println(username+";"+hashedPassword+”;"+ﬂag);
fw.close();

public static Boolean login(String username, String password) throws
[OException
{

Boolean auth = false;

String temp = Hash_const + password;

String hashedPassword = genzrateHash(temp);
FileReader fr=new FileReader("DB.txt"):

BufferedReader br=new BufferedReader(ft);
String str,u,p:
int (=0,f; -
while((str=br.readLine())!=null
i
String Tokenizer st=new StringTokenizer(sti,";");
u=st.nextToken();
p=st.nextToken();
f=Integer.parselnt(st.nextToken());
if(u.equals(username) && p.equals(hashedPassword))

{
=1;
if(f==1)
System.out.printin("\nYou Have Already Casted The
Vote.");
else
{
System.out.println("\nProceed To Voting
Process.");
auth=true;
H
break;
}
}
fr.close();
if(t==0)

System.out.println("\nlnvalid Username Or Password.");
y

return auth;
y
public static String generateHash(String input)

§
1

StringBuilder hash = new StringBuilder();

try
{ |
MessageDigest md = MessageDigest.getInstance("SHA-1"); i
byte[] hashedBytes = md.digest(input.getBytes()); |
char[] digit = { '0",'1', '2','3','4,'5','6','7", '8', '9'/'a, ', "¢, 'd":
leI’ If1 }; ‘
for (int i = 0; i < hashedBytes.length; ++i) ‘
byte b = hashedBytes[i]: !
hash.append(digit[(b & 0xf0) >> 4]);
hash.append(digit[b & 0x017);
1
}
catch (NoSuchAlgorithmException €)
{
}

return hash.toString():

_‘

3. PasswordField.java : For Password Input. Imported By Signln.java .

package PasswordField;
import MaskingThread.*;
import java.io.*;

import java.util.*;

public class PasswordField
[

1
public static final char[] getPassword(InputStream in, String prompt) throws
[OException
{
MaskingThread maskingthread = new MaskingThread(prompt);
Thread thread = new Thread(maskingthread);
thread.start();
char[] lineBuffer=new char[128]:;
char[] buf=new char[128];
int i;
int room = buf.length;
int offset = 0;

intc;
loop: while (true)
i
L
switch (¢ = in.read())
{
case -1:
case "\n':

break loop,"
case '\':
int ¢2 = in.read():
if ((c2'="\n") && (2 1=-1))

{
it (!(in instanceof PushbacklInputStream))
!
i
in = new PushbackInputStream(in):
1
J
((PushbackInputStream)in).unread(c2):
}
else
{
break loop:
)
default:
if (--room < 0)
{

buf = new char[offset + 128]:

room = buf.length - offset - 1;
System.arraycopy(lineBuffer, 0, buf, 0, oﬁsct}
Arrays.fill(lineBuffer, ' ";
: lineBuffer = buf;
}
bufJoffset++] = (char) c;
break;
i
b
maskingthread.stopMasking();
if (offset == 0)
{

return null;

char[] ret = new char[offset];
System.arraycopy(buf, 0, ret, 0, offset);
Arrays.fill(buf, ' ");

return ret;

}

——

4. MaskingThread.java : Imported By PasswordField.java

package MaskingThread;
import java.io.*;
public class MaskingThread extends Thread

f
L

private volatile boolean stop;
private char echochar ="*';
public MaskingThread(String prompt)

{
System.out.print(prompt):
1
s
public void run()
P

int priority = Thread.currentThread().getPriority():
Thread.currentThread().setPriority(Thread. MAX_PRIORITY);

try
{
stop = true;
while(stop)
{
System.out.print{"\010" + echochar);
try
{
Thread.currentThread().sleep(1);
:

J
catch (InterruptedException iex)

£
1

Thread.currentThread().interrupt();

return:
1
J
b
}
finaliy
{
Thread.currentThread().setPriority(priority);

1
s

public void stopMasking()
{

}

this.stop = false;

'

5. RSA.java : To perform RSA Encryption & Decryption.

package RSA;
import java.io.®;
import java.math.*;
import java.util.*;
public class RSA

I

8

public static Biginteger[] encrypt(String message)throws I0OException
{

inti;

Biglnteger[] pk_num=publicKey(); -

byte[] temp = new byte[1] :

byte[] digits = message.getBytes() ;

