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SUMMARY

The objective of the project was to design an automated Search Engine which searches the web
for answer of the query by the user. There are billions of pages on the Web. And every minute
of the day, folks are posting more. Search Engines helps us to find the specific information we

need from these billions of pages.
A search engine can be basically divided into three parts each have its own.funétidh:

a. Crawler-A crawler crawls the web for pages and stores them in a page dump which are
; further indexed.

b. Indexer-All the web pages stored in the dump after crawling are read and data is stored in
indexes so that it becomes easier to search when data is to be retrieved.

c. Retrieval-According to the query of the user, data is searched from the stored indexes
Along with this different ranking techniques are used so that user gets the best possible
result.
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Chapter 1. Introduction

1.1 What is a Search Engine

A program that searches documents for specified key words and returns a list of the documents
where the keywords were found. Although search engine is really a general class of programs,
the term is often used to specifically describe systems like Google, Alta Vista and Excite that
enable users to search for documents on the World Wide Web and USENET newsgroups.

Typically, a search engine works by sending out a spider to fetch as many documents as possible.
Another program, called an indexer, then reads these documents and creates an index based on
the words contained in each document. Each search engine uses a proprietary algorithm to create
its indices such that, ideally, only meaningful results are returned for each query.

Different Search Engine Approaches

o Major search engines such as Google, Yahoo (which uses Google), AltaVista, and Lycos
index the content of a large portion of the Web and provide results that can run for pages
- and consequently overwhelm the user.

o Specialized content search engines are selective about what part of the Web is crawled
and indexed. For example, TechTarget sites for products such as the AS/400
(http://www.search400.com) and CRM applications (http://www.searchCRM.com)
selectively index only the best sites about these products and provide a shorter but more
focused list of results. :

o Ask Jeeves (http://www.ask.com) provides a general search of the Web but allows you to

? enter a search request in natural language, such as "What's the weather in Seattle today?"

o Special tools and some major Web sites such as Yahoo .let you use a number of search
engines at the same time and compile results for you in a single list.

o Individual Web sites, especially larger corporate sites, may use a search engine to index

_and retrieve the content of just their own site. Some of the major search engine
" companies license or sell their search engines for use on individual sites.

(6]
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1.2 Need of Search Engine

For the same reason you need a card catalogue in a library. There is lots of great and useful
‘ information in a library, but it's physically impossible to examine all the books personally. Not
even the most indefatigable web-surfer could hyperlink to all the documents in the aptly named

World Wide Web.

Similarly there are billions of pages on the Web. And every minute of the day, folks are posting
more. Search Engines helps us to find the specific information we need from these billions of

pages.

The search engines and directories help you shift through all those 1's and 0's___toi:ﬁ_n?<:1 the specific
information you need. : . .

1.3 Commercial Aspects Of Search Engine

In the modern era as the number of internet users are ingfeasing day by day so a Search Engine
which provides service efficiently and fastly is commercially very profitable. More the users uses
the Search Engine more money it will make for the company.

If we consider the example of Google Search Engine, when we search something on Google then
on right hand side there are some advertisements and from these advertisements the Search
Engine makes money.




1.4 HISTORY-

During the early development of the web, there was a list of webservers edited by Tim Berners-
i Lee and hosted on the CERN webserver. One historical snapshot from 1992 remains. As more
webservers went online the central list could not keep up. On the NCSA site new servers were

announced under the title "What's New!”

The very first tool used for searching on the Internet was Archie. The name stands for "archive"
without the "v." It was created in 1990 by Alan Emtage, Bill Heelan and J. Peter Deutsch,
computer science students at McGill University in Montreal. The program downloaded the
directory listings of all the files located on public anonymous FTP (File Transfer Protocol) sites,
creating a searchable database of file names; however, Archie did not index the contents of these
sites since the amount of data was so limited it could be readily searched manually.

| The rise of Gopher (created in 1991 by Mark McCahill at the University of Minnesota) led to

' two new search programs, Veronica and Jughead. Like Archie, they searched the file names and
titles stored in Gopher index systems. Veronica (Very Easy Rodent-Oriented Net-wide /ndex to
Computerized Archives) provided a keyword search of most Gopher menu titles in the entire
Gopher listings. Jughead (Jonzy's Universal Gopher Hierarchy Excavation And Display) was a
tool for obtaining menu information from specific Gopher servers. While the name of the search
engine "Archie" was not a reference to the Archie comic book series, "Veronica" and "Jughead"
are characters in the series, thus referencing their predecessor.

In the summer of 1993, no search engine existed yet for the web, though numerous specialized
catalogues were maintained by hand. Oscar Nierstrasz at the University of Geneva wrote a series
of Perl scripts that would periodically mirror these pages and rewrite them into a standard format
_ which formed the basis for W3Catalog, the web's first primitive search engine, released on
I September 2, 1993.

In June 1993, Matthew Gray, then at MIT, produced what was probably the first web robot, the
Perl-based World Wide Web Wanderer, and used it to generate an index called 'Wandex'. The
purpose of the:Wanderer was to measure the size of the World Wide Web, which it did until late
1995. The web's second search engine Aliweb appeared in November 1993. Aliweb did not use a
web robot, but instead depended on being notified by website administrators of the existence at
each site of an index file in a particular format.

JumpStation (released in December 1993) used a web robot to find web pages and to build its
index, and used a web form as the interface to its query program. It was thus the first WWW
resource-discovery tool to combine the three essential features of a web search engine (crawling,
indexing, and searching) as described below. Because of the limited resources available on the
_ platform on which it ran, its indexing and hence searching were limited to the titles and headings
-! found in the web pages the crawler encountered.

One of the first "full text" crawler-based search engines was WebCrawler, which came out in

1994. Unlike its predecessors, it let users search for any word in any webpage, which has
become the standard for all major search engines since. It was also the first one to be widely

(8]

|




known by the public. Also in 1994, Lycos (which started at Carnegie Mellon University) was
launched and became a major commercial endeavor.

Soon after, many search engines appeared and vied for popularity. These included Magellan,
Excite, Infoseek, Inktomi, Northern Light, and AltaVista. Yahoo! was among the most popular
ways for people to find web pages of interest, but its search function operated on its web
directory, rather than full-text copies of web pages. Information seekers could also browse the
directory instead of doing a keyword-based search.

In 1996, Netscape was looking to give a single search engine an exclusive deal to be their
featured search engine. There was so much interest that instead a deal was struck with Netscape
by five of the major search engines, where for $5Million per year each search engine would be in
a rotation on the Netscape search engine page. The five engines were Yahoo!, Magellan, Lycos,
Infoseek, and Excite. ; : -

Search engines were also known as some of the brightest stars in the Internet investing frenzy
that occurred in the late 1990s. Several companies entered the market spectacularly, receiving
record gains during their initial public offerings. Some have taken down their public search
engine, and are marketing enterprise-only editions, such as Northern Light: Many search engine
companies were caught up in the dot-com bubble, a speculation-driven market boom that peaked
in 1999 and ended in 2001. ‘

Around 2000, the Google search engine rose to prominence. The company achieved better
results for many searches with an innovation called PageRank. This iterative algorithm ranks
web pages based on the number and PageRank of other web sites and pages that link there, on
the premise that good or desirable pages are linked to more than others. Google also maintained
a minimalist interface to its search engine. In contrast, many of its competitors embedded a
search engine in a web portal. : ‘

By 2000, Yahoo was providing search services based on Inktomi's search engine. Yahoo!
acquired Inktomi in 2002, and Overture (which owned AlltheWeb and AltaVista) in 2003.
Yahoo! switched to Google's search engine until 2004, when it launched its own search engine
based on the combined technologies of its acquisitions.

Micrdé'oft-ﬁ'_rst_-lqunched MSN-Search in the fall of 1998 using search results from Inktomi. In
early 1999 the site began to display listings from Looksmart blended with results from Inktomi
except for a short time in 1999 when results from AltaVista were used instead. In 2004,
Microsoft began a transition to its own search technology, powered by its own web crawler
(called msnbot).

