

IMPLEMENTATION OF PUBLIC KEY
CRYPTOGRAPHY SYSTEM

Project Report submitted in partial fulfillment of the
requirement for the degree of
Bachelor of Technology.

in
Electronics and Communication Engineering
under the Supervision of
Dr. T.S. Lamba

by
Geetika Sharma(081034)

Medha Parashar(081056)
Nukul Sehgal(081312)

to

J afpee University of Information and Technology
Waknaghat, Solan — 173234, Himachal Pradesh

'4

Certificate

This is to certify that the work entitled “Implementation of Public Key
Cryptography System” submitted by “Geetika Sharma(081034), Medha
Parashar(081056) and Nukul Sehgal (081312)” in partial fulfillment for the award
of degree of Bachelor of Technology in Electronics and Communication Engineering
to Jaypee University of Information Technology, Waknaghat, Solan has been carried
out under my supervision.

This work has not been submitted partially or fully to any other University or
Institute for the award of this or any other degree or diploma.

(j/ g/;))) !\ Py

Date: 29| S/f w v Prof. T.S. Lamba
' Dean (A&R)

Department of ECE

§ .
£ ‘ v
3 on 5

Acknowledgement

We acknowledge with gratitude to our supervisor Prof. T.S. Lamba for his
continuous guidance and encouragement throughout the whole study period which
helped us in completing the project work, in tinte.

We would also like to thank Mr. Mohan Sharma, In-charge of Project Lab, for all
his valuable assistance in the project work and for his timely cooperation in the
conduct of our project work.

Finally, yet importantly, we would like to express our heartfelt thanks to our
beloved parents for their blessings, our friends and classmates for their help and

wishes for the successful completion of this project.

Date: Geetika Sharma
Medha Parashar
Nukul Sehgal

S. No.
1.
[.1
1.2
1.3
1.4
1.5
2.
2.1
2.2
23
2.4
2.5
2.6
2.7
3.
3.1
3.2
4,
5.
6.

Table of Content

Topic
Cryptography

The need for Cryptography
History

Types of Cryptography
RSA

RSA algorithm

Arithmetic of Large Numbers

Addition

Subtraction

Multiplication

Division

Exponentiation

Random Number Generation
Primality Testing

Encryption and Decryption

Encryption
Decryption

Conclusion

References

Appendix —1

Page No.

12
13

16

17
18
20
22
25

26
28

30

30
31

34
35

36

List of Figures

S.No. Title Page No.
13 Figure 1:- Types of cryptography g
2. Figure 2 ;- Data transfer using symmetric

and asymmetric cryptography 11
3. Figure 3 :- Flowchart of steps involved

in RSA implementation 14
4, Figure 4 :- Flow chart for adding large numbers 17
T Figure 5:- Result of addition . 18
6. Figure 6 :- Flow chart for subtracting large numbers 19
g Figure 7 :- Result of subtraction 20
8. Figure 8 :- Flow chart for multiplying large numbers 21
9 Figure 9 :- Result of multiplication 22
10. Figure 10 :- Flow chart for dividing large numbers 23
11. Figure 11 :- Results of division 24
12. Figure 12 :- Result of modular exponentiation 25
13 Figure 13 :- Flow chart for generating random number 27
14. Figure 14 ;- Result of Random number generation 28
15. Figure 15 :- Flow chart of Primality test 29

Abstract

This thesis presents the implementation of the RSA algorithm, which
is one of the most widely used Public Key Cryptosystems (PKC) in the world. In
RSA Cryptosystem, modular exponentiation of large integers is used for both
encryption and decryption processes. The security of the RSA increases as the
number of the bits increase. Here we have implemented RSA of 512 bits.

The implementation of RSA is completed in the following steps.
1. Large number arithmetic
2. Primality testing
3. Random Number Generation
4. Encryption and Decryption

Representing truly enormous integers requires stringing digits together.

« Arrays of Digits — The casiest representation for long integers is as an array of
digits, where the initial element of the array represents the least significant digit.
Maintaining a counter with the length of the number in digits can aid efficiency
by minimizing operations which don’t affect the outcome.

In this section, we will implement the major arithmetic operations for the array-of-
digits representation. Dynamic memory allocation and linked lists provide an illusion
of being able to get unlimited amounts of memory on demand. However, linked
structures can be wasteful of memory, since part of each node consists of links to
other nodes. What dynamic memory really provides is the freedom to use space where
you need it.

If you wanted to create a large array of high-precision integers, a few of which were
large and most of which were small, then you would be far better off with a list-of-
digits representation, since you can’t afford to allocate enormous amounts of space for
all of them. The large number arithmetic thus makes it easy to perform operations like
addition, subtraction, multiplication, division and exponentiation on large numbers.

Using the library created, large random numbers are generated which are tested for
primality. The Miller—Rabin test is implemented for primality testing as it is strictly
stronger than primality tests. If » is composite then the Miller—Rabin primality test
declares » probably prime with a probability at most 4%, On average the probability
that a composite number is declared probably prime is significantly smaller than 4%,

Further more, the generation of public and private keys for the purpose of
encryption and decryption includes modular exponentiation. The data is then
encrypted by the sender using the public-key of the receiver which is freely available
and on the receiver end, data is decrypted using the private key of the receiver which
is kept secret by the receiver.

Iz : |

CHAPTER 1: CRYPTOGRAPHY

Cryptography is defined as "the science and study of secret writing," it concerns
the ways in which communications and data can be encoded to prevent disclosure of
their contents through eavesdropping or message interception, using codes , ciphers ,
and other methods, so that only certain people can see the real message. Although the
science of cryptography is very old, the desktop-computer revolution has made it

possible for cryptographic techniques to become widely used and accessible to non-

experts.

1.1 The Need for Cryptography

This is an cra of electronic connectivity. The explosive growth in computer system
has increased the dependence of both organizations and individuals on information
stored and communicated using these systems. With this there is a growing need to
protect these network based communication and data stored in computers from
clectronic eavesdropping, electronic fraud, hackers and viruses. Therefore,
maintenance of security has become a prime concern in the field of communication.
Cryptography is the science that provides this required security. Cryptography
provides following services:

a) Confidentiality: assuring that private data remains private.

b) Authentication: assuring the identity of all parties attempting access.

c) Authorization: assuring that a certain party attempting to perform a

function has the permissions to do so.

d) Data Integrity: assuring that an object is not altered illegally.

¢) Non-Repudiation: assuring against a party denying a data or
communication that was initiated by them.

The ability to protect and secure information is vital to the growth of electronic
commerce and to the growth of the Internet itself. Many people need or want to use
communications and data security in different areas. Banks use encryption methods
all around the world to process financial transactions. These involve transfer of huge
amount of money from one bank to another. Banks also use encryption methods to
protect their customers ID numbers at bank automated teller machines.

"As the economy continues (o move away from cash transactions lowards 'digital
cash', both customers and merchants will need the authentication provided by
unforgeable digital signatures in order to prevent forgery and transact with
confidence."

