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Summary

Interconnection networks enable fast data communication between components of a digital
system. Today, interconnection networks are used in a variety of applications such as switch and
router fabrics, processor-memory interconnect, I/O interconnect, and on-chip networks, to name
a few.

The design of an interconnection network has three aspects—the topology, the routing algorithm
used, and the flow control mechanism employed. The topology is chosen to exploit the
characteristics of the available packaging technology to meet the requirements (bandwidth,
latency, scalability, etc.) of the application, at a minimum cost. Once the

topology of the network is fixed, so are the bounds on its performance. For instance, the
topology determines the maximum throughput (in bits/s) and zero-load latency (in hops)

of the network. The routing algorithm and flow control must then strive to achieve these

performance bounds.

The function of a routing algorithm is to select a path to route a packet from its source

to its destination. In this thesis, we demonstrate the significance of the routing algorithm
used in the network towards achieving the performance bounds set by the topology. Central
to this thesis, is the idea of load-balancing the network channels. A naive routing algorithm
that does not distribute load evenly over all channels, stands to suffer from sub-optimal
worst-case performance. However, unnecessary load-balancing is overkill. Spreading traffic
over all channels when there is no uneven distribution of traffic, leads to sub-optimal
best-case and average-case performance. This thesis explores routing algorithms that strive
to achieve high worst-case efficiency without sacrificing performance in the average or
best-case.

While performance metrics such as average latency and worst-case throughput are key
parameters in evaluating a network, there are several other important measures such as
amount of packet reordering, statistical guarantees on delay and network buffer occupancy,
to name a few. In the last part of this thesis, we propose a method to analyze the performance
of a class of load-balanced networks over these performance metrics.
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CHAPTER 1

INTRODUCTION

1.1 A brief introduction to interconnection networks

An interconnection network is a programmable system that enables fast data communication
between components of a digital system. The network is programmable in the sense that it
enables different connections at different points in time. The network is a system because it is
composed of many components: buffers, channels, switches, and controls that work together to
deliver data.

Eight terminal nodes are connected to the network with bidirectional channels. When a source
Terminal wants to communicate with a destination terminal, it sends data

in the form of a message into the network and the network delivers the message.

Using the same resources, the network can deliver the above message in one cycle, and a
different message in the next cycle.

The interconnection network may be realized in several ways. One approach
is to provision the system such that there is a possible point-to-point connection
between every pair of terminals.

Interconnection Network
MM““——-‘—W&_.\ _,,,w._...-_.-»——-"“'"'_‘_‘_d—)‘

Figure 1.1: The functional view of an interconnection network. Terminals 7 through 7
are connected to the network with bidirectional channels.

As illustrated in Figure 1.2, one way of implementing such an arrangement is by connecting the
terminals to a crossbar switch. At every cycle, the crossbar connects cach source terminal with
one distinct destination terminal.
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Figure 1.2: Realizing the 8-node network using a crossbar switch

An alternative way to implement the network may be to connect each terminal

to a router node, and connect the router nodes in a ring using bidirectional channels
(Figure 1.3). While this implementation connects the terminals with much less wiring than
may be required in the crossbar realization, the drawback is that all terminals no longer

i have point-to-point connections. For this reason, this implementation is called a multi-hop
network,

; Trrespective of the way the interconnection network is realized, the network itself plays
; a vital role in determining the performance of the system as a whole. We next examine
some digital systems wherein we might encounter interconnection networks and explain

; why the network’s performance is a key component of the performance of the system as a
whole.

I

Figure 1.3: Connecting the 8 nodes in a ring




1.2 The importance of interconnection networks

Today, interconnection networks are used in almost all digital systems that have two or

1 more components to connect. In a computer system, the “terminal nodes” from the previous
section could be processors and memories, or I/O devices and controllers, communicating
with each other. They could also be input and output ports in the case of communication
switches and network routers. Interconnection networks may also connect sensors and
actuators to processors in control systems, host and disk nodes in /O networks and on-chip
cores in chip multiprocessors.

The performance of most digital systems today is limited by their communication or
interconnection, not by their logic or memory. Hence, it is imperative that the underlying
interconnection network perform efficiently to improve the efficacy of the entire system.
For instance, in a computer system, the interconnection network between processor and
memory determines key performance factors such as the memory latency and memory
bandwidth. The performance of the interconnection network in a communication switch
largely determines the capacity (data rate and number of ports) of the switch.

e,

The performance of an interconnection network can be measured using a rich set of

metrics, The most common metrics are throughput and latency. Other important metrics
include reliability, graceful degradation in the presence of faults, in-order delivery of data
packets, and delay guarantees in communicating data. To meet the performance specifications
of a particular application, the topology, routing, and flow control of the network must

be implemented. The topology of the network refers to the arrangement of the shared set

of nodes and channels. Once a topology has been chosen, the routing algorithm determines

a path (sequence of nodes and channels) a message takes through the network to reach its
destination.