Microsoft's rebranded search engine, Bing, was launched on June 1, 2009. On July 29, 2009,

Yahoo! and Microsoft finalized a deal in which Yahoo! Search would be powered by Microsoft
Bing technology.

(9]




" 1.5 HOW DO A SEARCH ENGINE WORKS

; Web search engines work by storing information about many web pages, which they retrieve

| from the html itself. These pages are retrieved by a Web crawler (sometimes also known as a

:" spider) — an automated Web browser which follows every link on the site. Exclusions can be
made by the use of robots.txt. The contents of each page are then analyzed to determine how it
should be indexed (for.example, words are extracted from the titles, headings, or special fields
called meta tags). Data about web pages are stored in an index database for use in later queries.
A query can be a single word. The purpose of an index is to allow information to be found as
quickly as possible. Some search engines, such as Google, store all or part of the source page
(referred to as a cache) as well as information about the web pages, whereas others, such as
AltaVista, store every word of every page they find. This cached page always holds the actual
search text since it is the one that was actually indexed, so it can be very useful when the content
of the current page has been updated and the search terms are no longer in it. This problem might
be considered to be a mild form of linkrot, and Google's handling of it increases usability by
satisfying user expectations that the search terms will be on the returned webpage. This satisfies
the principle of least astonishment since the user normally expects the search terms to be on the
returned pages. Increased search relevance makes these cached pages very useful, even beyond
the fact that they may contain data that may no longer be available elsewhere.

When a user enters a query into a search engine (typically by using key words), the engine
examines its index and provides a listing of best-matching web pages according to its criteria,
usually with a short summary containing the document's title and sometimes parts of the text.
The index is built from the information stored with the data and the method by which the
information is indexed. Unfortunately, there are currently no known public search engines that
allow documents to be searched by date. Most search engines support the use of the boolean
operators AND, OR and NOT to further specify the search query. Boolean operators are for

| literal searches that allow the user to refine and extend the terms of the search. The engine looks
for the words or phrases exactly as entered. Some search engines provide an advanced feature
called proximity search which allows users to define the distance between keywords. There is
also concept-based searching where the research involves using statistical analysis on pages
containing the words or phrases you search for. As well, natural language queries allow the user
to type a questiQn in the same form one would ask it to a human. A site like this would be
ask.com.

The usefulness of a search engine depends on the relevance of the result set it gives back. While
there may be millions of web pages that include a particular word or phrase, some pages may be
more relevant, popular, or authoritative than others. Most search engines employ methods to rank
the results to provide the "best" results first. How a search engine decides which pages are the
best matches, and what order the results should be shown in, varies widely from one engine to
another. The methods also change over time as Internet usage changes and new techniques

| evolve. There are two main types of search engine that have evolved: one is a system of
predefined and hierarchically ordered keywords that humans have programmed extensively. The
other is a system that generates an "inverted index" by analyzing texts it locates. This second
form relies much more heavily on the computer itself to do the bulk of the work.

(10]




Most Web search engines are commercial ventures supported by advertising revenue and, as a
result, some employ the practice of allowing advertisers to pay money to have their listings
ranked higher in search results. Those search engines which do not accept money for their_search
engine results make money by running search related ads alongside the regular search engine
results. The search engines make money every time someone clicks on one of these ads.

!
|
|
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1.6 Market Share

s ser wer

4.50% . 56.50%

| Google: 56.50%

| | Yahoo: 23.30%
[ Microsoft: 11.30%

[ AoL: 4.50%

Ask: 4.50%

23.30% |

In the U‘I’.i.ite.(;‘l Sfiﬁés begle held a 63.2% market share in May 2009, according to Nielsen
NetRatlngs In the People's Republic of China, Baidu held a 61.6% market share for web search
in July 2009.
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1.7 SEARCH ENGINE BIAS

Although search engines are programmed to rank websites based on their popularity and
relevancy, empirical studies indicate various political, economic, and social biases in the
information they provide. These biases could be a direct result of economic and commercial
processes (€.8:, companies that advertise with a search engine can become also more popular in
its organic search results), and political processes (e.g., the removal of search results in order to
comply with local laws). Google Bombing is one example of an attempt to manipulate search
results for political, social or commercial reasons.
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Chapter 2.

System Architecture

Crawler

| Pre fetch g@
r &

Seed url
Y h 4
Page Index Inverted index
< » — z

dump Builder

Saarch Optimization Posting list
M A ¢ node

results techniques

B Crawling the web: Search engines run automated programs, called “robots" or "spiders",

_that use the hyperlink structure of the web to "crawl" the pages and documents that make

~up the World Wide Web.

B Indexing documents: Once a page has been crawled, its contents can be "indexed" -

‘stored in'a giant database of documents that makes up a search engine's "index".

B Processing queries: When a request for information comes into the search engine, the
engine retrieves from its index all the document that match the query.

B Ranking results: Once the search engine has determined which results are a match for the
query, the engine's algorithm (a mathematical equation commonly used for sorting) runs
calculations on each of the results to determine which is most relevant to the given query

[14]
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Crawling command comas with list of

Entry Pages URLs and list of Valid Pages
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Chapter 3

3.1Crawler

A Web crawler is a computer program that browses the World Wide Web in a methodical,
automated manner or in an orderly fashion. Other terms for Web crawlers are ants, automatic

indexers, bots, or Web spiders, Web robots, or—especially in the FOAF community— Web

sculters.

This process is called Web crawling or spidering. Many sites, in particular search engines, use
spidering as a means of providing up-to-date data. Web crawlers are mainly used to create a copy
of all the visited pages for later processing by a search engine that will index the downloaded
pages to provide fast searches. Crawlers can also be used for automating maintenance tasks on a
Web site, such as checking links or validating HTML code. Also, crawlers can be used to gather
specific types of information from Web pages, such as harvesting e-mail addresses (usually for

spam).
A Web crawler is one type of bot, or software agent. In general, it starts with a list of URLs to

visit, called the seeds. As the crawler visits these URLs, it identifies all the hyperlinks in the page
and adds them to the list of URLSs to visit, called the crawl frontier. URLs from the frontier are

recursively visited according to a set of policies
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3.1.1 Architecture of web crawler
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3.1.2 Crawling Policies

There are important characteristics of the Web that make crawling very difficult:

e its large volume,
o its fast rate of change, and

« dynamic page generation.

The large volume implies that the crawler can only download a fraction of the Web pages within
a given time, so it needs to prioritize its downloads. The high rate of change implies that by the
time the crawler is downloading the last pages from a site, it is very likely that new pages have
been added to the site, or that pages have already been updated or even deleted. - 5

The number of possible crawlable URLs being generated by server-side software has also made
it difficult for web crawlers to avoid retrieving duplicate content. Endless combinations of
HTTP GET(URL-based) parameters exist, of which only a small selection will actually return
unique content. For example, a simple online photo gallery may offer three options to users, as
specified through HTTP GET parameters in the URL. If there exist four ways to sort images,
three choices of thumbnail size, two file formats, and an option to disable user-provided content,
then the same set of content can be accessed with 48 different URLs, all of which may be linked
on the site. This mathematical combination creates a problem for crawlers, as they must sort
through endless combinations of relatively minor scripted changes in order to retrieve unique

content.

As Edwards et al. noted, "Given that the bandwidth for conducting crawls is neither infinite nor
free, it is becoming essential to crawl the Web in not only a scalable, but efficient way, if some
reasonable measure of quality or freshness is to be maintained." A crawler must carefully choose

at each step which pages to visit

The behavior Q_f a Web crawler is the outcome of a combination of policies:

selection policy that states which pages to download,
‘ it policy that states when to check for changes to the pages,
a politeness policy that states how to avoid overloading Web sites, and
a parallelization policy that states how to coordinate distributed Web crawlers

® o o o
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Selection policy

Given the current size of the Web, even large search engines cover only a portion of the publicly-
available part. A 2005 study showed that large-scale search engines index no more than 40%-
70% of the indexable Web; a previous study by Dr. Steve Lawrence and Lee Giles showed that
no search engine indexed more than 16% of the Web in 1999. As a crawler always downloads
just a fraction of the Web pages, it is highly desirable that the downloaded fraction contains the

most relevant pages and not just a random sample of the Web.