This is an important issue related to the Internet users. There are many companies
and even shopping malls selling anything from flowers to bottles of wines over the
7

?

Internct and these transactions are made by the use of credit cards and secure
Internet browsers including cncryption techniques. The customers over the Internet
would like to be secure about sending their credit card information and other financial
details related to them over a multi-national environment. It will only work by the use
of strong and unforgettable encryption methods.

Also business and commercial companies with trade secrets use or would like to
use encryption against high-tech cavesdropping and industrial espionage.
Professionals such as lawyers, doctors, dentists or accountants who have confidential
information throughout their activitiecs will need encryption if they will rely on the use
of Internet in the future. Criminals do use encryption and will use it to cover their
illegal activities and to make untraceable perfect crimes possible. More important,
people need or desire electronic security from government intrusions or surveillance
into their activities on the Internet.

These days Cryptography is involved in various day to day activities .It plays its
role in :

a) Internet

b) e-commerce

¢) Smart cards

d) Credit cards

e) ATM

f) ID cards and health insurance cards

g) Wireless communication and various other spheres of communication.

So we have chosen to explore and work in this inevitable field of communication.

1.2 History:

Cryptography (or cryptology; from Greek, "hidden, secret"; and graphein,
"writing", or "study", respectively) is the practice and study of techniques for secure
communication in the presence of third parties (called adversaries). More generally, it
is about constructing and analyzing protocols that overcome the influence of
adversaries and which are related to various aspects in information security such as
data confidentiality , data integrity, and authentication. Modern cryptography
intersects the disciplines of mathematics, computer science , and electronic

engrneering.

Cryptography prior to the modern age was elfectively synonymous with
encryption, the conversion of information from a readable state to apparent nonsense.
The originator of an encrypted message shared the decoding technique needed to
recover the original information only with intended recipients, thereby precluding

2

unwanted persons to do the same. Since World War I and the advent of the computer,
the methods used to carry out cryptology have become increasingly complex and its
application more widespread.

Modern cryptography is heavily based on mathematical theory and computer
science practice; cryptographic algorithms are designed around computational
hardness assumptions, making such algorithms hard to break in practice by any
adversary. It is theoretically possible to break such a system but it is infeasible to do
so by any known practical means. These schemes arc therefore termed
computationally secure; theoretical advances (e.g., improvements in integer
factorization algorithms) and faster computing technology require these solutions to
be continually adapted.

There exist information-theoretically secure schemes that provably cannot be
broken even with unlimited computing power—an example is the one-time pad—but
these schemes are more difficult to implement than the best theoretically breakable

but computationally secure mechanisms.

1.3 Types of Cryptography:

Currently, most cryptography used in practice is key based, that is a string of bits,
that is used to encode the clear text into cipher text and back again to clear text when
required. Two types of key based cryptography exist, based on the availability of the
key publicly:

Figure 1: Types of cryptography

1.3.1 Symmetric-key eryptography:

Symmetric-key cryptography refers to encryption methods in which both the
sender and receiver share the same key (or, less commonly, in which their keys are
different, but related in an casily compulable way). This was the only kind of
encryption publicly known until June 1976.

Symmetric key ciphers are implemented as either block ciphers or stream ciphers.
A block cipher enciphers input in blocks of plaintext as opposed to individual
characters, the input form used by a stream cipher.

The Data Encryption Standard (DES) and the Advanced Encryption Standard
(AES) are block cipher designs which have been designated cryptography standards
by the US government .Despite its deprecation as an official standard, DES remains
quite popular; it is used across a wide range of applications, from ATM encryption to
e-mail privacy and secure remote access. Many other block ciphers have been
designed and released, with considerable variation in quality. Many have been
thoroughly broken.

Stream ciphers, in contrast to the 'block' type, create an arbitrarily long stream of
key material, which is combined with the plaintext bit-by-bit or character-by-
character, somewhat like the one-time pad. In a stream cipher, the output stream is
created based on a hidden internal state which changes as the cipher operates. That
internal state is initially set up using the secret key material. RC4 is a widely used
stream cipher.

Cryptographic hash functions are a third type of cryptographic algorithm. They
take a message of any length as input, and output a short, fixed length hash which can
be used in (for example) a digital signature. For good hash functions, an attacker
cannot find two messages that produce the same hash. MD4 is a long-used hash
function which is now broken; MD5, a strengthened variant of MD4, is also widely
used but broken in practice. The U.S. National Security Agency developed the Secure
Hash Algorithm series of MD5-like hash functions: SHA-0 was a flawed algorithm
that the agency withdrew; SHA-1 is widely deployed and more secure than MD35, but
cryptanalysts have identified attacks against it; the SHA-2 family improves on SHA-
1, but it isn't yet widely deployed, and the U.S. standards authority thought it
"prudent" from a security perspective to develop a new standard to "significantly
improve the robustness of NIST's overall hash algorithm toolkit." Thus, a hash
function design competition is underway and meant to select a new U.S. national
standard, to be called SHA-3, by 2012.

Message authentication codes (MACs) are much like cryptographic hash functions,
except that a secret key can be used to authenticate the hash value upon receipt.

10

1.3.2 Asymmetric -key cryptography:

Symmetric-key cryptosystems use the same key for encryption and decryption of a

message, though a message or group of messages may have a different key than
others. A significant disadvantage of symmetric ciphers is the key management
necessary to use them securely. Each distinct pair of communicating parties must,
ideally, share a different key, and perhaps each ciphertext exchanged as well. The
number of keys required increases as the square of the number of network members,
which very quickly requires complex key management schemes to keep them all
straight and secret.

In a 1976 paper, Whitfield Diffie and Martin Hellman proposed the notion of
public-key (also, more generally, called asymmetric key) cryptography in which two
different but mathematically related keys are used—a public key and a private key. A
public key system is so constructed that calculation of one key (the 'private key') is
computationally infeasible from the other (the 'public key'), even though they are
necessarily related. Instead, both keys are generated secretly, as an interrelated pair.

Shared
Secret

plaintext
plaintext

plaintext

ciphertext

Figure 2: Data transfer using symmetric and asymmetric cryptography

In public-key cryptosystems, the public key may be freely distributed, while its paired

private key must remain secret.
11

In a public-key encryption system, the public key is used for encryption, while the

private or secret key is used for decryption.

Diffic and Hellman gave Diffie-Hellman key exchange protocol, a solution that is
now widely used in secure communications to allow two parties to secretly agree on a
shared encryption keyThis race was finally won in 1978 by Ronald Rivest, Adi
Shamir, and Len Adleman, whose solution has since become known as the RSA

algorithm.