Finally, flow control manages the allocation of resources to packets as they

progress along their route. The topology sets limits on the performance of the network
while the routing and flow-control strive to realize these performance limits.

In this thesis, we focus on the routing of packets through the network. In other words,
given the topology, and assuming ideal flow control, we attempt to route packets through
the network to give high performance on several metrics.




1.3 The need for load-balanced routing

The routing method employed by a network determines the path taken by a packet from

a source terminal node to a destination terminal node. Networks with high path diversity
offer many alternative paths between a source and destination. Oblivious routing algorithms
choose between these paths based solely on the identity of the source and destination of the
message while adaptive algorithms may base their decision on the state of the network.

A good routing algorithm makes its route selection in a manner that exploits locality to
provide low latency and high throughput on benign traffic. Many applications also require
the interconnection network to provide hi gh throughput on adversarial traffic pattemns. In
an Internet router, for example, there is no backpressure on input channels, Hence, the
interconnection network used for the router fabric must handle any traffic pattern, even the
worst-case, at the line rate, or else packets will be dropped. To meet their specifications,
I/O networks must provide guaranteed throughput on all traffic patterns between host and
disk nodes.

A routing algorithm must strike a balance between the conflicting goals of exploiting
locality on benign traffic while load-balancing on adversarial traffic. To achieve high
performance on benign traffic, Minimal Routing (MR )—that chooses a shortest path for each

packet — is favored. MR, however, performs poorly on worst-case traffic due to load imbalance.

With MR, an adversarial traffic pattern can load some links very heavily while

leaving others idle. To improve performance under worst-case traffic, a routing algorithm

must balance load by sending some fraction of traffic over non-minimal paths hence, destroying
some of the locality.
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Figure 1.4: The 8 node ring with unidirectional channels

Through the most part of this thesis, we shall propose routing algorithms that strive
to achieve good worst-case performance without sacrificing the locality inherent in benign
traffic. '
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1.4 Problem Specifications

Since the dawn of networking, the need to make stable, fast, fault-tolerant systems has always
been there. Researchers and scientists have been working on various issues to make a
congestion-free traffic flow,

Its seen that one way for processors to communicate data is to use a shared memory and shared
variables. However, this is unrealistic for large number of processors. A more realistic
assumption is that each processor has its own private memory and data communication takes
place using message passing via an interconnection network. To deal with the problem of
congestion on Torus, X-Torus topologies, we first tested and simulated a set of oblivious and
adaptive routing algorithms, and later devcloped two new adaptive algorithms for each topology,
which shows better performance during high traffic flow, or congestion.




CHAPTER 2
SURVEY

The interconnection network plays a central role in determining the overall performance of a
multicomputer system. If the network cannot provide adequate performance, for a particular
application, nodes will frequently be forced to wait for data to arrive,

Some of the more important networks include :
Fully connected, or all-to-all

Mesh

Rings

Hypercube

2.1 Networks

2.1.1 Fully connected or all-to-all

A fully connected network is a communication network in which each of the nodes is connected
to each other. A fully connected network doesn’t need to use switching nor broadcasting,
However, its major disadvantage is that the number of connections grows quadratically with the

number of nodes, per formula

2

n- —n

2

and so is extremely impractical for large networks.
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6 Nodes

15 Links

Figure 2.1

P —

-

-




Each node has N-1 connections ( N-1 nearest neighbours) giving a total of N(N-1) /2
connections for the network.

2.1.2 Mesh ( Torus )

Mesh networking (topology) is a type of networking where each node must not only capture
and disseminate its own data, but also serve as a relay for other sensor nodes, that is, it must
collaborate to propagate the data in the network.

A mesh network can be designed using a flooding technique or a routing technique. When using
a routing technique, the message propagates along a path, by opping from node to node until the
destination is reached. For insuring all its paths' availability, a routing network must allow for
continuous connections and reconfiguration around broken or blocked paths, using self-

healing algorithms.
a)
7
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Figure 2.2 (a), (b), (c)

2.1.3 Rings




A ring network is a network topology in which each node connects to exactly two other nodes,
forming a single continuous pathway for si gnals through each node - a ring. Data travels from
node to node, with each node along the way handling every packet.

Because a ring topology provides only one pathway between any two nodes, ring networks may

be disrupted by the failure of a single link. A node failure or cable break might isolate every
node attached to the ring.