This requires a metric of importance for prioritizing Web pages. The importance of apageisa
function of its intrinsic quality, its popularity in terms of links or visits, and even of its URL (the
latter is the case of vertical search engines restricted to a single top-level domain, or search
engines restricted to a fixed Web site). Designing a good selection policy has'an added difficulty:
it must work with partial information, as the complete set of Web pages is not known during

crawling

Focused crawling

The importance of a page for a crawler can also be expressed as a function of the similarity of a
page to a given query. Web crawlers that attempt to download pages that are similar to each
other are called focused crawler or topical crawlers. The concepts of topical and focused
crawling were first introduced by Menczer and by Chakrabarti et al.

The main problem in focused crawling is that in the context of a Web crawler, we would like to
be able to predict the similarity of the text of a given page to the query before actually
downloading the page. A possible predictor is the anchor text of links; this was the approach
taken by Pinkerton in a crawler developed in the early days of the Web. Diligenti et al propose
to use the complete content of the pages already visited to infer the similarity between the
driving query and the pages that have not been visited yet. The performance of a focused
crawling depends mostly on the richness of links in the specific topic being searched, and a
focused crawling usually relies on a general Web search engine for providing starting points.

Restricting followed links

A crawler may only want to seek out HTML pages and avoid all other MIME types. In order to
request only HTML resources, a crawler may make an HTTP HEAD request to determine a Web
resource's MIME type before requesting the entire resource with a GET request. To avoid
plaking numerous HEAD requests, a crawler may examine the URL and only request a resource
if the URL ends with certain characters such as .html, .htm, .asp, .aspx, .php, .jsp, .jspx or a
slash. This strategy may cause numerous HTML Web resources to be unintentionally skipped.

Some crawlers may also avoid requesting any resources that have a "?" in them (are dynamically
produced) in order to avoid spider traps that may cause the crawler to download an infinite
number of URLs from a Web site. This strategy is unreliable if the site uses URL rewriting to

simplify its URLs.

(24]
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URL normalization

Crawlers usually perform some type of URL normalization in order to avoid crawling the same
; rce more than once. The term URL normalization, also called URL canonicalization, refers
;(e)sgl‘; process of modifying and standardizing a URL in a consistent manner. There are several
types of normalization that may be performed including conversion of URLs to lowercase,
removal of "." and ".." segments, and adding trailing slashes to the non-empty path component.

Path-ascending crawling

Some crawlers intend to download as many resources as possible from a particular web site. So
path-ascending crawler was introduced that would ascend to every path in each URL that it
intends to crawl. For example, when given a seed URL of b G, R
http://l]ama.org/hamster/monkey/page.html, it will attempt to crawl /hamster/monkey/, /hamster/,
and /. Cothey found that a path-ascending crawler was very effective in finding isolated

resources, or resources for which no inbound link would have been found in regular crawling.

Many path-ascending crawlers are also known as Web harvesting Sdft_ware-, because they're used
to "harvest" or collect all the content — perhaps the collection of photos in a gallery — from a

specific page or host

Re-visit policy

The Web has a very dynamic nature, and crawling a fraction of the Web can take weeks or
months. By the time a Web crawler has finished its crawl, many events could have happened,

including creations, updates and deletions.

From the search engine's point of Vie'\_;s__(_, th}.}re is a cost associated with not detecting an event, and
thus having an outdated copy of a resource. The most-used cost functions are freshness and age.

Freshness: This is a binary ﬂi&;z;sufe that indicates whether the local copy is accurate or not. The
fresh}}g§s of a page p in the repository at time ¢ is defined as:

1 if p is equal to the local copy at time ¢

0 otherwise

Age: This is a measure that indicates how outdated the local copy is. The age of a page p in the
répository, at time ¢ is defined as:

0 if p is not modified at time ¢

t — modification time of p otherwise

Ay(t) =
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nition of the objective of a Web crawler that is equivalent to

Coffman et al. worked with a defi that .
freshness, but use a different wording: they propose that a crawler must minimize the fraction of
3

utdated. They also noted that the problem of Web crawling can be modeled

time pages remain o : : :
as a multiple-queue, single-server polling system, on which the Web crawler is the server and the

Web sites are the queues. Page modifications are the arrival of the customers, and switch-over
times are the interval between page accesses to a single Web site. Under this model, mean

waiting time for a customer in the polling system is equivalent to the average age for the Web

crawler.

The objective of the crawler is to keep the average freshness of pages in its collection as high as
possible, or to keep the average age of pages as low as possible. These objectives are not
equivalent: in the first case, the crawler is just concerned with how many pages are ‘out-q-ated,
while in the second case, the crawler is concerned with how old the local copies of pages are.

Two simple re-visiting policies were studied by Cho and Garcia-Moling:

Uniform policy: This involves re-visiting all pages in the collection with the same frequency,
regardless of their rates of change. g

Proportional policy: This involves re-visiting more often the pages that change more
frequently. The visiting frequency is directly proportional to the (estimated) change frequency.

(In both cases, the repeated crawling order of pages can be done either in a random or a fixed
order.)

Cho and Garcia-Molina proved the surprising result that, in terms of average freshness, the
uniform policy outperforms the proportional policy in both a simulated Web and a real Web
crawl. The explanation for this result comes from the fact that, when a page changes too often,
the crawler will waste time by trying to re-crawl it too fast and still will not be able to keep its
copy of the page fresh.

1prove freshness, the crawler should penalize the elements that change too often. The
optimal re-visiting policy is neither the uniform policy nor the proportional policy. The optimal
method for keeping average freshness high includes ignoring the pages that change too often,
and the optimal for keeping average age low is to use access frequencies that monotonically (and
sub-linearly) increase with the rate of change of each page. In both cases, the optimal is closer to
the uniform policy than to the proportional policy: as Coffman ef al. note, "in order to minimize
the expected obsolescence time, the accesses to any particular page should be kept as evenly
spaced as possible", Explicit formulas for the re-visit policy are not attainable in general, but
thf:yﬂarﬁe obtained numerically, as they depend on the distribution of page changes. Cho and
Gafma—Molina show that the exponential distribution is a good fit for describing page changes,
W.hll.e Ipf:irotis et al. show how to use statistical tools to discover parameters that affect this
fhstrlbutlon. Note that the re-visiting policies considered here regard all pages as homogeneous
In terms of quality ("all pages on the Web are worth the same"), something that is not a realistic

scenario, so further information about the Web page quality should be included to achieve a
better crawling policy

To imHEOVe fr ‘é;:az;_‘
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Politeness policy

Crawlers can retrieve data much quicker and in greater depth than human searchers, so they can
have a crippling impact on the performance of a site. Needless to say, if a single crawler is
performing multiple requests per second and/or downloading large files, a server would have a

hard time keeping up with requests from multiple crawlers.

As noted by Koster, the use of Web crawlers is useful for a number of tasks, but comes with a
price for the general community. The costs of using Web crawlers include:

network resources, as crawlers require considerable bandwidth and operate with a high
degree of parallelism during a long period of time; - :

« server overload, especially if the frequency of accesses to a given server is too high;

o poorly-written crawlers, which can crash servers or routers, or which download pages

they cannot handle; and ;
o personal crawlers that, if deployed by too many users, can disrupt networks and Web

SCrvers.

A partial solution to these problems is the robots exclusion protocol, also known as the robots.txt
protocol that is a standard for administrators to indicate which parts of their Web servers should
not be accessed by crawlers. This standard does not include a suggestion for the interval of visits
to the same server, even though this interval is the most effective way of avoiding server
overload. Recently commercial search engines like Ask Jeeves, MSN and Yahoo are able to use
an extra "Crawl-delay:" parameter in the robots.txt file to indicate the number of seconds to
delay between requests.