Biglnteger[] bigdigit = new Biglnteger[digits.length] ;

for(i=0 ;i <bigdigit.length ; i++)

temp[0] = digits[i] ;
bigdigit[i] = new Biglnteger(temp) -
}
BigInteger[] encrypted_msg = new Biglnteger[bigdigit.length] ;
for(i=0 i< bigdigit.length ; i++)
{
encrypted_msgli] = bigdigit[i]. modPow(pk_num[0].
pk_num[1]):

1
J

return(encrypted_msg)

}
static Biglateger[] publicKey()throws 1OEXception

{

Biginteger[] temp=new Biglnteger[2];

FileReader fr=new FileReader("Public_Key.txt"):
BufferedReader br=new BufferedReader(fr);
1 String str="",pk,num;
str=br.readLine();
StringTokenizer st=new StringTokenizer(str,";");
pk=st.nextToken();
num=st.nextToken();
temp[0]=new Biglnteger(pk);
temp[1]=new Biglnteger(numy;
fr.close();
return temp;
1
)
static Biglnteger[] privateKey()throws 10Exception
i {
Biglnteger|| temp=new Biglnteger([2]:
FileReader fr=new FileReader("Private_Key.txt");
BufferedReader br=new BufferedReader(fr);
String str="",pk,num;
str=br.readLine();
StringTokenizer st=new StringTokenizer(str,";");
pk=st.nextToken();
num=st.nextToken();
temp[0]=new Biglnteger(pk);
temp[1]=new Biglnteger(num);
fr.close();
return temp;

}

public static String decrypt(Biglnteger(] encrypted_msg)throws [OException
{ o '
inti;
Biginteger[] pk_num=privateKey():
Biglnteger[] decrypted_msg= new Biglntegei[encrypted msg.length] ;
for(i=0;i<decrypted_msg.length ; i++)
decrypted_msg[i] =
encrypted_msg[i].modPow(pk_num([0].pk_num[1]):
chat[] dec_msg = new char[decrypted_msg.length] :
for(i=0;i<dec_msglength;i++) ’
dec_msg[i] = (char) (decrypted_msg[i].intValue()):
return(new String(dec_msg)) ;

6. CRProtocol.java : To ensure live communication (server end)

import java.io.*;

import java.util.*;

import java.math.*;

import java.util.Date;

import java.text.DatelFormat;
import java.text.SimpleDateFormat;
import java.util.Calendar;

import EncTime.*;

class CRProtocol

(
{

public static void main(String[] args)throws TOException

{

DateFormat dateFormat = new SimpleDateFormat("yyyy/MM/dd

HH:mm:ss");

Date date = new Date();

String s=dateFormat.format(date);
Biglnteger[] enc_vote=EncTime.encrypl(s);
-FileWriter fw1=new FileWriter("CR.txt",true);
PrintWriter pw1=new PrintWriter(fw1);
int j;

for(j=0:j<enc_vote.length-1:j++)
pwl.print(enc_vote[j]+";");
pw1.printin(enc_vote[j]);

fwl.close();

St

—

7. Authentication.java : To ensure live communication (user end)

import java.io.®;

import java.util.*;

import java.math.*;

import java.util.Date;

import java.text.DateFormat;

import java.text.SimpleDateFormat:
import java.util.Calendar:

import EncTime:*;

class Authentication

{

public static void main{String[] args)throws IOException

{

DateFormat dateFormat = new SimpleDateFormat("yyyy/MM/dd

HH:mm:ss");

Date date = new Date();

String s=dateFormat.format(date);
FileReader fr=new FileReader("CR.txt");
BufferedReader br=new BufferedReader(fr);
String str;

while((sti=br.readl.ine())!=null)

{

}

fr.close();

int temp=0;

StringTokenizer st=new StiingTokenizer(str,";");
String t=st.nextToken();

while(t!=null)

{
temptH;
try
{
t=st.nextToken();
catch(NoSuchElementException nsel)
{
break;
)
1

s

Biginteger[] enc_msg=new Biglnteger[temp];
StringTokenizer stw=new StringTokenizer(str.";");
for(int j=0;j<temp;j++)

{

1

enc_msg[j]=new Biginteger(stw.nextToken());

i) .
String dec_msg=EncTime.decrypt(enc_msg);
//System.out.printin(dec_msg);
/[for(nce=0;nce<nc;ncctt)