Public-key cryptography can also be used for implementing digital signature
schemes. A digital signature is reminiscent of an ordinary signature; they both have
the characteristic of being easy for a user to produce, but difficult for anyone else to
forge. Digital signatures can also be permanently tied to the content of the message
being signed; they cannot then be 'moved' from one document to another, for any
attempt will be detectable. In digital signature schemes, there are two algorithms: one
for signing, in which a secret key is used to process the message (or a hash of the
message, or both), and one for verification, in which the matching public key is used
with the message to check the validity of the signature. RSA and DSA are two of the
most popular digital signature schemes.

1.4 RSA:

RSA is the most widely used Public Key Cryptography .It was introduced by Ron
Rivest ,Adi Shamir and Leonard Adelman of MIT in 1977.A user of RSA creates and
then publishes the product of two large prime numbers, along with an auxiliary value,
as their public key. The prime factors must be kept secret. Anyone can use the public
key to encrypt a message, but with currently published methods, if the public key is
large enough, only someone with knowledge of the prime factors can feasibly decode
the message. Its security is based on following two mathematical problems:

a) factoring large numbers

b) RSA problem

The RSA problem is defined as the task of taking n™" roots modulo a composite:

recovering a value such that , where is an RSA public key and is an RSA cipher-
text. Currently the most promising approach to solving the RSA problem is to factor
the modulus. With the ability to recover prime factors, an attacker can compute the
secret exponent from a public key , then decrypt using the standard procedure. To
accomplish this, an attacker factors into and , and computes which allows the
determination of from. No polynomial-time method for factoring large integers on a
classical computer has yet been found, but it has not been proven that none exists.
As of 2010, the largest (known) number factored by a general-purpose factoring
algorithm was 768 bits long (see RSA-768), using a state-of-the-art distributed
implementation. RSA keys are typically 1024-2048 bits long. Some experts believe
that 1024-bit keys may become breakable in the near future (though this is disputed);

12

few sec any way that 4096-bit keys could be broken in the foreseeable future.

Therefore, it is generally presumed that RSA is secure if is sufficiently large.

1.5 RSA Algorithm:
The RSA algorithm involves three steps: key generation, encryption and
decryption-
1.5.1 Key Generation:
. Choose two distinct prime numbers p and q.
2. Compute n = p*q.
' is used as the modulus for both private and public key.
3. Compute o(n) = (p—1)(g—1)
where ¢ is Euler's totient function
4. Choose an integer e such that 1 < e < ¢(n) and ged(e,¢(n)) = 1, ie e
and ¢(n) are coprime.
e is released as the public key exponent.
5. Determine d = e—1 mod ¢(n); i.e. d is the multiplicative inverse of

e mod @(n).
d is kept as the private key exponent.

1.5.2 Encryption:
Cipher text 'c' is computed using following relation:
c=m" (mod n)
where m is message in plain text
e is public key of receiver

n is as computed above

1.5.3 Decryption:
Cipher text 'c' is converted into the plain text message 'm' at the receiver side with

the private key 'd' of receiver using the following relation :

m= cd (mod n).

13

:
——_

¥ tﬁmw

- —

Generaterandom
numbers:
Arithmetic of
large numbers

Tha

e

)

Primality Check
using Rabin-
Miller test

—

Decryption:
Modular
Arithmetic

| S

S

KeyGeneration

Encryption:
Modular
Arithmetic

Nl

Figure 3: Flowchart of steps involved in RSA implementation

14

i
]
k
1
i
&

e

AR

CHAPTER 2: ARITHMETIC OF LARGE
NUMBERS

As the security of RSA depends on Large numbers, so our main step is dealing
with large numbers.

Every programming language provides the basic arithmetic operation as primitives,
these languages include the integer data type supporting the four basic arithmetic
operations: addition, subtraction, multiplication and division. These operations are
directly mapped to hardware level arithmetic instructions, so size range of integers
depends on the underlying processor. We have worked on the PC’s a 32 bit machine
and use C programming language, which support integer size of 16 bits, even if we
use long long int they are of 64 bit size. In RSA, keys are typically 1024-2048 bits
long therefore, we develop programs that can handle large bits.

Representing truly enormous integers require stringing digits together. Two
possible representations are there :

a) Array of digits: In array of digits the initial element of array represents the
least significant digit . maintaining the counter with the length of number in digits can
aid efficiency by minimizing operations that don’t effect the outcome.

b) Linked Lists of digits: Using linked list we can dynamically allocate the
memory.

We have used array of digits representation for implementing arithmetic
operations. Dynamic memory allocation and linked list provide an illusion of being
able to get unlimited amount of memory on demand . However linked structures can
be really a waste of memory, since part of each node consist of link to another node.

We defined a data type ‘large’ of 500 decimal digits (1659 bits) :

#define MAXDIGITS
#define PLUS 1 /* positive sign bit */

ftdefine MINUS -1 /* negative sign bit */

typedef struct (

char digits[MAXDIGITS]; /* represent the number */
int lastdigit; +% rrndex of high-order digat */
} large;

15

£ ey e

Each digit is rcprcscntcd using a single byte character ,this required a lot of care in

converting the character into numbers and vice-versa but the requirement of sapce

saving was met. The function used to convert the characters of the array into integer :

i void Charﬁto_larqe(char *s,large *n)
{
int len=strlen(s);
+H Y s A
for (1=0;1<len;l++)

n->digits[l]=s[len-1-1]-'0"; i
printf ("Char->Large : Done \n");
n->lastdigit=strlen(s)-1; ‘
}
If we use a number having digits less then 500, highest index of array used, it
took garbage value. So we had to initialize the array by first filling it with zeros,the |

function used for this :

void initialize_large(large *n)

{

Lol 13

for (i=0; i<MAXDIGITS; i++) !
n->digits(i] =(char)0;
n->lastdigit = -1; |

}

To eliminate the leading zeros of a number (or result calculated) we used
zero_justify function:

void zero_justify(large *n)
|
(}
while ((n->lastdigit > 0) && (n->digits[n->lastdigit] == 0))
f=->Tastdigit ==} H

1

I

16
[
|

&
2
4
F 3
=

The results were printed using following print function :

print_large (large *n)

{

int_1i;

for (i=n->lastdigit; i>=0; i--)
Drinttitse"; (" 0'+ n=>digits[i)))}

printt(M\nt);

}

2.1 Addition:

It is done by taking the digits having same index ,of the numbers two be added
from right to left ,with any overflow rippling to the next field as carry. Flow chart of
the function used is :

/Input large a, large b/

Initialise large c
int carry = O

v

=

c->digits[i]= (carry+a->digits[i]+
b->digits[i])%10

v

c->digits[il= (carry+a->digits[il+
b->digits[i])/10

v

Call function
Zero_justify(c)

i<=c->lastdigit

Figure 4:Flow chart for adding large number

17

g

while (({n->lastdigit > O) &€ (n->digits| n->lastdigit] == 0})

n->lastdigit --;

)

vold add_lnzue(la(ge *a, large 'b, large *c)
(
int carry = 0;
RO i (1rciive CATOWRUSWNWANLLAEXE)
initialitEnter First num: 14486469794655768758h64653056789756462645676946230305530058052h o
31556445865344556 447593 h45563474535h458360h556347 hB55 3565734655483 454553475534