The first proposal for the interval between connections was given in and was 60 seconds.
However, if pages were downloaded at this rate from a website with more than 100,000 pages
over a perfect connection with zero latency and infinite bandwidth, it would take more than 2
months to download only that entire Web site; also, only a fraction of the resources from that
Web server would be used. This does not seem acceptable.

Cho uses 10 secon ,;,agi:an' interval for accesses, and the WIRE crawler uses 15 seconds as the
default. The MercatorWeb crawler follows an adaptive politeness policy: if it took ¢ seconds to
download a document from a given server, the crawler waits for 10 seconds before downloading
the next page. Dill et al use 1 second.

For those using Web crawlers for research purposes, a more detailed cost-benefit analysis is

needed and ethical considerations should be taken into account when deciding where to crawl
and how fast to crawl.

be:ecdotal evidence from access logs shows that access intervals from known crawlers vary
: :k ween 20 seconds and 3—4 minutes. It is worth noticing that even when being very polite, and
ing all the safeguards to avoid overloading Web servers, some complaints from Web server
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received. Brin and Page note that: "... running a crawler which connects to
lion servers (...) generates a fair amount of e-mail and phone calls. Because
oming on line, there are always those who do not know what a

his is the first one they have seen."

administrators are r
more than half a mil
of the vast number of people ¢

crawler is, because t

Parallelization policy

allel crawler is a crawler that runs multiple processes in parallel. The goal is to maximize
the download rate while minimizing the overhead from parallelization and to avoid repeated
downloads of the same page. To avoid downloading the same page more than once, the crawling
system requires a policy for assigning the new URLs discovered during the crawling process, as
the same URL can be found by two different crawling processes.

A par

Examples of Web crawlers

The following is a list of published crawler architectur_qé’for’ general-purpose crawlers (excluding
focused web crawlers), with a brief description that includes the names given to the different

components and outstanding features:

« Yahoo! Slurp is the name of the Yahoo Search crawler.

« Msnbot is the name of Microsoft's Bing webcrawler.

o FAST Crawler is a distributed crawler, used by Fast Search & Transfer, and a general
description of its architecture is available.

« Googlebot is described in some detail, but the reference is only about an early version of

its architecture, which was based in C++ and Python. The crawler was integrated with the

indexing process, because text parsing was done for full-text indexing and also for URL
extraction. There is a URL server that sends lists of URLS to be fetched by several
crawling processes. During parsing, the URLs found were passed to a URL server that
checked if the URL have been previously seen. If not, the URL was added to the queue of
he URL server. . "

Methabot is a scriptable web crawler written in C, released under the ISC license.

~arachnode.net is an open-source .NET web crawler written in C# using SQL 2005/SQL

2008 and Lucene.

o PolyBot is a distributed crawler written in C++ and Python, which is composed of a
"crawl manager", one or more "downloaders" and one or more "DNS resolvers".
Collected URLSs are added to a queue on disk, and processed later to search for seen
URLs in batch mode. The politeness policy considers both third and second level
domains (e.g.: www.example.com and www?2.example.com are third level domains)
because third level domains are usually hosted by the same Web server.

* RBSE was the first published web crawler. It was based on two programs: the first
program, "spider" maintains a queue in a relational database, and the second program
"mite", is a modified www ASCII browser that downloads the pages from the Web.

¢ WebCrawler was used to build the first publicly-available full-text index of a subset of
the Web. It was based on lib-WWW to download pages, and another program to parse
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dth-first exploration of the Web graph. It also included a real-

and order URLs for brea
d links based on the similarity of the anchor text with the

time crawler that followe

provided query.
World Wide Web Worm was a crawler used to build a simple index of document titles

and URLs. The index could be searched by using the grep Unix command.
WebFountain is a distributed, modular crawler similar to Mercator but written in C++. It
features a "controller" machine that coordinates a series of "ant" machines. After
repeatedly downloading pages, a change rate is inferred for each page and a non-linear
programming method must be used to solve the equation system for maximizing
freshness. The authors recommend to use this crawling order in the early stages of the
crawl, and then switch to a uniform crawling order, in which all pages are being visited
with the same frequency. '

WebRACE is a crawling and caching module implemented in Java, and used as a part of
a more generic system called eRACE. The system receives requests from users for
downloading web pages, so the crawler acts in part as a smart proxy server. The system
also handles requests for "subscriptions" to Web pages that must be monitored: when the
pages change, they must be downloaded by the crawler and the subscriber must be
notified. The most outstanding feature of WebRACE is that, while most crawlers start
with a set of "seed" URLs, WebRACE is continﬁousﬁljhrcceiving new starting URLs to

crawl from.
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3.2 Indexing

Web indexing (or "Internet indexing") includes back-of-book-style i:}dexes to individual
websites or an intranet, and the creation of l;eyworc! metadata to provide a more useful
vocabulary for Internet or onsite search engines. Wlt}} thf_: increase in the number of pe_riodicals
that have articles online, web indexing is also becoming important for periodical websites.

Back-of-the-book-style web indexes may be called "web site A-Z indexes." The implication with
wA.7Z" is that there is an alphabetical browse view or interface. This interface differs from that of
a browse through layers of hierarchical categories (also known as a taxonomy) which are not
necessarily alphabetical, but are also found on some web sites.

Web site A-Z indexes have several advantages over Search Engines - Langué'ge is full of
homographs and synonyms and not all the references found will be relevant. For example, a
computer-produced index of the 9/11 report showed many references for George Bush, but did
not distinguish between GB senior and George W. In an environmental text, the phrase "lead
users" will refer, not only to users of the metallic element, but also to early adopters of
technology. Some hits will be time-wasting references, such as looking up “teaching children”
and finding only the statement saying "... the above is not relevant when teaching children".
Possibly more concerning, Search Engines may miss information — looking up the Dardanelles
and missing references to the Hellespont or Canakkale Bogazi, or seeking information about
population and missing discussions about the number of people living in the area. A human-
produced index has someone check each and every part of the text to find everything relevant to
the search term, while a Search Engine leaves the responsibility for finding the information with
the enquirer.

Although an A-Z index could be used to index multiple sites, rather than the multiple pages of a
single site, this is unusual. A -

Metadata web indexiilé ‘iﬁi{gl_vés assigning keywords or phrases to web pages or web sites within
a meta-tag field, so that the web page or web site can be retrieved with a search engine that is
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Inverted Index

DOCUMENT &

DOCUMENT
objects

IndexBuilder drives the indexing process. When instantiated, the build method in

this object actually parses documents using the Parser. As mentioned in Chapter 2, the

parser returns a list of Document objects that contain parsed terms. The parsed

documents objects arff then sent to the add method in the inverted index. Once the index is built,
users are able to efﬁClently s bmlt queries against the text. When completed, the index is written
to disk with the wrtte method

Ind

The index is simply a list of terms. Since we rarely traverse this list, a hash table

is often used as the data structure for the index. A hash table permits quick access to a
term by applyln a hash function on the term. If two terms have the same hash entry, a
collision resolution algorithm (such as simply using a linked list of collisions) can be
employed. The Java JDK hides the details of collisions from the user with the HashMap
- class. Once we find the correct entry for a term, a pointer will exist to the relevant
posting list,

The index also may contain other useful information about a term. The size of the
posting list indicates the number of documents that contain the term. Typically this is a
value stored with the term entry in the index. Other values might include the term type,
namely, is the term a phrase, an acronym, a number, etc.
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many information retrieval systems is that the index
le term entries are stored in the index then this is easily the

A crucial assumption with

in memory. If only sing iEe : :
f:i;:emA 1OG]§':y web collection often used for testing information retrieval systems has fewer than

one million distinct terms. With an average term

Jength of around six characters, only 6 MB are needed to store the actual text of the
index. If we add four bytes for a document frequency, a byte for a type tag, and a fourbyte
pointer to the inverted index, we now have 15 bytes for each term requiring a total of

15 MB to store the index. Such storage requirements are easily supported by main
memory configurations. :

We note that ultimately, in some large diverse collections, it is not possible to _
guarantee storing the index in memory, and in such cases, if the index exceeds its allotted
memory, a b-tree is often used to represent just the term entries in the index. This has the
advantage of efficiently finding the entry in O(loghN) where N is the number of terms
time. The b-tree eliminates the need for the index to fit entirely into main memory at a
small cost of no longer being able to simply hash on the term and immediately go to the

memory address of the corresponding posting list.