Figure 2.3
2.1.4 Hypercube Connection ( Binary n-Cube )

Hypercube networks consist of N=2"k nodes arranged in a k dimensional hypercube.

r4F =i T L.
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O(Iu::rg2 n) longest path

O(log, n) average path

Oflog, n) connections
No bottle-neck

Figure 2.4 |
K dimensional hypercube is formed by combining 2K-1 dimensional hypercubes, and connecting -
‘ the corresponding nodes. Hence, we see that hypercubes are recursive. y

4D Hypercube or Binary 4-Cube

Figure 2.5




2.2 Routing Algorithms

A routing algorithm maps a source-destination pair to a path through the network from the
source to the destination.

°  Oblivious algorithms select the path using only the identity of the source and destination
nodes.

® Adaptive algorithms may also base routing decisions on the state of the network. Both
oblivious and adaptive algorithms may use randomization to select among alternative
paths.

® Minimal algorithms route all packets along some shortest path from source to destination

®  Non-minimal ones may route packets along longer paths.
2.2.1 Valiant’s Randomized Routing
Valiant’s randomized algorithm (VAL) is a two-phase randomized routing algorithm.

® In the first phase, packets are routed from the source to a randomly chosen intermediate
node using minimal routing.

® The second phase routes minimally from the intermediate node to the destination.

&  ma
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2.2.2 Random Ordered Multiphase Minimal Routing

In VALIANT random algorithm, we found the intermediate node anywhere inside the k-ary 2-
cube network. In this routing, we select an intermediate node inside the minimal quadrant only.

T apeg—

Figure 2.7
2.2.3 Randomized Local Balance (RLB)

In multiple dimensions RLB works, as in the one dimensional case, by balancing load across
multiple paths while favoring shorter paths. Unlike the one dimensional case, however, where
there are just two possible paths for each packet — one short and one long, there are many
possible paths for a packet in a multi-dimensional network. RLB exploits this path diversity to
balance load.

e == = == ==

To extend RLB to multiple dimensions, we start by independently choosing a direction

for each dimension just as we did for the one-dimensional case above. Choosing the directions
selects the quadrant in which a packet will be routed in a manner that balances

load among the quadrants.

To distribute traffic over a large number of paths within each quadrant, we route first from the
source node, to a randomly selected intermediate node, within the selected quadrant, and then
from source to the destination.

For each of these two phases we route in dimension order, traversing along one dimension before
starting on the next dimension, but randomly selecting the order in which the dimensions are
traversed.
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Figure 2.9- Routing using RLB with backtracking




b A comparison of the routing technique, with and without backtracking is illustrated in Table 2.1.

Table 1

LTraﬂic [RLB Backtrack_[

NN 2.33 2.9
UR 0.76 0.846
BC 0.421 0.421
TP 0.565 0.50
TOR | 0.533 04
WwC 0.313 0.27

- A W F - - -

F 1




CHAPTER 3

TECHNICAL COMPOSITION

The following are the tools and packages used in the completion of the project.

3.1 NS-2 Simulator

3.1.1 Background

NS simulator is based on two languages: an object-oriented simulator, written in C++; and a
OTel ( an object- oriented extension of Tcl ) interpreter, used to execute user’s command scripts.

NS has a rich library of network and protocol objects. There are two class hierarchies: the
compiled C++ hierarchy, and the interpreted OTecl one, with one-to-one correspondence between
them. '

The compiled C++ hierarchy allows us to achieve efficiency in the simulation and faster
exccution times. This is, in particular, useful for the detailed definition and operation of
protocols. This allows one to reduce packets and event processing time.

Then is the OTel script, provided by the user, we can define a particular network topology, the
specific protocols, and applications that we wish to simulate and forms the output that we wish to
obtain from the simulator. The OTcl can make use of the objects compiled in C++ trough, and
OTecl linkage, that creates a matching of OTcl object for each of the C-++ objects.

NS is a discrete event simulator, where the advance of time depends on the timing of events,
which are maintained by the scheduler. An event is an object in the C++ hierarchy, with a unique
id, a schedule time and the pointer to an object that handles the event. The scheduler keeps an
ordered data structured with the events to be executed, and fires them one by one, invoking the
handler of the event.
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3.1.2 NS-2:Directory Structure

Architecture view of NS-Figure 3.1

Event ns-2
Scheduler
tclel 8 g
B
otcl =
5 A
tcl8.0 =1

Figure 3.2
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CHAPTER 4

X-ToRUS TOPOLOGY AND ITS GENERALIZATION

X-Torus is relatively a new interconnection network. An X-Torus topology is an enhancement of
torus network by adding some Cross Links. Hence, the distant nodes can be reached by using

. these links with fewer hops compared to the torus network. Comparisons with some popular
networks such as 2D Mesh, 2D Torus. 3D Torus and E-Torus show that X-Torus has shorter
diameter, shorter average distance and larger bisection width. It also retains advantages such as
symmetric structure, constant degree and scalability of the torus network. Therefore, new
algorithms and formulae need to be formulated and tested for X-Torus that utilize these Cross
Links in avoiding congestion and deadlocked channels. Below, in section A and B, formulae 1-4
and 8-11 respectively, have been developed to create an algorithm which utilizes Cross Links
efficiently to overcome congestion issues, a shortcoming which existed in previous Shortest path
algorithm.