W5563445455450
CRAI Enter sec num: h54635465244534465035H6345564556345643564456253455623455045564456

S5 RS RANE6HE56IRN5562H3U5H556HNSSHNSEEUNS53L556420545830h55234523 542536455645
634556456304525345254355234586234565455L3
for (i=0.]
wrkng
wrkng
c=>di(iition ~- WSK635L6524L534L65U35HE3H5564570832113359112022214088108902354212918
/PTithoato 161079069 00907019 0698800199042179009090322590014692005889818187092803131169
CArLY py30208100736907 097 02788031798010910890
//prit
5

zero_just

)

void subtrat

{
int borre
int vi i <
int i;

inicialize large(c):

c->lastdigit = max(a->lastdigit,b->lastdigit);

Figure 5: Result of Addition

2.2 Subtraction:

In subtraction ,the main thing of being cared is borrow. To ensure that borrowing
terminates, it should be made sure that smaller magnitude number is being subtracted
from the larger one. To compare two ‘large’ data type numbers the function used is :

compare_large (large *a, large *b)
{

inteds /* counter */

if (b->lastdigit > a->lastdigit) return (PLUS);
if (a->lastdigit > b->lastdigit) return (MINUS);

for (i = a->lastdigit; i>»=0; i--)

{

if (a->digits[i] > b->digits[i]) return(MINUS);

if (b->digits[i] > a->digits[i]) return(PLUS);
18

« B i D S e TSI D R T 0§ 0 T e S P e T R N TR S TR ATt o P R

T [- LT

] &All:‘

s b TR

i
i
2
-

}

return (0);}

Start

/Input large a, large I:M

initialise c
int borrow = 0O

y

i =0

-
-

A 4

c->digits[i] = a->digits[i] -
borrow - b-> digits{i]

borrow = 0

v=v-+10
borrow =1

A\ 4
c-=>digits[i} =
(char) v 2 10

N o

i<=c->lastdigit

Figure :6:Flow chart for subtracting large number

19

ST S RS S MR TR BT R A R D RITRERRIS 1 PR SR A AR R

i
i

_jeixg
=leixi

vold subtract_large (large *a, large *b, large *c
{
int borrov: /* has anything bet] tlrw:imt \TCWN4SBIH\VANHA
int vi /+ placenolder didgpter First num: 443u53ku563uu2sra5knﬁuaaa3osazsrasusuusssuass3u65u2653ua1235155.
e 7+ counter 4/ BS1H56HL55624155 64534 L5 H3USBHS 065247 UBHSE NS ASTHRES S OHUSSH65032563K7H |
8372847 34455634550 FNNS5AH5664556416545H6536 14546
initialize large(c): Enter sec nunz 245H556HO4BUSO5H5TS65047 U067 506547 6546674656457 65067 45647465657

U5664T565H56 55647 6415566475856454566476584756645 475665475656 475654675546567465
coslastdigit = max(a->lastdigit, 6765 HTA6SE6TUSS66UT5656675U55647

borrov = 0} urkng
wrkng
i=0; i<=(c->lastdigit); i++) SUD
for (10; ic=(em>lastdigit)s TH J 0L ion - WAINS3ANSO3U42023 088997359 18R82978R99709077096810661 0676657869769
{ ; _471079800678409979777910790008 05082005827 0799180998368 0398678 0998996891499 782727

v = (ladigiealil= 0) - ROV 4g47470700987988879079800971007817883986 0958899
1f ((a->digits[i]-'0") > ©) i

borrow = 0;
1f (v<O) {

v=v+10;

borrow = 1

c->digits[i] = (char) v ¥ 10;
)
printf("sub\n”);

zero_justify(c): i R od

)

diqit_shut(large Tn, int d)
(
int i; /* counter */

1f ((n->lastdigit == G) && (n->digits[2] == J)) return &;

Figure 7: result of subtraction

2.3 Multiplication:

For multiplication row by row method is used, i.e. multiplying first number by the
digit of second number. starting from the least significant digit to most significant
digit . Keep on shifting the result by one digit to the right and adding this to the
result found by multiplying the next digit of second number.

To shift the result following function is used :

digit_shift (large *n, int d)

{

int i; /* counter */

if ((n->lastdigit == 0) && (n—->digits([0] == '0')) return 0;
for—{i=n—>lastdigit; i>=0; 1)

n->digits[i+d] = n->digits[i];

for (i=0; i<d; i++) n->digits[i] = 0;
n->lastdigit = n->lastdigit + d;
return 0 ;}

20

i e] e e

s
‘;i
%
;
F

Input large a,
large b

y

Initialise row,temp,res
inti,j

Assign
row =a

Y

Call function
add_large(res, row,temp)

Y
Assign res = temp

No e
b->digits(i]
Yes
Call function
digit_shift(row,1)
No <=
a->lastdigit

Yes

Call function
zero_justify(res)

Figure :8:Flow chart for multiplying large number

ning. Rc“o”n‘n
o Lo
Qr ~ /)/

* Ar_,(, Nogpt’)&_\“\.
e PY21/0 2
ak‘;---...___._..,-‘\\\.
aghat, Sold!
M-___,-a’

21

23]
int lentf s,
check1=0;
check2=0;
checkR=07
princf("ficst number:”®);
scant (42", S£ir) ; _
printf("inlength of tirst nuwber: td",strlenlfic)): :
printf ("\nsecond aumber: ") M ({Inactive CI\TCWlN@SWlN\F___ E)
gepnti g toncl! First nunber:9999999998B8BAR8E777777766666655555 k433

AL ooy mEhek ik 5 3221122333 44UH555556666667
printf("inlenguh of second mmhers $33 9000 709855888999999999000000000099999999922 |

, checkR:

mult(fic,sec,res); length of First number: 111

second number:999999999888BBBBBRT777777066666555554544333221122333044055555666666
for (£=0;f<atrlen(fir) if++) 17717778 99999999909999999% TI7TT776666665555584443332219999999998
checkl = checkl + (fir[£]-'0%): 88BBBBATIIZTT76666665555544hKh333221
for (s=0;3<strlen{sec)is++) length of second number: 181
check2 = checkz + (sec[a]-'07): Result:

9999900997 7777777556790101259237039407387656594865057066195132345456789999797282
len=strlen(res): 73552913300010859111394935376897780021449086131019U47192922862495914258087952216
61718799882518244188359404801161466588092433235656233220129541876188750220866801

for (120 i<len—1;1++) 962704310998618 037 034797565567 64444h1988853342 008762

(
gy imigt length of result: 292
mhdsdreatiline) checkl = 655
ikl check? = 1140
) checkR = 1491

printf ("\nResule:in”);

for (;i<leni+t)

princf("tch, res[i]):

princf("\n");

princf(*\nlengch of result: xd”,len-1);

for (s=0;s<strlen(res);s++)
checkR = checkR + (res[s]-'0');:

princt("\ncheckl = 3d”,checkl);
printf("\ncheck? = 3d",checki):
printf ("\ncheckR = %d",checkR);

return O;