Posting List i

A posting list indicates, for a given term, which documents contain the term. Typically, a
linked list is used to store the entries in a posting list. This is because in most retrieval
operations, a user enters a query and all documents that contain the query are obtained.
This is done by hashing on the term in the index and finding the associated posting list.
Once the posting list is obtained, a simple scan of the linked list yields all the documents
that contain the query. A PostingListNode object is used in SimplelR to store the
document identifier and the term frequency for each occurrence in a PostingList.

Document List

The inverted index only needs a term dictionary, namely the index, and the corresponding
posting lists. However, we found it convenient to also include the documentList variable

in our Invertedindex: object. The documentList is simply an ArrayList of Document

object. Its purpose is to mapa

document identifier to a Document object. The Document object contains information
unique to each document, for example, theauthor, title, date published, text file that contains the
document, etc.). Storing the list of document objects with the inverted index makes sense
because the only time it is updated is when we update the inverted index.

Index Builder

The n}dex builder drives the indexing process. The constructor reads the configuration

file w1th. the Properties object to identify what stop word list to use and what text files are

USf_id as input. The build method calls the parser, and the parser returns a set of document

objects. Next, the index builder loops through all the document objects and calls the add

lInethod Efssociated with the InvertedIndex object to add each document to the inverted index. The
ndexBuilder is designed so that different inverted indexes can be
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oted for different document collections. Also different parsers are easily
r different types of documents. Once all documents have been processed,

d is used to store the Invertedindex object to disk.

constru
incorporated fo
the write metho

Adding a Document ; ;
To add a document to the index, SimplelR has an add method associated with the

InvertedIndex. The Document object is created and populated by the parser. The add method
simply accepts a Document object and adds it to the w .
inverted index. The add method is given below The method begins by getting the document
identifier for the document to be all @, Tl
added. Next, the list of distinct terms is obtained from the Document. An iterator is
obtained for this list, and now, a loop begins which adds each term to the posting list.

For a given term, we first check to see if a posting list already exists for this term. If it

does, we simply retrieve the posting list (using the same containsKey method used in the
getPostingList method). If no posting list exists, we instantiate a null LinkedList and
associate this null list with the index HashMap. At this point, the term we are adding has

a postingList associated with it. All that remains is to retrieve the postingList, instantiate

It simply contains a documentID and a TermFrequency object. The TermFrequency is a
separate object because we wish to handle a case that does not come up too often. A twobyte
term frequency can store 32767 occurrences of a term in a given document. Should

the term have a higher frequency, we do not want an overflow condition to occur.
Instead of checking for this overflow condition throughout all of SimplelR, we simply
build a TermFrequency object that has a special increment method. The special
increment method stops incrementing when the terms frequency exceeds 32767 and
avoids an overflow condition. While capping the term frequency at 32767 may at first
glance seem to skew,the calculations, in fact, if a document is long enough to contain a
single word 32,767 times, it is probably not the document you are looking for! (Besides,
it turns out, as we will see in discussing similarity measures, that very large term
frequencies do not proportionately impact the relevance measure).

Retrieving a Posting List

The getPostingList method takes a given term as an argument and returns a

LinkedList that is the posting list associated with the term. If no linked list is available,
this means the term does not currently exist in the inverted index and a value of null is
returned. When a foken is passed to getPostingList, the HashMap is checked with the
containsKey method. This implements a hashing function on the term and returns true if
t!le term exists in the index. When the term exists, we return the corresponding posting
list, otherwise, a null is returned.
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Processing a set of Documents
Now that we have a parser and an InvertedIndex method we can show how documents are added

to the index.
The build method in the IndexBuilder object as given above illustrates a simple .

index build routine. It starts by instantiating a new InvertedIndex object. The index is
cleared and a property TEXT_FILE is read from disk. TEXT_FILE indicates the file that
should be indexed. A STOPWORD _FILE enables us to dyna?nically change the list of
stop words used by the search engine. Next, a TRECParser is instantiated for this file
with a given list of stop words. e

It may seem overly trivial to only index a single file, but in truth, this build

routine is designed for scalability. Most web search engines use ;nany different =
processors to parse documents. By separating the parser from the index buildin ”i'tfis .
possible to launch numerous instances of the parser on numerous machines Eafi’l i
accepts as a parameter the file to parse and the stopwords to use. After the sarser B
instantiated, the readDocuments method is called to actually read and | éirsc.I: th ]
documents. A list of document objects is returned. ; i e
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3.3 Page Ranking

Description:

PageRank is a link analysis algorithm, named after Larry Page, used by the Google Internet
search engine that assigns a numerical weighting to each element of a hyperlinked set of
documents, such as the World Wide Web, with the purpose of "measuring" its relative
importance within the set. The algorithm may be applied to any collection of entities with
reciprocal quotations and references. The numerical weight that it assigns to any given element E

is referred to as the PageRank of E and denoted by PR(E).

The name "PageRank" is a trademark of Google, and the PageRank process has been patented
(U.S. Patent 6,285,999). However, the patent is assigned to Stanford Uﬁi}/_ersity:gnd not to

~  Google. Google has exclusive license rights on the patent from Stanford University. The

~ quniversity received 1.8 million shares of Google in exchange for use of the patent; the shares

~ were sold in 2005 for $336 million. & :

PageRank reflects our view of the importance of web pages by co _jzgjdcﬁ'ng more than 500
million variables and 2 billion terms. Pages that we believe are important pages receive a higher 1
PageRank and are more likely to appear at the top of the search results.

PageRank also considers the importance of each page that casts a vote, as votes from some pages !
are considered to have greater value, thus giving the linked page greater value. We have always
taken a pragmatic approach to help improve search quality and create useful products, and our
technology uses the collective intelligence of the web to determine a page's importance

s b R —

In other words, a PageRank results from a "ballot" among all the other pages on the World Wide
Web about how important a page is. A hyperlink to a page counts as a vote of support. The

- PageRank of a page is defined recursively and depends on the number and PageRank metric of

- all pages that link to it ("incoming links"). A page that is linked to by many pages with high
I;ageRank receives a high rank itself. If there are no links to a web page there is no support for
fatpage. o o

A e s

Google assigns a numeric¢ weighting from 0-10 (but 0 is used just for penalized or non analyzed-
pages) for each webpage on the Internet; this PageRank denotes a site’s importance in the eyes of
Google. The PageRank is derived from a theoretical probability value on a logarithmic scale like
fhe Richter Scale. The PageRank of a particular page is roughly based upon the quantity of
inbound links as well as the PageRank of the pages providing the links. It is known that other
factors, e.g. relevance of search words on the page and actual visits to the page reported by the
Google toolbar also influence the PageRank. In order to prevent manipulation, spoofing and
Spamdexing, Google provides no specific details about how other factors influence PageRank.

Nl_lmerous academic papers concerning PageRank have been published since Page and Brin's
original paper. In practice, the PageRank concept has proven to be vulnerable to manipulation,
and extensive research has been devoted to identifying falsely inflated PageRank and ways to
1gnore links from documents with falsely inflated PageRank.

—

Mm{:c TP IR ier:-n-mw )
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Other link-based ranking algorithms for Web pages include the HITS algorithm invented by Jon
Kleinberg (used by Teoma and now Ask.com), the IBM CLEVER project, and the TrustRank

algorithm.

History:

pageRank was developed at Stanford University by Larry Page (hence the name Page-Rank) and
later Sergey Brin as part of a research project about a new kind of search engine. It was co-
authored by Rajeev Motwani and Terry Winograd. The first paper about the project, describing
PageRank and the initial prototype of the Google search engine, was published in 1998: shortly
after, Page and Brin founded Google Inc., the company behind the Google search engine. While

just one of many factors which determine the ranking of Google search results, PageRank:
continues to provide the basis for all of Google's web search tools. s

PageRank has been influenced by citation analysis, early developed by_Eugene Garfield in the
1950s at the University of Pennsylvania, and by Hyper Search, developed by Massimo Marchiori
at the University of Padua. In the same year PageRank was introduced (1998), Jon Kleinberg
published his important work on HITS. Google's founders cite Garfield, Marchiori, and
Kleinberg in their original paper.