4

/! if(dec_msg.equals(s))
I
s System.out.println("Live Communication"):
I}

I}

8. EncTime.java : For encryption & decryption of challenge to ensure live
communication. Imported by Authentication.java & CRProtocol.java .

package EncTime;
import java.io.*;
import java.math.*;
import java.util.*;
public class EncTime

{

public static Biglnteger[] encrypt(String message)throws 10Exception
{
inti;
Biglnteger[] pk_num=privateKey();
byte[] temp = new byte[1] :
byte[] digits = message.getBytes() ;
Biginteger[] bigdigit = new Biglnteger[digits.length] ;
for(i=0; i <bigdigit.length ; i++)
{ 5
temp[0] = digits[i] ;
bigdigit[i] = new Biginteger(temp) ;
1
J
Biglnteger[] encrypted_msg = new Biglnteger|bigdigit.length] ;
for(i=0:i<bigdigit.length ; i++)
{
encrypted_msg[i] = bigdigit[i].modPow(pk_num]|0],
pk_num[1]);

1
J

return(encrypted_msg)

1
s

static Biglnteger[] publicKey()throws IOException

{

Biglnteger[| temp=new Biglnteger[2]:

FileReader fr=new FileReader("Public_Key_ User.txt"):
BufferedReader br=new BufferedReader({1);
String str="",pk,num;

str=br.readLine();

SlringTokenizér st=new StringTokenizer(str,":");
pk=st.nextToken(),

num=st.next’Token();

temp[0]=new Biglnteger(pk);

temp[1 J=new BigInteger(num};

fr.close();

return temp;

} -5
static Biglnteger[] privateKey()throws I0Exception
| Pt .

Biglnteger|] femp=new Biglntegei[2|;

FileReader fi=new FileReader("Private_ Key User.ixt");

BufferedReader br=new BufferedReader(fr);
String str="",pk,num;

str=br.readLine();

StringTokenizer st=new StringTokenizer(str,";");
pk=st.nextToken();

num=st.nextToken();

temp[0]=new Biglnteger(pk);

temp[1]=new Biglnteger(num);

fr.close();

refurn temp;

H
public static String decrypt(Biglnteger(] encrypted_msg)throws [OException
{ . .
mti;
Biglnteger[] pk_num=publicKey();
Biglnteger|] decrypted_msg= new Biglnteger[encrypted_msg.length] ;
for(i =0 ;i <decrypted_msg.length ; i++)
decrypted _msg[i] =
encrypted_msg[i].modPow(pk_num[0],pk_num[1]);
char[] dec_msg = new char[decrypted_msg.length] ;
for(i=0;i<dec_msg.length ; i++)
dec_msg[i] = (char) (decrypted_msg[i].intValue());
return(new String(dec_msg)) :
1
s

——

9. Counting.java : For counting using threshold cryptography.

import java.io.*;

import java.util.*;
import java.math.*;
import javax.crypto.*;
import java.security.®;
import PasswordField.*;
import Counting.*;

class Count

f
1

public static void main(String args[])throws IOException

¢
§

char key[] = null;

BufferedReader br=new BufferedReader{new
InputStreamReader(System.in)):

int n=0.¢=0;

System.out.orintin("\n\tOFFICIALS' KEY INPUT"):
for(int i=1;i<=10;i++)

System.out.print("OFFICIAL "+i+" present? Enter 1 for yes, 0
otherwise: ");
int p=Integer.parselnt(br.readLine());
if(p==1)
{
key = PasswordField.getPassword(System.in, "Enter
Key: ")
String pass=String.valueOf(key);
final String Hash_const= "hash-my-pass";
String temp = Hash_const + pass;
String hashedKey = generateHash(temp);
FileReader fr=new FileReader("Keys.txt");
BufferedReader brl=new BufferedReader(fr);
String str="";
int t=0;
for(int j=0;)<i;j++)
str=brl.readLine();
if(hashedKey.equals(str)) ;
System.out.printin("VALID KEY");
else

I
1

System.out.printin("INVALID KEY");

n++;

if(n>2)

{
System.out.printin("Error: At Least 8
Valid Keys Required. Cannot Start
Counting Process.");
c=1;
break:

j

\
!

fr.close():

——

else
]
§
nt+]
if(n>2)
d
System.out.printIn("Error: At Least &
Valid Keys Required. Cannot Start
Counting Process.");
c=1l5
break;
1
J
1
5
L
1]
if(c!=1)