Figure 9: Result of Multiplication

2.4 Division:

Division by repeated subtraction is again far too slow to work with large numbers,
but the basic repeated loop of shifting the remainder to the left, including the next
digit, and subtracting off instances of the divisor. Pseudo code for division-

for (i=a->lastdigit; i>=0; i——) {
digit_shift (&row, 1) ;
row.digits[0] = a->digits[i];
c->digits[i] = 0;
while (compare_large(&row,b) != PLUS) {
c—>digits[i] ++;
subtract_large (&row, b, &tmp) ;

row = tmp;

*rem = row;

zero_justify (c);

22

5 }maganﬁwywsﬁﬁ‘umﬁm%tﬁ&&ﬂﬁaﬂhﬂﬂﬂ'ﬁﬂﬁﬂﬂﬂ.ﬂ.“lﬂﬁhﬁw

e .

< Sta r{-'_"'_"j)

Input large a,
large b

initialise c,rem
row,.temp
int i,j

c->lastdigit =
a->lastdigit

i = a->lastdigit
’ o ;
digit_shift(row)

v

row.digits[0]=
a->digitsl[i]

v

c->digits[i]=0

c->digits[il++

v

Call subtract_large
(row,b,temp)

v

row=temp

X

rem=row

v

zero_justify(c)

caap . e B R 1 SRR SIS O T YT Y TR S O

ST

i=

=

F=ilinp

yes

amb b e i

Figure 10: Flow chart for dividing large number
23

fe s i oo

R |

hed b

e e

T onE:]

2

retutn(0) 2
]

divide large(large *a, large *b,
‘ .

large *c,large *rem)

large row;
large tmp; Enter first num: e
int 4,3; Enter sec num: 3

Char->Large : Done

, Char->Large : Done
initialize_large (¢): siuision o= 7hi1

initialize_large (rem
initialize_large {éro
inicialize_large (ctm

remainder -- 1

c->lascdigit = a->la

for (i=a->lastdigit:
digit_shifc(srow,
rov.digits[D] = a
c->digits(i] = 0
while (compare_la
e-vdigits[i] +
auhl:rul:r._la:ue
row = tmp:
)
)
*rem = row;
zero_justify(c):

random_large (large *x,large *b,large *c,large *d, large *num)
(

int n, iz

large temp:

initialize_large (num);

candomize () ;

i = random(58):

for (n=0;n<=i;n++)

TEreamm e T o 3 — — = i 3 o i l

return (0} :
H

large *c,large *rem)
IR M (tnactive CATCWINASBINVTRYN.EXE) BEE

large tmp; Enter first num: 23?l20370'|uzaﬂﬂ12035723Eh2?38723823589231572h5?2359572?9&78652":_
int 1,3: 7865237657828657 05620 7524853h85634756305687B560756
) Enter sec num: 723587576525254273465872382685307530685307B563475485275237562307857

divide_lacge(large *a, large *b,
«

™
initialize_large(c): = s
inicialize large (rem); gz;:;t::g: 5 :g::

inicialize large(&cov)s division —- 3281329706803595659086573535773549549321871378730
inicialize_large(scmp) ; remainder -- 595662751481204192374720223 047 439828 0497539340560408529353641819336

c->lascdigit = a->lascdigic;

for (i=a->lascdigit; i>=

digic_shifc(crow, 1) ;

rov.digits[0] = a->digits([i]

c->digits(i] = o

vhile (compare_large(crow,b)
c->digits[1] ++;
subtract_large(érowv,b, &er
row = tmp;

)
}
*rem = row;
zero_justify(c):

]

random_large (large *x,largas *b,large *c,large *d, large *num)
«
int n,i;
large temp;
initialize large (num);
randomize () ;
i = random({56);
for (n=0;n<=

Figure 11(b): Result of division when large numbers were the input
24

2.5 Exponentiation:

In RSA we have to calculate only modular exponentiation, Modular
exponentiation is a type of exponentiation performed over a modulus. The most
straightforward method of calculating a modular exponent is to calculate »° directly,)
then to take this number modulo m. But this method consumes a lot of memory . So
we use an algorithm in which the required memory is substantially less, however,
operations take less time than before. The end result is that the algorithm is faster.

This algorithm used is :

a) Setc=1,e'=0.

i. Increase e'by 1.

ii. Setc =(b.c)(mod n).

iii. Ife’'<e, goto step i. Else, ¢ contains the correct solution to ¢ = b*(mod n).

T R

h > Bd 712 B

_ﬁ_ﬂﬁ(cuh_{u[2 i
Edt View Help

print_large(&rem):
temp = rem:

x = temp: onm Goee 02 Qon Oosgess Ofadm | O race \\
T m{c- 0w T et

EXpU"Ent_lﬂIg‘={ntE: fu::h num(nnm‘:lur): 100 n B[I} @ \)

1 Enter e: 21 7

et oL R (HCH R

e e 5 [T RN O P Y

initialize_la: {5 d @j C":]E:]E]E]

fnum = T

digit_shift (&
c.digits(d) =
digic_shife (&
n.digits(o] =
digit_shift (s
inc.digits(0)
while (compar:
muleiply larg
divide_large(
c=rem;
add_large(&n,
n=ad;

) {
*raa=g) H

) : =)
void main()
{

int 1:
char a[MAXDIGITS],b(MAXDIGITS],c[MAXDIGITS],d(HAXDIGITS], e (HAXDIGITS] ;

printf("Eanter Cirst num{xn): ")
scant ("is",a);

{Program running ; | i % bl i
4 G188 s 172 B peojectinal Hies

= Figurc 12: Result of modular exponentiation

25

2.6 Random Number Generation

To generate keys in RSA implementation with two prime numbers are needed. To
obtain large prime numbers first large random number is generated and then primality
test is performed.

2.6.1 Randomness of a number:

A numeric sequence is said to be statistically random when it contains no
recognizable patterns or regularities. Statistical randomness does not necessarily
imply "true" randomness, i.c. objective unpredictability. Pseudo randomness is
sufficient for many uses, such és statistics, hence the name statistical randomness.
Randomness is of two types:

a) Global randomness: It is based on the idea that "in the long run" a sequence
looks truly random, even if certain sub-sequences would not look random. ¢.g.: In a
"truly" random sequence of numbers of sufficient length, it is probable that here

would be long sequences of nothing but zeros, though on the whole the sequence
might be random
b) Local randomness: Local randomness refers to the idea that there can be

minimum sequence lengths in which random distributions are approximated. Long
stretches of the same digits, even those generated by "truly" random processes, would
diminish the local randomness.