Algorithm:

PageRank is a probability distribution used to represent the likelihood that a person randomly
clicking on links will arrive at any particular page. PageRank can be calculated for collections of
documents of any size. It is assumed in several research papers that the distribution is evenly
divided among all documents in the collection at the beginning of the computational process.
The PageRank computations require several passes, called "iterations", through the collection to
adjust approximate PageRank values to more closely reflect the theoretical true value.

A probability is exprk;_sséd as a numeric value between 0 and 1. A 0.5 probability is commonly
expressed as a "50% chance" of something happening. Hence, a PageRank of 0.5 means there is
a 50% chance that a person clicking on a random link will be directed to the document with the

0.5 PageRank.
Sim]iiii'iéd*ﬂl'g;ot‘ithm:

Assume a sma}l__uhiverse of four web pages: A, B, C and D. The initial approximation of
PangRank would be evenly divided between these four documents. Hence, each document would
begin with an estimated PageRank of 0.25.

In the original form of PageRank initial values were simply 1. This meant that the sum of all
Pages was the total number of pages on the web. Later versions of PageRank (see the formulas
b?lOW) would assume a probability distribution between 0 and 1. Here a simple probability
distribution will be used- hence the initial value of 0.25.
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If pages B, C, and D each only link to A, they would each confer 0.25 PageRank to A. All
PageRank PR() in this simplistic system would thus gather to A because all links would be

pointing to A.
PR(A) = PR(B) + PR(C) + PR(D).

This is 0.75.

Suppose that page B has a link to page C as well as to page A, while page D has links to all three
pages. The value of the link-votes is divided among all the outbound links on a page. Thus, page
B gives a vote worth 0.125 to page A and a vote worth 0.125 to page C. Only one third of D's
PageRank is counted for A's PageRank (approximately 0.083). '

_ PR(B) PR(C) , PR(D)

PR(A) : : b

In other words, the PageRank conferred by an outbound link is equal to the document'’s own
PageRank score divided by the normalized number of outbound links L(') (it is assumed that
links to specific URLs only count once per document). h

PR(B) PR(C) PR(D)
I(B) & IC) WDy

PR(A) =

In the general case, the PageRank value for any page u can be expressed as:

PR(v)
L(v)

PR(u) = Z

'UEBu

i.e. the PageRank value for a page wis dependent on the PageRank values for each page v out of
the set B, (this set contains all pages linking to page u), divided by the number L(v) of links from
pagggl® U |

Damping Factor:

The PageRank theory holds that even an imaginary surfer who is randomly clicking on links will
eventually stop clicking. The probability, at any step, that the person will continue is a damping
factor d. Various studies have tested different damping factors, but it is generally assumed that
the damping factor will be set around 0.85.

T,h‘? damping factor is subtracted from 1 (and in some variations of the algorithm, the result is
divided by the number of documents (N) in the collection) and this term is then added to the
product of the damping factor and the sum of the incoming PageRank scores. That is,




B 1-d (PR(B) , PR(C) | PR(D) )

N L(B) L(C) L(D)
o any page's PageRank is derived in large part from the PageRanks of other pages. The

damping factor adjusts the derived value downward. The original paper, however, gave the
following formula, which has led to some confusion:

PR(B) PR(C) PR(D)
1“d+d(L(B) ST (o VR 1) *)

PR(A) =

The difference between them is that the PageRank values in the first formula sum to one, while
in the second formula each PageRank gets multiplied by N and the sum' becomes N. A statement
in Page and Brin's paper that "the sum of all PageRanks is one" and clalms by other Google
employees support the first variant of the formula above. ;

is weighted by the total number of web pages So, in this version PageRank is an expected value
for the random surfer visiting a page, when he restarts this procedure as often as the web has
pages. If the web had 100 pages and a page had a PageRank value of 2, the random surfer would
reach that page in an average twice if he restarts 100 times. Basically, the two formulas do not
differ fundamentally from each other. A PageRank which has been calculated by using the
former formula has to be multiplied by the total number of web pages to get the according
PageRank that would have been calculated by using the latter formula. Even Page and Brin

~ mixed up the two formulas in their most popular paper "The Anatomy of a Large-Scale

~  Hypertextual Web Search Engine", where they claim the latter formula to form a probability
distribution over web pages with the sum of all pages' PageRanks being one.

Google recalculates PageRank scores each time it crawls the Web and rebuilds its index. As
Google increases the number of documents in its collection, the initial approximation of

i
ik, P
i

The f?‘lmula uses a model of a random surfer who gets bored after several clicks and switches to
a ranﬂem page. The PageRank value of a page reflects the chance that the random surfer will
land on that page by clicking on a link. It can be understood as a Markov chain in which the
states are pages, and the transitions are all equally probable and are the links between pages.

~ Ifapage has no links to other pa es, it becomes a sink and therefore terminates the random
r p g 3 . .

| surﬁ_ng process. If the random surfer arrives at a sink page, it picks another URL at random and
. continues surfing again.

When calculating PageRank, pages with no outbound links are assumed to link out to all other
Pages in the collection. Their PageRank scores are therefore divided evenly among all other
Pages. In other words, to be fair with pages that are not sinks, these random transitions are added
10 all nodes in the Web, with a residual probability of usually d = 0.85, estimated from the
freclueney that an average surfer uses his or her browser's bookmark feature.

freee
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So, the equation is as follows:

PR(p,)
S (pj)

PR(p;) A +d
)T : ;

where P1,D2;+++-PN are the pages under consideration, M(p;) is the set of pages that link to p;,
L(pj) is the number of outbound links on page Pj, and N is the total number of pages.

The PageRank values are the entries of the dominant eigenvector of the modiﬁfe'c'luaéljacency
matrix. This makes PageRank a particularly elegant metric: the eigenvectoris

PR(p1)
PR(Pz)

PR(px)

where R is the solution of the equation
[(1-d)/N] . [lpup) Epup) - Hpupw)]
(l==d)f ¥ ((pa, 1) : B

: i, " F(]JUPJ)
[(-D)/Ml 5, Lepher) (o, pw))

+d|

e a2

where the adjacency function F(p“ Pi )is 0 if page p;j does not link to P;, and normalized such
that, for each j N

TN eAY )
b, ;

Le. the elements Qf each column sum up to 1, so the matrix is a stochastic matrix (for more

details see the computation section below). Thus the This is a variant of the eigenvector
- Centrality measure used commonly in network analysis.

& Because of the large eigengap of the modified adjacency matrix above, 8] the values of the
PageRank eigenvector are fast to approximate (only a few iterations are needed).

As aresult of Markov theory, it can be shown that the PageRank of a page is the probability of

 being at that page after lots of clicks. This happens to equal t ! where t is the expectation of the
 humber of clicks (or random jumps) required to get from the page back to itself.
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The main disadvantage is that it favors older page:s,‘beca_use anew page, even a very good one,
will not have many links unless it is part of an existing site (a site bgmg a densely conpected set
of pages, such as Wikipedia). The Google Directory (1tsel.f a denvatw; of the Open D1re:ct0ry
Project) allows users to see results sorted by PageRank vylthln categories. Th.e Google Directory
is the only service offered by Google where PageRank directly determines Fhsplay order. In
Google's other search services (such as its primary Web search) PageRank is used to weight the
relevance scores of pages shown in search results.

Qeveral strategies have been proposed to accelerate the computation of PageRank.

Various strategies to manipulate PageRank have been employed in concerted efforts to improve
search results rankings and monetize advertising links. These strategies have severely impacted
the reliability of the PageRank concept, which seeks to determine which documents are actually
highly valued by the Web community.