The addition of Cross Links makes it a potentially efficient topology since it is a modification
of Torus by addition of Cross Links, which in many ways improves the overall performance.
Hence we dedicate our research work in coming up with a novel algorithm for X-Torus that
balances the load by optimal utilization of Cross Links. As shown in Figure (4.2), X-Torus
topology is a two-dimension topology and it can be placed in an X-Y frame where each node is
labeled as (a, b).

Definition 4.1 A kyx ky, X-Torus topology is a graph Gy = Ny x Cy, defined in [2] as follows:
Ny ={(@b)0<a<k,0<b<k,)

Cy = ((uarub): (va,vb))l (ua =Vq Nu, = [vb =+ l]n)

U (ua = [va + lk—zx-”kx nu, = [vb + [k?y”ky) n ((ua,ub), (va,vp)e Nx)

Where ky 2 2,ky > 2 and (ug, wp) and (v, Vp) are the coordinates of the nodes u and v

respectively. In this paper, we only consider the case of Ky = K, = k.
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Fig. 4.2. Illustration of Even X-Torus Topology (4x4).

A. When k is Odd

The degree of X-Torus topology is dependent on the parity of k. If k is Odd, such as shown in
Figure 4.1, the degree for all the cases remains 6.

Theorem 4.1: For a k x k X-Torus topology, the degree is 6 (where k is odd).

Proof: In the network, it is observed that the nodes (0, |k/2)), (0, |k/2] —1), 0, |k/2] =2),...0,
0), ...,(0, —|k/2]) are connected to other nodes via two Cross Links. The first Lk /2] nodes out of
the above k nodes are connected to two Cross Links; one in LBD to the node (a—|k/2], b—|k/
2]); and the other in LFD to the node (a+|k/2|, b—|k/2] —1). The central node (0, 0) is
connected to one Cross Link in the UFD to the node (a+|k/2], b+|k /2]) and the second in LBD
to the node (a—|k/2], b—|k/2]). The next |k/2] nodes are connected to two Cross Links; one in

UFD to the node (at|k/2], b+|k/2]) and the other in UBD to node (a—|k /2], b+|k/2]+1). In 1
addition, the rest of the nodes are connected to other nodes via one Cross Link. Thus for the X
calculation of degree we consider only the above-mentioned nodes. Moreover, every node has
> four neighbors, so the degree will be 4 + 2 = 6.
W

X-Torus uses links to connect the node (a, b) and the node ( [a -+ Elk ,b+ EJKD Fore.g.

considering node (0, 2), which is connected to two Cross Links, using Lower forward direction
and Lower backward direction, one reaches (2, -1) and (-2, 0) respectively. The formulae (1-4)
are derived for the evaluation of end of possible Cross Links, where source is (g, b) and k is

- Upper forward direction (UFD) = (a + ([k/21), b + (Lk/2]))
Lower forward direction (LFD) = (a + (|k/2])), b — (lk/2]) — 1) v
Upper backward direction (UBD) = (a — (|k/2[), b + (Lk/2]) + 1) ?
Lower backward direction (LBD) = (a — ([k/2]), b — (lk/2])) ¥
(4)

Using the above set of formulae (1-4) X-Torus topologies can be drawn for higher dimensions
of ke, where k is odd. From the symmetry observed in the pattern of Cross Links we obtain that
there are (|k/2]|+1).( |k/2]+1) Cross Links in the UFD and (lk/2]+1).(lk/2]) Cross Links in the
UBD. Now since the Cross Links between any two nodes are bidirectional, the UFD Cross Link
is same as the LBD Cross Link. Similarly, the UBD Cross Link is same as the LFD Cross Link.




Let My (k) denote the number of Cross Links in a k x k X-Torus topology in the direction ‘d’,
where d can be UFD, LFD, UBD or LBD.