2.6.2 Tests to check randomness:

The first tests for random numbers were published by M.G. Kendall and Bernard
Babington Smith in the Journal of the Royal Statistical Society in 1938. Kendall and
Smith's suggested null hypothesis according to which each number in a given
random sequence had an equal chance of occurring, and that various other patterns in
the data should be also distributed equiprobably. Based on this they suggested four
tests :

a) The frequency test was very basic: checking to make sure that there were
roughly the same number of 0s, Is, 2s, 3s, etc.

b) The serial test, did the same thing but for sequences of two digits at a time
(00, 01, 02, etc.), comparing their observed frequencies with their hypothetical
predictions were they equally distributed.

¢) The poker test, tested for certain sequences of five numbers at a time (aaaaa,
aaaab, aaabb, ctc.) based on hands in the game poker.

d) The gap test looked at the distances between zeroes (00 would be a distance
of 0, 030 would be a distance of 1, 02250 would be a distance of 3, etc.). If a given
sequence was able to pass all of these tests within a given degree of significance
(generally 5%), then it was judged to be, in their words locally random.

¢) Autocorrelation test tests the correlation between numbers and compares the
26

sample correlation to the expected correlation of zero.
We have used Linear Congruential Method it uses the recurrence
Xwy=(AX,+ B) mod m
where a is a multiplier
b is a increment
m is a modulus

and Xn is a seed

Initialise x,b,c.d

J

Assign i = any
random value till 5

- _
—] .\

\ Call multiply_large
{x,b,m1l)

!

Call add_large
(ml,c,ad)

4

Call divide_large
{ad.d,quot,rem)

I

temp = rem
>x = temp

Figure 13: Flow chart for generating random number

2

& -l
B

ELIERE T[T AT R TR

for [n=3;n<=i:nt++)

I[nultlply_lal.ge(x,b,Sml}:
printf("Muitiplication -~ ");
print_large (gml);

193168775637243049 638+

add_large (&ml,c, sad); wid of sin
printf[MARDITION oF FROSUCT - ") 453460306 858252532836153 1738426998 0738880401715 045581248553 04183336
print_large (¢ad); Multiplication -- 27442704209022770565270498750729783198642350974237737977958031
divide large(fad,d, fquot, srem): 174522627578175228450739168941603926935284439774549434282066 08481108555276985842
printf ("Mod of sur —- "): 94821762634842477633568 029999428495584969827619641024923826630519617562752367151
print_large(srem); 2
temp = rem: ADDITION OF PRODUCT -- 274427042096673372099151452053943296632068146196923036203
M — 005656 00946971923023 0978983889339 181026 01910262936559517931128815950200935137534
) 734916230040938179117239854472745621347 50006593133 1421952 07 0878412817 44754574318
536479

Thum = temp;
Hod of sun -- 918102661910262936559517931128815950290935137534734916230940938179

11723985447274562134740006593133142195207 08784128 17u4754574318536479

! Hultiplication -- 51088429321588259338761059069032868941227492574477027203532949

vo1d waing) 35644937102895844020102477420899293492958805242859868924682353269323375931685569

(30849005652106311925490899550493364177378818635380698955124367800231241729641385
93

int 1, ADDITION OF PRODUCT -- 5108B4293216527160032255237135993235876839380390224837677

char a[MAXDIGITS], b(MAXDIGITS], c[HAX 67202790 091805463443233 14678975 07 06642802427 085902107 09553893 1498519241218717793
94338175977703268011814019885692961718620269477672048385485336201175657170311975
9603560
tod of sun -- 6642802427085902167 09553893 149851924121871779334334175977703268 011
printf(“Encer firs: : "): 8140198856929617186202694776720483854853362011756571703119759003560
scantf ("+3",a) ; random nunber -- 664286242708590210709553893149851924121871779334334175977703268
. v B11814019885692061718620269477672 0483854853362011756571703119759 003560

printf("Enter sec nuwe(s
scanf ("¥37,b) ;
printf("Zoter third nuniadditive): ");
scant ("¥s",c);

princf("Entar forth numin ")
scant ("¥3",d):
printf("Zoter wa of num generation: Y);

acanf ("4d", 61) 2

initialize_large (&nl);
initialize large(&n2);
1n1tiﬂllze_large (€n3);
initialize lacge (&nd):

Program runni

I (Inactoe CATCHIN

Figure 14: Result of random number generation if

2.7 Primality Tests:

Primality test can be divided into two main classes:-

2.7.1 Probabilistic Tests :

These algorithms merely "test" whether #» is prime in the sense that they declare n
to be (definitely) composite or "probably prime" .it means that » may or may not be a
prime number .The Composite numbers which do pass a given primality test are
referred to as pseudoprimes. Some probabilistic primality tests are :

a) Miller—Rabin primality test.

b) Solovay—Strassen primality test.

c) Fermat primality test.

2.7.2 Deterministic Tests:

Deterministic algorithms do not erroneously report composite numbers as prime.
Some of the examples of deterministic primality tests are elliptic curve primality
proving and AKS primality test. Deterministic methods are typically slower than
probabilistic ones. In RSA, large prime numbers are required in very few counts of
time so probabilistic tests are used. Rabin-Miller test is used here as follows:

28

Cstart D

Y

Input Num
k, a parameter
for accuracy

Choose a random number
in[2,(n-2)]

v

Assign x = a~d
mod n

Yas

No

Return Composite

Yes

Return Composite

r’

Return Probably prime

Figure :15:Flow chart for primality test
29

CHAPTER 3: ENCRYPTION & DECRYPTION

3.1 Encryption:
Plain text message ‘m’ which is to sent, is converted into cipher text ‘c’ by the

following relation:

c= m (mod #)

The method implemented to determine the cipher text uses modular arithmetic. It
uses the fact that given two integers a and b, the following two equations are
equivalent:

¢ =(a.b) (mod m)
¢ = (a(b (mod m))) (mod m)

The algorithm is as follows:

1. Sete=1,e'=0.

2. Increase e’ by 1.

3. Setc¢=(b.c)(modn).

4. Ife’<e, goto step 2. Else, ¢ contains the correct solution to

¢ = b*(mod n).
Example: For b= 4, ¢ =5, and m = 497, the process is illustrated as:

¢'=1.¢=(1 *4)mod 497 =4 mod 497 = 4.
e'=2.c=(4*4)mod 497 = 16 mod 497 = 16.
e'=3.c=(16*4) mod 497 = 64 mod 497 = 64.
¢’ =4.c= (64 *4) mod 497 = 256 mod 497 = 256.
5.¢=(256 * 4) mod 497 = 1024 mod 497 = 30.
Hence the final solution is 30,
pscudo code of Encryption for e=3 is-
for{n=1;n<=3;n++)
{
mueltiply large (b, &temp, &ml) ;
divide_large (&ml, m, ", &rem) ;
temp=rem;
}
*res=temp;
The advantage of this method is that, it is memory efficient and operations take

less time.