Google is known to penalize link farms and other schemes designed to artificially inflate
PageRank. In December 2007 Google started actively penalizing sites selling paid text links.
How Google identifies link farms and other PageRank manipulation tools are among Google's
trade secrets. - : -

Computation:

To summarize, PageRank can be either computed iteratively or algebraically. The iterative method can be
viewed differently as the power iteration method, or power method. The basic mathematical operations
performed in the iterative method and the power method are identical.

Iterative:

In the former case, at t = 0.,. an initial probability distribution is assumed, usually

167,
PR(Hf;'O)_F}v '_

At each time step, the c_:o_iﬁputation, as detailed above, yields

:_ 1~d PR(pj;t
PR(p;t+1) = ——+d 2 ‘%:f))
] . pi €M (pi) Pi

Or In matrix notation

1-d
R(i+1) = dMR(t) + —1
| (t+1) Gt~

[40]
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where Ri(t) = PR(pi; t)and 1is the column vector of length N containing only ones.

The matrix Mis defined as
| 1/L(p;), if j links toz

d 0, otherwise

1165

M= (K""IA)t,

where A denotes the adjacency matrix of the graph and K is the diagonal matrix with the
outdegrees in the diagonal. y

The computation ends when for some small €
IR(t+ 1) - R()] <¢.
i.e., when convergence is assumed.

Algebraic:

In the latter case, for £ — ©OC(i.¢., in the steady state), the above equation (*) reads

with the identity matrix I,

e fution exists and is unique for (0 < d < 1. This can be seen by noting that Mis by
._Construction a stochastic matrix and hence has an eigenvalue equal to one because of the Perron-
Frobenius theorem.
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Power Method:

If the matrix M is a transition probability, i.¢., column-stochastic with no columns consisting of

just zeros and Ris a probability distribution (i.c. IR| =1L ER = lwhere Eis matrix of all

ones), Eq. (**) is equivalent to

- (dM ¥ le) R — MR

Hence PageRank Rs the principal eigenvector of M A fast and easy way to compute thlS is

using the power method: starting with an arbitrary vector X(0), the operator M1s apphed in
succession, i.€., .

o(t+ 1) = Ma(t),
until
|x(t+ 1) = x(t) | <&

Note that in Eq. (***) the matrix on the right-hand side in the parenthesis can be interpreted as

il
-TV—EI: (1~ d)Pl"

where Pis an initial probaBil_ity distribution. In the current case

1
P = =
N1

FmaIly, if Mhas columns with only zero values, they should be replaced with the initial
probability vector P. In other words

M =M+ D,
where the matrix Dis defined as
D= DP

with
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1, if L(p:) =0

: 0, otherwise
In this case, the above two computations using Monly give the same PageRank if their results
are normalized:

B Riterative b Ralgebraic
I l:pawer = o
| Riwrative I ‘ Ralgebraicl :

Efficiency:

Depending on the fraqlework used to perform the computatioﬁ;':t:}'ie exact impiementation of the
methods, and the requ'lred accuracy of the result, the computeiti_on time of the these methods can
vary grlc:a;ly. Esually if the computation has to be performed many times (i.e., for growing
networks) or the network size is large, the algebraic computation is slo i

: " ) L5 slower
hungry due to the inversion of the matrix. L A L
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Chapter 4. Sample Codes

4.1 Crawling

Applet Frame

public void init() {

panelMain = new Panel();

panelMain.setLayout(new BorderLayout(5, 5));

Panel panelEntry = new Panel();

panelEntry.setLayout(new BorderLayout(5, 5));

Panel panelURL = new Panel();

panelURL.setLayout(new F IowLayout(FlowL_ayout._LEFT,' 6, 5))i
Label labelURL = new Label("Starting URL: .", LabelRIGHT), _ L
panelURL.add(labelURL); K 4 11
textURL = new TextField("", 40); !
panelURL.add(textURL);

panelEntry.add("North", panelURL);

Panel panelType = new Panel();

panelType.setLayoﬁf(ngﬂ :Ii;igvf{Layout(FlowLayout.LEFT, 3, S

"”""";"ﬁbelType =new inbéi'(;"'Content type: ", Label. RIGHT);

1Type.add(label Type);
choiceType = new Choice();
choiceType.addItem("text/html");
panelType.add(choiceType);

panelEntry.add("South", panelType);

PanelMain.add("North", panelEntry);
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Panel panelListButtons = new Panel();

panelListButtons.setLayout(new BorderLayout(5, 5));
Panel panelList = new Panel();
panelList.setLayout(new BorderLayout(5, 5));

Label labelResults = new Label("Search results");
panelList.add(“North", labelResults);

panel panelListCurrent = new Panel();
panelListCurrent.setLayout(new BorderLayout(5, 5));
listMatches = new List(10);
panelListCurrent.add("North", listMatches);
labelStatus = new Label("");
panelListCurrent.add("South", labelStatus);
panelList.add("South", panelListCurrent);
panelListButtons.add("North", panelList);

Panel panelButtons = new Panel(); |

Button buttonSearch = né@QButton(SEARCH);

butfonSearch.add ActionListener(this);

pal}nguttons}fédd(ﬁ@ittonSearcﬁ);

Button button_.:Stof)t_%: new Button(STOP);
buttonStop.addActiéf;Listener(this);
panelButtons.add(buttonStop);
panelListButtons.add("South", panelButtons);
PanelMain.add("South", panelListButtons);
add(panelMain);

. SetVisible(true);
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repaint();
vectorToSearch = new Vector();

vectorSearched = new Vector();

vectorMatches = new Vector();

UR_LConnection.setDefaulmllowUserInteraction(fa]se);
WebFrame

http://java.su n.co

Robot Exclusion Protocol Check

boolean robotSafe(URL url) {




String strHost = url.getHost();

String strRobot = "http://" + strHost + "/robots.txt";

URL urlRobot;

try {
urlRobot = new URL(strRobot);

} catch (MalformedURLException ¢) {

return false;

}

String strtCommands;

try { .
InputStream urlRobotStream = uriRobot.openStreafﬁQ_;
byte b[] = new byte[1000]; @ ' |
int numRead = urlRobotStream.read(b); ‘ !
sttCommands = new String(b, 0, numRead);
while (numRead !=-1) {
if (Thread.current’l"_l;ggééé_ != searchThread)

break;

Read = urlR_cf)bot:séft}qg,@;'read(b);

i ‘Iilg;gcR_cad I=-1) {

'5, String newé@mamds = new String(b, 0, numRead);
strCommands += newCommands;

J
J

urlRobotStream.close();

=B

|} catch (IOException ¢) {

(47]
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String strURL = url.getFile();

int index = 0;

while ((index = strCommands.indexOf(DISALLOW, index)) !=-1) {
index += DISALLOW.length();
String strPath = strCommands.substring(index);
StringTokenizer st = new StringTokenizer(strPath);
if (!st.hasMoreTokens())
break;
String strBadPath = st.nextToken();

if (strtURL.indexOf(strBadPath) == 0)

return false;

} return true;

}
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4.2 Indexing

Primary Index

* Add a character to the word being stemmed. When you are finished adding characters, you
can call stem(void) to stem the word.

public void add(char ch)
{ if (1 == b.length)
{ char[] new_b = new char[i+INC];
for (int ¢ = 0; ¢ <1i; c++) new_b[c] = b[c];
b =new_b;

}
b[i++] = ch;

* Adds wLen characters to the word being ktfé_mmed contained in a portion of a char[] array.
This is like repeated calls of add(char ch), but faster.

public void add(char[] w, int wlLen)
{ if (itwLen >= b.length)
{ char[] new b = new char[i+wLen+INC];
for (intc =0; ¢ <i; c++) new_b[c] = b[c];
b=new b; .

for (1nt c=0;c< wLen c++) b[i++] = w[c];

mter"lial buﬂ‘er can be retrieved by getResultBuffe and getResultLength (which is generally
more eﬁ'icjgm, Uk,

public Strmg toString() { return new String(b,0,i_end); }

public int getResultLength() { return i_end; }

public char{] getResultBuffer() { return b; }

private final boolean cons(int i)

{ switch (b[i])