(Uk/2]). (Uk/2]) | d ¢ (UFD, LBD)
M (k) 5
(Lk/21). (Ue/2]) | d e (UBD, LFD)

Hence the general formula for the total number of Cross Links in a k x k X-Torus topology
(odd):

M(k) = (Ue/2]+1).(Lk/21+1) + (Lk/2)+1).(Lk/2])) @
6

Since each Cross Link is connected to two nodes, M(k) is multiplied by 2; and from the result
k (the number of nodes that are connected to two Cross Links) is subtracted. From (6), Total
nodes in the network, N=2x[(|k/2|+1).(lk/2]+1)+(k/2]+1).(lk/2])]-k and It is observed that
N =~ k. This implies that there is no node in the network, which is not connected to a Cross Link,
\ hence the above formulas (1-4) are general for all odd X-Torus topologies.

e

B. When k is Even

If k is Even, shown in Figure (4.2), the degree for all the cases remains 5.

Theorem 4.2: For a k x k X-Torus topology, the degree is 5 (k is even).

Proof: In this network, the Cross Link which connects the node (a, b) and the node ([a+|k/2]]x ,
[b+[k/2]]x) and the Cross Link which connects the node ([a+|k/2]]x , [b+]k/2]]x) and ([[a+|k i/
2|1 +k/2]1], [[b+ke/2] Tk +1k/2]1c]) are the same. Thus every node is connected only to a
single Cross Link. Also every node has four neighbors, so the degree will be 4 + 1 = 5.

The formulas (8-11) are derived for the evaluation of end of possible Cross Links, where source
is (a, b) and when k is Even:

Upper forward direction (UFD) = a + (|k/2]), b + (lk/2])) (8)
Lower forward direction (LFD) =a + (lk/2]),b = (lk/2])) ©) ,
Upper backward direction (UBD) = a — (|k/2]), b + (lk/2])) |
(10)
Lower backward direction (LBD)=a — (|k/2]),b — (lk/2]))
(11)

_




Using the above set of formulae (8-11) X-Torus topologies can be drawn for higher dimensions
of k, where k is even. From the symmetry observed in the pattern of Cross Links we obtain that
there are ([k/2]).( |k/2]) Cross Links in the UFD and (|k/2|).(lk/2]) Cross Links in the UBD.

(le/2D).(Lk/2]) | d e {UFD, LBD}
Ma(k) 12
(lk/2]).(1k/2)) | d e (UBD, LFD}

Hence the general formula for the total number of Cross Links in a k x k X-Torus topology
{even):

M (k) = (lk/2D.Clk/2]) + (k/2]).(Lk/2)) (13)

Since each Cross Link is connected to two nodes, M (k) is multiplied by 2. From (13), Total
nodes in the network, N =2x[(lk/2]).(Lk/2)) + (lk/2]).(lk/2])] and 1t is observed
that N = k2. This implies that there is no node in the network, which is not connected to a Cross
Link, hence the above formulae (8-11) are general for all even X-Torus topologies,
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CHAPTER 5
MAPPED ILLUSTRATION OF THE DISTANCE NODES FROM THE SOURCE

A topology is evaluated in terms of a number of parameters, The following diagram is an
improvement to existing illustration [2] of the distance of nodes from the source, as not only it
shows placement of nodes through hop metric, but through co-ordinate co-relation of nodes, it
adds to intuitiveness. Therefore, this mapping illustration will help us to understand the
symmetry of X-Torus topology and to calculate the number of hops between source and
destination directly.

A. When k is Odd

In Figure (4), we use nodes of different colors to show their respective distances from the source
node (0,0). Like all the nodes that are two hops away from the source (as represented in red
color) helps us in calculating the number of hops between two nodes and calculate their
diameter, as in this case the green-grass nodes are the farthest are (k/2) + 1 hops away from the
source, therefore, (k/2) + 1 becomes the diameter of this network. Since the distance in network
is measured by number of hops traversed, this illustration helps in evaluating distance of various
nodes from source and hence in the development of algorithm, where minimal paths are replaced
by alternate paths during congestion.

Comparing with Figure (2), we can see that number of nodes, one hop distance from source are
6; 4 through vertical/horizontal paths, namely (0, 1), (0,-1), (1, 0), (-1, 0) while 2 through Cross
Links, namely (2,2) and (-2,-2), the nodes are represented in Figure (4) as purple colored circles.
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Fig. 5.1. Mapped Illustration for Odd X-Torus.

AR e s




B. When k is Even
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Fig. 5.2. Mapped Illustration for Even X-Torus.

Similarly, when k Even as in Figure (5), blue nodes are the farthest at a distance of k/2 hops,
therefore, k /2 becomes the diameter of this network. Comparing with Figure (3), we can see that
number of nodes, one hop distance from source are 6; 4 through vertical/horizontal paths, namely
(0, 1), (0,-1), (1, 0), (-1, 0) while 2 through Cross Links, namely (2,2) and (-1,-1), the nodes are
represented in Figure (5) as purple colored circles. Calculating k/2 here gives 4/2=2, hence, we
note that reaching any destination from source will take maximum of 2 hops through a
combination of horizontal/vertical and/or Cross Links.