30

3.2 Decryption

Cipher text 'c’ is converted into the plain text message 'm’ at the receiver side with

the private key 'd' of receiver using the following relation :

d
m=c (modn)
To calculate the private key cxponent ‘d’ Extended Euclidcan algorithm is
implemented. D is given by :

d= e_l mod ¢(n);

i.e. d is the multiplicative inverse of e mod @(n).

d is kept as the private key exponent,

The extended Euclidean algorithm is an extension to the Euclidean algorithm.
Besides finding the greatcst common divisor of integers a and b, as the Euclidean
algorithm does, it also finds integers x and y (one of which is typically negative) that
satisfy Bézout's identity

ax+by = ged(a,b)

The extended Euclidean algorithm is particularly useful when a and b are coprime,
since x is the multiplicative inverse of a modulo b, and y is the multiplicative inverse
of b modulo a.

For example, if the ged of two numbers, 65 and 40 is to be calculated Euclidean
algorithm is implémented in the following manner.

Step 1: 65=1.40 + 25
Step 2: 40=1.25+15
Step3:25=1.15+10
Step4: 15=1.10+5
Step 5: 10=2.5

Therefore, ged(65,40) =5

Using method of back substitution,
5=15-10
=15-(25-15)=2.15-25
=2(40--25)-25=2.40-3.25
= 2.40 — 3(65 — 40) = 5(40) — (3)65

Thus the integers 5 , -3 are respective inverses of the numbers 40 and 65. To
calculate *d’ the above method is applied.

3]

Algorithm used to implement the above method of back substitution:
a) Initialize variables rl=phi(n) , 12 =¢,sl1 =1,s2=0,t1=1,2=0
b) While(r2 > 0)

i. Calculate q as rl/r2

ii. Calculater=rl —q.r2
iii. Updaterl =12,12=r
iv. Calculate s =sl —q.s2
v. Updatesl =s2,s2=s
vi. Calculate t =tl —q.t2

vii. Update tl =t2,t2 =t

viii. End loop

c) End
Pscudo Code for generating decryption key-
while (r2.digits[0]>0 || r2.digits[1]>0)

{

divide_large (&rl, &r2, "ient, &rem);
multiply_ large (&r2, "ient, &res_r);
subtract_large (&rl, &res_r, &r);
¥l = ¥2;
r2 = r;
multiply_large(&l_t2, &gquotient, &res_t);
subtract_large(&l_tl, &res_t,&t};
1 _tl = 1_¢t2;
1 _t2 = t;
count++;

}

Finally the private key exponent is given as sl in the algorithm.

3.2.1 Key Generation:

The Public Key is what its name suggests - Public. It is made available to everyone
via a publicly accessible repository or directory. On the other hand, the Private Key
must remain confidential to its respective owner.

Because the key pair is mathematically related, whatever is encrypted with a Public
Key may only be decrypted by its corresponding Private Key and vice versa.

Public key is released as : (e,n)

Where ¢ is the public key exponent and n is the product of two large prime

numbers.
Similarly private key is kept with the owner in the form: (d,n)
32

Where d is the public key exponent and n is the product of two large prime
numbers.

Thus if a party A wants to send data to a party B, then the data is encrypted using
the public key of B. When the data reaches party B it is dccrypted using its privatc

key.

33

Conclusion

Cryptography is the science used to secure communication. The concept of securing
messages through cryptography has a long history. Indeed, Julius Caesar is credited
with creating one of the earliest cryptographic systems to send military messages to
his generals.

The widespread use of cryptography is limited by key management. In cryptographic
systems, the term key refers to a numerical value used by an algorithm to alter
information, making that information secure and visible only to individuals who have
the corresponding key to recover the information.

A major advance in cryptography occurred with the invention of public-key
cryptography. The primary feature of public-key cryptography is that it removes
themed to use the same key for encryption and decryption. With public-key
cryptography, keys come in pairs of matched “public” and “private” keys. The public
portion of the key pair can be distributed in a public manner without compromising
the private portion, which must be kept secret by its owner.

The thesis included the generation of these keys using the algorithm RSA. The steps
in the algorithm were performed using the library generated which dealt with truly
enormous integers.

Further more, sending the message over an electronic network poses several security
problems: since anyone could intercept and read the file, you need confidentiality,
since someone else could create a similar counterfeit file, the receiver needs to
authenticate that it was actually sender who created the file since he could deny
creating the file, the receiver needs non-repudiation since someone could alter the file,
both sender and receiver need data integrity.

This problem can be solved by using Digital Signatures. The process of digitally
signing starts by taking a mathematical summary (called a hash code) of the message.
The next step in creating a digital signature is to sign the hash code with your private
key. This signed hash code is then appended to the message.

The recipient of message can verify the hash code sent. At the same time, a new hash
code can be created from the received message and compared with the original signed
hash code. If the hash codes match, then the recipient has verified that the message
has not been altered. The recipient also knows that only sender could have sent the
message because only he has the private key that signed the original hash code.

Also, one of the major roles of public-key encryption has been to address the problem
of key distribution. Further work in this area can be carried forward in two different
aspects — distribution of public keys and use of public-key encryption to distribute
secret or private keys.

34

|

References

1. Network Security and Cryptography by William Stallings.
2. Applied Cryptography: Protocols, Algorithms and Source code in C by
Schneier, Brucc.
: 3. Mathematics of Ciphers: Number Theory and RSA Cryptography by S.C.
Coutinho.

4. www.stackoverflow.com

35

APPENDIX-1 i

Code for Arithmetic Operations

add_large (large *a, large *b, large *cj

{

int carry = 0;

int i;

initialize_large({c};

c—>lastdigit = nmax(a->lastdigit,b->lastdigit)+1;

for (i=0; i<={c->»lastdigit); i++)

{
c->digits[i] = (char) ({carry+{a->digits{i]}+(b->digits[i])) % 10);
carry = f{{carry + (a->digits[i]}) + (b->digits([i]))) / 10;

1
zerco_justify (c);

)

subtract_large{large *a, large *b, large *c)

{
int borrow ;
int v; /* placeholder digit*/
int 1i; /* counter */
initialize_large(c);
c—»lastdigit = nmax(a->lastdigit,b->lastdigit);
borrow = Q;

for (i=0; i<={c—>lastdigit); i++)

v = {(a->digits[i] - borrow — b->digits[i]);
if (a->digits[il > 0)

borrow = 0;

if (v < 0) |

v = v + 10;

porrow = 1;

36

c->digitsii} = ({(char) v % 10;
}
zero_justify(c);
}
digit_shift (large *n, int d)
{
int i;
if ((n->lastdigit == 0) && (n—>digits[0]
for (i=n->»lastdigit; 1i»=0; i--)

n->digits[i+d] = n->digits[i];

for (i=0; i<d; i++) n->digits[i] = 0;
n->lastdigit = n->lastdigit + d;
return 0 ;
H
void multiply_large (large *a, large *b,