{ case'a": case 'e': case 'i": case '0": case 'u': return false;

case'y": return (i==0) ? true : !cons(i-1);
default; return true;
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# m() measures the number of con
sequence and v a vowel sequence, and <.
<c><y>  gives 0
<c>ve<v> gives 1
<¢c>veve<v> gives 2
<¢>veveve<v> gives 3

private final int m()

{ intn=0;
inti=0;
while(true)

{ if (i >j) return n;
if (! cons(i)) break; i++;
!

i+t
while(true)
{ while(true)
{ if (i1 >]) return n;

if (cons(i)) break;
i+

} :

1++;

nt++;

while(true)

{ if (> ) return n;
~if (! cons(i)) break;
iht;

}

I

private final boolean vowelinstem()

{ inti; for (i = 0; i <=j; i++) if (! cons(i)) return true;
return false;

}

*dwblec(j) is true <=> j,(j-1) contain a double consonant.
private final boolean doublec(int j)
{ if (j < 1) return false;

| if (b[j] !=b[j-1]) return false;

(50]
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return cons(j);

}

# eve(i) is true <=> i-2,i-1,i has the form consonant - vowel - consonant and also if the second
¢ is not w,x or y. this is used when trying to restore an e at the end of a short word. e.g. cav(e),
lov(e), hop(e), crim(e), but snow, box, tray.

private final boolean cve(int i) .
{ if (1<2 || !cons() || cons(i-1) || cons(i-2)) return false;
{ int ch = b[i]; _
if (ch =="'w'|| ch=="x'|| ch =="y') return false;. *
}

return true;

}

private final boolean ends(String s)
{ int 1 = s.length();
int 0 = k-1+1;
if (0 < 0) return false;
for (int i = 0; i <1; i++) if (b[o+i] != s.charAt(i)) return false;
j=kl
return true;

}

private final void setto(String s)

{ int | = s.length(); _

into = j+1; ! o

for (inti=0; i < [; i++) b[o+i] = s.charAt(i);
k=j+;
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Merge

class merge

{

public static Pattern pattern; ;
public static BufferedWriter buffered Writer;

public static String mergelndex(String splitl, String split2)
{ Matcher matcher] = pattern.matcher(split1), matcher2 = pattern,matcher(split2);

StringBuffer stringBuffer = new StringBufter();

Double doublel, double2; ._
boolean checkl = matcherl.find(), check2 = matcher2.find();

while(checkl == true && check2 == true)
{ el

doublel = Doublc.pars_e_:DOub]e(‘fﬁétcﬁé’rl .group(2));
double2 = Double.parseDouble(matcher2.group(2)); 1

if(doublel < double2)

stringBuffer.append(matcher2.group(0) + " ");
check2 = matcher2.find();

S
else if(doublel > double2)

: stringBuffer.append(matcherl.group(0) + " ");
. checkl = matcherl.find();

b ( > E:f;?;;e;-‘: i

stringBuffer.append(matcherl.group(0) + " " + matcher2.group(0) + " ");
checkl = matcherl.find();
check2 = matcher2.find();

while(check1 == true) i

! |
stringBuffer.append(matcherl.group(0) + " ");

\ checkl = matcherl.find();

while(check2 == true)
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stringBuffer.append(matcher2.group(0) + " );
check2 = matcher2.find();

}

return stringBuffer.toString();

}

public static void main(String args[])
{ .
pattern = Pattern.compile("\(([*,11),([M\V]H\)");

i
BufferedReader bufferedReader] = newBufferedReédqr__(neWFileReader(args[O])),
bufferedReader2 = new BufferedReader(new FileReader(args[1]));
bufferedWriter = new BufferedWriter(new FileWriter(args[2]));
String s1 = bufferedReaderl .reacilL'iﬁé('),; s2 = bufferedReader2.readLine();
while(s 1= null && s2 1= null) '
String[] splitl = s1.split(":"), split2 = s2.split(":");

if(splitl ij.equals(sp]itZ[O]))

{ )
sl = mergelndex(split1[1], split2[1]);
bufferedWriter.write(split1[0] + ": " +s1 + "n");
sl = bufferedReader1.readLine();
: A _ 52 = bufferedReader2.readLine();

else if(split1[0].compareTo(split2[0]) < 0)
{

buffered Writer.write(s1 + "\n");
sl = bufferedReader]1.readLine();

}
clse
i {
buffered Writer.write(s2 + "\n");
s2 = bufferedReader2.readLine();
}

(53]




while(s1 != null)

bufferedWriter.write(s1 + "\n");
s1 = bufferedReader].readLine();

}
while(s2 != null)

buffered Writer.write(s2 + "\n");
s2 = bufferedReader2.readLine();

}
1 bufferedReader1.close();
| bufferedReader2.close();
buffered Writer.close();
'; catch (IOException ¢)
{ ;
e.printStackTrace(); =
}
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. éﬁhdaﬁ Index

 class secondaryIndex
{ public static void main(String[] args)

{
try

{ .

BufferedReader bufferedReader = new BufferedReader(new FileReader(args[0]));

BufferedWriter bufferedWriter = new Buffered Writer(new FileWriter(args[1]));
String string; 4

long offset =0, ¢ = 0;

while(true)

{ 14
string = bufferedReader.readLine();

if(string == nﬁﬂ)
break;

cHéh;

A HEN

] if(c =¥' ‘1"000)
{ %

c=0;"

set = offset + string.length() + 1;

-,pgfferedWriter.write(stn'ng.split(“:")[0] Fitkoffset +n )

" bufferedReader.close();
bufferedWriter.close();

tch (I0Exception e)

e.printStackTrace();
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i 4.3 Retrieval
String[] queryWordSplit = queryWord.split(":");

queryWordSplit[l] = (new retrieval()).Stemmer(queryWordSplit[1]);

if(qucryWordSplit[O].equals("content"))

/{/ System.out.println("content: " 4+ queryWordSplit[1]);
int index = Arrays.binarySearch(secondaryGlobalIndexKeySet, queryWordSplit[1]);

long offset;

if(index >= 0)
{

offset = (Long)secondary(}ioballndex.'gét
(queryWordSplit[1]);

if(-index - 2 < 0)

{
: offset = 0;

o )

‘else
{

~offset = (Long)secondaryGlobalIndex.get
(secondaryGloballndexKeySet[-index - 2]);

}

V

glob“é{llndexFile.seek(offset);

String string = "", stringl ="", documentID = "";
boolean ¢ = false;

int count = 0,

double termFrequency;

I while(count < 1000)
while(true)

ey (

string = globallndexFile.readLine();

if(string == null)
break;




if(c)

countt+t;

if(queryWordSplit[1].equals(string.split(":")[O]))
{

¢ = true;
break;

string] = string.split(":")[1];

Matcher matcher = pattem.matche’r(string 1);
while(matcher.find()) :

documentID = matcher.group(l);

termFrequency = Double.parseDoublé(matcher.group(2));

if(decumentsRetrieved.containsKey(documentID))

{

documentsRetrieved.put(documentID,
(Double)documentsRetrieved. get(documentID) +
termFrequency);

}

else

documentsRetrieved.put(documentID, termFrequency);

}
}
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Result And Conclusion

On the successful completion of our final year project there are many things that
we have learnt. We have achieved to complete successfully most of our objectives
in a very time and phase oriented manner. At the end of the day we are able to
draw many conclusions from our effort. The crawler is able to harvest data from
particular web page and store it in the page dump. The data from the web pages
stored in the page dump has been successfully parsed and stored in indexes which
makes the searching for a particular word very easy. When a query 1sput in the
search engine it searches for the word in the stored index and looks forthe A7
particular webpage where the word can be found. After this it provides a list of
pages to which a particular query may be connected to . The program is able to
produce results though not optimized but in a rough fashion. It is not possible to
point which is the correct answer for the query made by the user because it is not
an intelligent search engine. So its upto the uséf};tp decide which result is of worth
to him and which is not. Though many different ranking techniques are available
for usage but none of them is perfect. Each technique has got its own set of
limitations and advantages .
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