5.1 ANALYSIS OF NUMBER OF POSSIBLE SHORTEST PATHS
Considering node as (a, b) and k x k topology for X-Torus. S is the maximum number of

shortest paths that can be obtained using shortest path algorithm to reach (a, b). When we
analyze our network for the number of shortest possible paths, we derived (14) and ( 15). As an




illustration, if the packet has to reach the node (-2, 2) in Odd topology, we have three possible
shortest paths using all possible links as seen in 14(c), each of 2 hops, via (0, -1) or (-2, -2) or (2,
2). The difference in the formulae between Odd and even topology reflects the difference in the
arrangement of Cross Links. Please note that in all cases, (0, 0) has been considered as source
node. :

Understanding formulae for Odd, 14(a) represents one possible shortest path, since destination
is same as source here. 14(b) represents two extreme nodes in I and I quadrants, connected to
source through Cross Link; hence, it takes just one hop to reach the same, since one hop is
shortest distance, so there is one shortest path each. 14(c) represents two extreme nodes in 1T and
1V quadrants, connected to a node one hop distance from source through Cross Link; hence, it
takes just two hops to reach the same, and there are three possible shortest paths. 14(d) represents
nodes in I and III quadrants where x and y coordinates are different but signs are same, there are
two possible shortest paths to them. 14(e) represents nodes in 1f and IV quadrants where x and y
coordinates are different with opposite signs, there are seven possible shortest paths to them.
14(f) represents nodes on diagonals, except the ones in extreme corners; there are two possible
shortest paths to them.

Understanding formulae for Even, 15(a) represents one possible shortest path, since destination
is same as source here. 15(b) represents two extreme nodes in I and III quadrants, connected to
source through Cross Link; hence, it takes just one hop to reach the same, since one hop is
shortest distance, so there is one shortest path each. 15(c) represents nodes with different x and y
coordinates, number of shortest paths to them is two. 15(d) represents nodes on diagonals, except
the ones in extreme corners; there are two possible shortest paths to them.

for Odd =
[ S=1lifaorb=0

S=1lifa=b= Ej,where a and b have same sign
J S=3,ifa=b= [%J,where a and b have dif ferent sign
S=2ifaxbanda= EJ orb= EJ,where a and b have same sign
S=7ifa+tbanda = EJ orb= EJ,where a and b have dif ferent sign
Fa=be |t
S=2ifa=b=¥

\

Equations 14(a) - 14{f)
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S=1ifaorb=0
S=1,i —b—k
=1l,ifa= =3

for Even = , k k
S=2,Lfa¢banda=—2-orb=§

, k
S=2,Lfa=b:,t§

EQUATIONS 15( A)— 15(D)

A symmetry in observed in the topology for the above conditions/equations and hence we find
out the maximum number of possible paths a packet will take to traverse to a particular node
which helps in reducing traffic at a single path(which might be shortest) and avoiding
congestion. The analysis further helps in designing and simulation of ALBR Algorithm.
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CHAPTER 6

ADAPTIVE LOAD BALANCED ROUTING (ALBR) ALGORITHM

Since X-Torus is part of Torus family of topologies, hence all algorithms running over the same
will work on X-Torus as well. The Cross Links further assist in creating many short routes from
source to destination using shortest path algorithm [2], however, with shortest paths the problem
of congestion occurs, as all packets from source to destination tend to use shortest/minimal path.
To avoid this situation, we propose an Adaptive Load Balanced Routing Algorithm, where
congestion or network load imbalance is sensed using Channel queues while at the same time
relying on the network’s implicit backpressure to collect approximate global information from
further parts of the network, as done in Adaptive Channel Queue Routing Algorithm (CQR) [13].
The key point to note here is that, ALBR is not an improvement over CQR; rather it is a
modified implementation of the same by using Cross Links with minimal look-ups through
backtracking on X-Torus topology, which will be soon explained. Moreover, to avoid congestion
and improve fault tolerance, it is very important that packets route themselves to non-
minimal/alternate paths when all minimal paths are congested, this will help improving
performance by reducing the time required between source and destination than otherwise. Time
Complexity of ALBR is O(N?). This is due to checking congestion (through a buffer) and reach
function which chooses random sequences of X and Y traversals.

AT T

Definition 1.4: Adaptive Load Balanced Routing Algorithm is an implementation of adaptive
routing behavior that comes into action after congestion is sensed in minimal paths from source
to destination. The algorithm chooses alternate paths by backtracking from destination using
Cross Link(s) connected to it therefore reducing number of lookups, and reaching the other end
of it by random sequence of x,y traversals, further from where using destination Cross Link,
packet reaches destination without loss of sequence.