{
large row;
large tmp;

int i, 3;

initialize_large(res);

row = *aj
for (i=0; i<=a->lastdigit; i++) (
for (j=1; j<={b->digits([i]); J++) {

add_large {res, &xow, &tmp) ;

*res tmp;

}

digit shift (&row,1);
}

zero_Jjustify({res);

}

37

*/

/* counter

== '0"')) return 0;

large *res)

/* represent shifted row */
/* placeholder large */

/* counters */

L]

—

compare_large (large *a, large *b)

{ o}

i1 £ o /* counter */

if (b->lastdigit > a->lastdigit) return (PLUS);

if (a->lastdigit > b->lastdigit) return (MINUS);

for (i = a—->lastdigit; i>=0; i--) {
if (a->digits[i] > b->digits[i]) return (MINUS);
if (b->digits[i] > a->digits[i]) return (PLUS);

}

return (0) ;

divide_large (large *a, large *b, large *c,large *rem)
{

large row;

large tmp;

b€t el g 1

initialize_large(c);
initialize_large (rem);
initialize_large (&row) ;

initialize_large (&tmp);
c—->lastdigit = a->lastdigit;

for (i=a->lastdigit; 1i>=0; i--)
{

digit_shift (&row,1);

row.digits[0] = a->digits[i];

c->digits([i] = O;

while (compare_large (&row,b) != PLUS) {
c—>digits[i]r++;
subtract_large (&xrow, b, &tmp) ;

row = tmp;

38

*rem = row;

zero_justify(c);

exponent_large (large *b,large *m,large *e,large *res)
{

large n,c,temp, inc;

initialize_large(&n);
initialize_large (&c);
initialize_large(&inc);
initialize_large (&temp) ;
digit_shift (&c;1});
c.digits[0] =1;
digit shHift (&n,1);
n.digits[0] =1;
digit_shift (&inc,1);

inc.digits[0] =1;

while (compare_large (&n,e)!= MINUS)
{
multiply_large (b, &c, &ml};
divide_large (&ml, m, ", &rem) ;
c=rem;
add_large (&n, &inc, &ad) ;
n=ad;
}
*res=c;

}

39

Code for Random number geration

random_large (large *x,large *b,large *c,large *d, large *num)

{
int n,1i;
large temp;
initialize_large (num);
randomize (};

1 = random({56};

for (n=0;n<=i;n++)
{
multiply_large (X, b, &ml);
add_large (&ml, ¢, &ad) ;
divide_large {&ad, d, &équot, &rem} ;
temp = rem;
*x = temp;

}

if {((temp.digits{0])%$2==0)

{
temp.digits|{0] =temp.digits[0]+1;

*num = temp;

printf ("random numbex->Done");

)
Code for Prime Number Testing:
test_prime (large *n,int k)

{

long int m,i,r;

large temp,od, remain,exp, two, rndno, nml;

40

--q....-!-------------- . I aq

initialize_large (&od);
initialize large (&two);
digit shift (&two, 1};
two.digits{0] =2;
zero__justify {(&two);

one.digits[0] =1;

initialize_large (&temp);
initialize_large (&exp);
initialize_ large (&rndno};
initialize_large (&nml);

temp = *n;
subtract_large (&temp, &one, &nml};
printf ("\nn-1="};

print_large (&nml});

m=0; //assign count 2"s.d,s=m

divide_large (&nml, &two, &od, &remain};
print_large (&od);
print_large (&remain);
while (remain.digits == NULL)
{
nmi=od;
divide_large (&nml, &twe, &od, &remain} ;

mt++;

temp = od;
for(i=0;1i<k; i++)
{

print_large (&nml};
random_large (&nl, &n2,&n3, &nml, &rndno) ;
printf ("\nrndne.="};
print_large {(&rndnoc} ;
printf ("\norgne.="};
print_large(n};’
exponent_large(&rndno,&od,n,&exp);

printf ("\nx="};

41

printularge(&cxp);'

&&

if (((compare_large (&exp, &one) != MINUS) && (compare_large (&exp, &one) !
= PLUS)) |1 ((compare_large (&exp, &nml) != MINUS)
(compare_large (&exp, &nml) != PLUS)))

{
printf ("\nifcoming") ;
continue;
}

else

printf ("\nelsecoming") ;

for (telrg=m=1);r++)

exponent_large(&exp,&two,n,&temp);
exp=temp;

}

if (((compare_large (&exp, &one) != MINUS) && (compare_large (&exp,&one)!=

PLUS)))
{
printf ("\ncomposite");
return -1;

}

if (((compare_large (&exp, &nml) != MINUS) && (compare_large (&exp, &nml) !=

PLUS)))
{

continue;

printf ("\ncompo") ;

return -=1;

printf ("\nprime");

return 1;

42

Code for Encryption

encrypticn_large(large *b,large *m,large *res)
{

int n;

large one,temp;

initialize large{&one);

initialize_large (&temp);

digit_shift (sone,1);

one.digits([0] =1;

temp = one;
for{n=1;n<=3; n++} /* for e =3
{

multiply_large (b, &temp, &ml} ;
divide_large (&ml,m, ", &rem) ;
temp=rem;

1

*res=temp;

Code for Decrypticn

decrypt_large(large *num,large *exp)

{
int flag =-1;

initialize_ large(&rl);

initialize_large{(&r2);

rl = *num;

r2 = *exp;

while(r2.digits[0]>0 || r2.digits[1]>0}
43

{
divide_large(&rl,&rZ,&quoLient,&rem);
multiply large(&r2, "ient, dres_r);
if {cempare_large (§res_r, &xrl}==MINUS && flag==1}
{
subtract large(&rl, &res_r,&r);
flag=1; // +x
}
else if (compare_large(&res_r,&rl)==PLUS && flag==1)}
{
subtract_large(&rl,&res_t,&r};
flag=-1; // -x
}

else

if((compare_larqe(&res_r,&r1)==PLUS
compare_large (&res_r, &rl) ==MINU3} && flag==-1)
{

add_large {&rl, &res_r, &2} ;

flag=-1;

}

subtract_large{srl, &res_r,&r};

rl = r2;
r2 = r;
printf ("quotient :");

print_large ("ient};
multiply_large(&lﬁtZ,"ient,&res_t);
if (compare_large (s4res_t,&1_t1)==MINUS && flag==1)
{
Subtractﬁlarge(&lﬁtl,&res#t,&t);
flag=1; // +=x
}
else

if (compare large (&res_L,&l_t1)==PLUS && flag==1)

subtractflarge(&res“t,&l_tl,&t);

44

Flag=-1; // -x

else

if ({compare_large (&res_t,&l1_tl}==PLUS

compare_large(&res_t, &l_tl1)==MINUS)
{
add large(&res_t,&l_tl,&t);

flag=-1;//-=x

1 t1 = 1_t2;
1. t2 = t;
count++;

}
printf{"gcd\n");
print_large(&ril);

print_large(&i_tl});

45

&& flag==-1

)