§
1

N

System.out.println("Counting Started........ccoooeiiiins "y
Counting.count();

1
J
b
public static String generateHash(String input)
[
1
StringBuilder hash = new StringBuilder();
try
{
MessageDigest md = MessageDigest.getInstance("SHA-1"); - '
byte[] hashedBytes = md.digest(input.getBytes());
Chal'[] dlglt = { '0" llls l2t, |3l’ |4|‘ |5|1 I6r, l'?l‘ |8|1 I9I’Ial’ tbl’ 'CI, Id',
leF, Tf‘ }’
for (int i = 0; i < hashedBytes.length; ++i)
{
byte b = hashedBytes[i];
hash.append(digit[(b & 0xf0) >> 4]);
hash.append(digit[b & 0x01]);
j
}
catch (NoSuchAlgorithmException ¢)
{
}
return hash.toString();
1
J

10. Counting.java : Imported by Count.java .

package Counting:
import java.math.*;
import RSA.*;
import java.io.*;
import java.util.*;
public ciass Counting

[
1

public static void count()throws 1OException

{

int nc=0; ‘,
FileReader frr=new FileReader("List.txt"):
BufferedReader brr=new BufteredReader(fir);
String strr; '
while((strr=brr.readLine())!=null)

net+;
frr.close();
String[] codes=new String[nc];
int[] votes=new int[nc];
FileReader frr1=new FileReader("List.txt");
BufferedReader brr1=new BufferedReader(firl);
int nce=0;
while((strr=brrl.readLine())!=null)
]
1
String Tokenizer stt=new StringTokenizer(strr,";");
String n=stt.nextToken();
String p=stt.nextToken();
codes[ncc]=stt.nextToken();
ncctt;
h
frrl.close();
for(nce=0;nce<nc;ncet+)
votes[ncc]=0;
FileReader fr=new FileReader("Votes.ixt");
BufferedReader br=new BufferedReader(fr);
String str;
while((str=br.readLine())!=null)
{
int temp=0;
StringTokenizer st=new String Tokenizer(str,";");
String s=st.nextToken(),
while(s!=null)

J
1

tempt+;
try
f
1
s=st.nextToken();

1
¥

catch(NoSuchElementException nsel)

3
1

}

break:

1

5

Biglnteger[] enc_msg=new Biglnteger[temp];
StringTokenizer stw=new StringTokenizer(str.";");
for(int j=0;j<tempj++)

{

N

enc_msg[j]=new Biglnteger(stw.nextToken());

J
String dec_msg=RSA decrypt(enc_msg);
for(nce=0:nce<ncincet+)

H
!

if(dec_msg.equals(codes|nce]))

f
3

votes|ncc]++;

breal; -

—_—

H
)
fr.close();
int highest=0;
- for(nce=1;nce<nc;ncct+)
{
if(votes[ncc]>votes{highest])
highest=ncc;
h
FileReader frr2=new FileReader("List.txt");
BufferedReader brr2=new BufferedReader(fir2);
nce=0;
String winn="",winp=""
System.out.println("\n\nS.NOMNAMEWNMPARTY\MMUTOTAL
VOTES\n\n");
while((strr=brr2.readLine())!=null)
{

StringTokenizer stt=new String’l‘okenizer(strr, My:
String n=stt.nextToken();
String p=stt.nextToken();
System.out.println((nce+ D+"\"+n+"\"+p+" e\t
"+votesjncc]);
if(ncc==highest)
{ .

winn=n;

winp=p;

1
J

ncet++;

1
5
frr2.close();
System.out.println("\n\n\n - WINNER \nNAME: "+winn+"nPARTY:
"+winp+"\n"TOTAL VOTES: "+votes[highest]);
1 :
s

11. Screenshots Of Sample Output

| Command Prompt -

ic:\Sarvesh>java Signln
lser Name:

ue

Passuord esen

{Proceed To Uoting Process.

NAME PARTY

[z
.

-
<

imesh Pandey BSP
ish Sonkar 3P

BJP

INDS

PCP

RLD

S CF i G BN

Candidate You Hant Ta Vote:

Your Uote Has Been Successfully Casted.
THANK Y0l

TOTAL VOTES

Sagar Gupta

Hohd Rehan INDS
Dr. Ayub PCP
Kavtar Singh RLD

| UINNER

NAME: Sagar Gupta
PARTY: BJP

TOTAL UOTES: 3

ci\Sarvesh?