In the process of simulating network performance of ALBR algorithm, we found its potential for
improved performance under both light and heavy load. Hence, helping the network during
Congestion by routing the paths adaptively. The nature and structure of Cross Links play very
important role in determining the performance. We notice, that the structure of Cross Links
differs from even and odd versions of X-Torus and that the pattern of routing paths differs from
position to position of destination in the Network. On this basis, we study the uses of Al gorithm,
considering two cases with positions of destination for each, odd and even versions of X-Torus
*topology.

Case 6.1: When Destination is not on AXxis:

1




When destination is not on any of the axis, the number of Cross Links connected to each node is
1. Without loss of generality, we choose the node (0,0) as in Figure (3) or node 9 as in Figure (6)
as source. Figure (6), illustrates the algorithm on Even topology, where node 9 is source and 6 as
destination, during initial phase the packets choose minimal path such as:
9-5-6
9-10-6

Later, when congestion is sensed using CheckCongestion(x,y) function, node 12 is chosen by
backtracking from destination using Cross Link, which is further reached from source using a
sequence of random x, y traversal using Reach(Sx,Sy,Ax,Ay) as:
9-8-12
9-13-12

Hence, the paths during congestion from source to destination are:
9-8-12-6
9-13-12-6

Either of them, chosen one at a time randomly to balance load better using LinksE(x,y). The
backtracking aspect saves time to search the Cross Link connected to destination by minimizing
number of look-ups, therefore, the node on the other end of the destination’s Cross Link can be
reached using random selection of x, y traversals from source, hence balancing load during
congestions,

Similar is the case for Odd topology as Figure (7), where source is 12 and destination as 1.
Under minimal conditions paths traversed are:
12-4-0-1 '
12-20-0-1

While during congestion, making use of Cross Links, paths traversed are:
12-13-18-1

12-17-18-1
Due to random nature of Algorithm, only one of these paths will be used at a particular moment
of time.
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Fig. 6.1 Case 6.1: Simulation of all Possible Paths during Adaptive Load Balanced Routing
Algorithm in Even X-Torus on NS-2.

Case 6.2: When Destination is on Axis.

When destination in on axis (either X or Y), the routing pattern changes due to nature and
structure of Cross Links, !

In Even verston of X-Torus topology, every node on X or Y axis have single Cross Link

connected. As in Figure (8), where source and destination are 9 and 1 respectively, we see that a
using minimal path, the traffic flows as:




9-5-1

While during congestion, making use of Cross Link and backtracking node 11 is chosen, which
is further reached through a path sequence of 9-8-11 and finally completing the path as 9-8-11-1.
Since the intermediate node or the node at the other end of destination through Cross Link is on
the same axis as source, this eliminates the possibility of Y direction traversal.

In Odd version of X-Torus topology, the Y axis posses a unique feature of hosting 2 Cross
Links from every node on it, which gives it an extra edge during congestion by choosing either
of them randomly and hence increasing the number of possible paths from source to destination.
In Figure (9), where node 12 and 2 are chosen as source and destination respectively, the
minimal path to reach destination is:

12-7-2

Since 2 Cross Links are connected to the destination, the number of intermediate nodes
connected to destination via Cross Links increases to 2, which are chosen randomly through
ALBR’s LinksO(x,y) function’s condition for Y axis. The intermediate nodes are further reached
through a minimal random sequence of X and Y traversals. Considering intermediate node as 10,
we have only 1 set of other path traversing through 12-11-10-2, while considering intermediate
node as 19 through backtracking, the paths to reach the same are:
12-13-14-19
12-17-18-19
12-13-18-19

Further from where using Cross Link, the packet reaches destination as:
12-13-14-19-2
12-17-18-19-2
12-13-18-19-2

Therefore, dealing with congestion efficiently, by minimizing lookups and making optimal use
of Cross Links.
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Fig. 6.3 Case 6.2: Simulation of all Possible Paths during Adaptive Load Balanced Routing
Algorithm in Even X-Torus on NS-2.
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Fig. 6.4 Case 6.2: Simulation of all Possible Paths during Adaptive Load Balanced Routing
Algorithm in Odd X-Torus on NS-2.

6.1 TESTBED

For the purpose of implementation and simulation of the algorithm we have used Network
Simulator’s 2nd version (popularly known as NS-2), NS-2 is a discrete Event simulator targeted




at networking research, where it provides substantial support for simulation of TCP, routing, and
multicast protocols over wired and wireless (local and satellite) networks.

Event 5
Scheduler ns-
telel
otcl ' §
=
=4
tcl8.0

Fig. 6.5 . Architectural view of NS-2.