12. Screenshot Of Encrypted Votes

| Fle Edit Format View Help

barsueasssza3135377554579zo5723743931z559171437015ssms:r547733311ssszssaszmszas135159112393595490055435125794

1| 3424491165507232249432571757109545554728723217016820266214963289629698744106017822661862850336666210072113251787
	5129557157422985513683516892879566214135035561977557983088933920299835694309507520360874787222438108051961703931	
1415149707689862772234902404832371676463375862867413807051185566193692616464847601504539670418272267325775903346		
8186435016024598971772341954649487859028274032534521320621971297250307146079694846791408832714808178508389230277	2	
09045432271888463561356113058041608067;1698320428815711664222679444354014503414291095038857241173578898303038887		
95052464908969278956775367549617294759811137035533887725480521740102276939095506430220063202633365901 74700477364		
3423586828804172198002104411271707646652462274292803544850155397310087218156310233049476053263768566890684419939	i	
1	956897631822459955590458666943785688994328098919629235547274039121623837248928894851217926345606145695907561036	
H 2703548178243917998991089556219651654093033409628396410574252187724455235199465487568011049456735985926533947407		
il 0835155023364705011275137876799805902607208185531625072718590733921842732716313,90575897262206322769759830617825		
I 5996611679067408874177114699616960267870239856437847505933280507931301997735490242210115890711130384521775271430		
	3246891312488838721704058289791077270815880204406761092011569295155948595731620912510107070902836437675112636324	
7631217219726153230683805126522761585322687399112095267395704561111189093485758921845873922544838360092154420575		
1049207327530587940510166559498449821681727918227534197398640876106958890218482558943580892122212524919760934215		
1	9655060361861104203530388636597384360206491456857577208484654425257613161858779081622728600952472358774089151619	
1	9274026;10226065298880645973544777050225113174249702327075291315347189035238816651982605325014016952252383901711	
1	726951343677101571609459861737953838029838053982142541091683671925429182699145852726646640723912451629052242520	
11 5032212978570666134794093991271538977976006447547073992992091295232758746205577770787193988253045589907485151970		
Il 6124140303395137705677845220161123673285328404083341022749153042765724584799426653808737521396863356740037037417		
I 6283048632869653605445093600823450697685419889023458115675103169582314514693100067757782693433071939609364551364		
I 170197066798748161218397051685947673903291677377,245905545920509197003302003258510447744174828977819973725595903		
I	9112941748241593555068719417865007217712516172487653668871340033780766426233928480272989892283860685278928604630	
I 8703873761975178026243875666374382339972056344097177865813494243489379197962136724062032668835367469032688090535		
7934906700134461726570541340520887837720325034398132147499763637812542413464832257940464785524690167660835970370		
0844055691200991175268024416990747514039184438616538315283179469832065651162262313800195098617762746.260277924078		
13 91802862908517655059896160474821915648335651795993641461483290515411103678617539162047918

1 2459055459205091970033020032585104477041748289778199737255959039112941748201593555068715417865007207712516172487
| 6536688713400337807664262339284802729898922838606852789286046308703873761975178026243875666374382339972056344097
| 1778658134942430893791979621367240620326688353674690326880905357934906700134461726570541340520887837720325034598
132447439763637812542413464832579404647855246901676608359703700844055691200991175268024416990747514099184438516
533315zsa17945933zo555511szzez:-:1asooz9sosssi77527452592779240739zsozsszsess17ss5059395zsmnszisismaasssmsss

72

REFERENCES

[1] “Cryptography And Data Security” by Dorothy Elizabeth Robling
Denning '

[2] “Key Management And Distribution For Threshold Cryptography
Schemes” by Fabian Schilcher

[3] “Internet Voting” by Kevin Coleman, Analyst in American National
Government

[4] “File Transfer Protocol (FTP)” by J.Postel and J.Reynolds

[5] “Network Security: Private Communication In A Public World” by
Charlie Kaufman, Radia Perlman & Mike Speciner

[6] “Cryptography And Network Security” by William Stallings

[7] ‘;Security Analysis Of India’s Electronic Voting Machines” by J. Alex
Halderman, Scott Wolchok, Vasavya Yagati, Eric Wustrow, Hari K. Prasad &
Rop Gonggrijp, released April 29, 2010, revised July 29, 2010.

[8] Wikipedia.org