Figure (10), shows an architectural view of NS-2 where simulations are run in Tcl using the
simulator objects in the OTcl library. The Event schedulers and most of the network components
are implemented in C++ and available to OTcl through an OTecl linkage that is implemented
using Tclel. The whole structure together makes NS, which is an OO extended Tcl interpreter
with network simulator libraries.
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Fig. 6.6 Analysis of Average Time taken by Packets to Flow from Source to Destination in Even
and Odd X-Torus Topologies.
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Fig. 6.7 Analysis of Throughput at Destination Nodes for Even and Odd X-Torus Topology
when Granularity = .5.
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TABLE 2

ANALYSIS OF AVERAGE TIME TAKEN BY PACKETS TO FLOW FROM SOURCE TO DESTINATION IN

EVEN AND ObD X-TORUS TOPOLOGIES

Simulation Time

Average Time (Seconds) Taken From Source to reach Destination using

(Seconds) different X-Torus Topology
Even X-Torus Topology Odd X-Torus Topology

0 0.014 0.013
0.25 0.02 0.022
1.0 0.024 0.02
1.5 0.028 0.025
2.0 0.035 0.037
2.5 0.049 0.045
3.0 0.038 0.036
3.5 0.04 0.038
4.0 0.035 0.034
4.5 0.03 0.028
5.0 0.028 0.026

TABLE 3

ANALYSIS OF THROUGHPUT AT DESTINATION NODES FOR EVEN AND ODD X-TorUS TOPOLOGY
WHEN GRANULARITY = 0.5

Simulation Time Throughput for different X-Torus Topology
(Seconds) Even X-Torus Topology Odd X-Torus Topology
0.504 0 0

1.002 0.318 0.244
1.502 0.324 0.244
2.002 (.324 0.244
2.502 0.324 0.244
3.002 0.324 0.244
3.502 0.324 0.244
4.002 0.324 0.244
4.502 0.324 0.244




TABLE 4

ANALYSIS OF THROUGHPUT AT DESTINATION NODES FOR EVEN AND ODD X-TORUS TOPOLOGY
WHEN GRANULARITY = |

Simulation Time Throughput for different X-Torus Topology
(Seconds) Even X-Torus Topology Odd X-Torus Topology
1.002 0.159 0.122
2.002 0.3245 0.2495
3.002 0.3245 0.2495
4.002 0.3245 0.2495
‘
| TABLE 5

ANALYSIS OF CONSTANT BIT RATE ON MINIMAL AND ALTERNATE PATH DURING CONGESTION FOR
EVEN AND ODD X-TORUS TOPOLOGY

Simulation Time Throughput for different X-Torus Topology

N T e
\\{”aet- e

(Seconds) Even X-Torus Topology Odd X-Torus Topology
Minimal Path Alternate Path  Minimal Path Alternate Path
0.5 1014 9.2 421 32
1.0 1791 946 1468 1172
‘ 1.5 2569 1946 2515 2348
20 3346 2939.2 3562 3623
2.5 4124 4056 ° 4679 4784
3.0 4901 5019 5656 5984
| 3.5 5679 5966 6703 7160
4.0 6456 6986 7750 8384
4.5 7234 7939 8797 9536

6.2 DUAL ADAPTIVE ROUTING (DAR) ALGORITHM

The routing method employed by a network determines the path taken by a packet from a source
terminal node to a destination terminal node. A route or path is an ordered set of channels P =




€1 Cg) wev ven vue ¢ where the output node of channel ¢; equals the input node of channel c;, ;, the

‘ source is the input to channel ¢y, and the destination is the output of channel c.. In some

‘ networks, there is only a single route from each source to each destination node, whereas in

' others, such as the torus network in Figure (1), there are many possible paths. When there are

’ many possible paths, a good routing algorithm balances the load uniformly across channels

| regardless of the offered traffic pattern. Continuing the roadmap analogy, while the topology

! provides the roadmap, the roads and the intersections, the routing method steers the car, making
i the decision on which way to turn at each intersection. Just as in routing cars on a road, it is

E important to distribute the traffic — to balance the load across different roads rather than having
one road become congested while parallel roads are empty [10].

DAR algorithm exploits the fact that X-Torus topology behaves as a simple Torus network
before the Cross Link is used for traversal. It thus uses a blend of two popular Torus routing
algorithms, Oblivious Routing Algorithm [11] and Adaptive Routing Algorithm [10]. Before
congestion is sensed in the network, Shortest or Minimal Path Algorithm is used. As soon as the
network senses congestion, DAR comes into play. We initiate the process by looking for the
Connecting node, which is the node connected to the Destination node directly via Cross Link.

Now the major task is to reach from the Source node to the Connecting node, for which we use \
the above stated blend of the two algorithms. Finally, we traverse from the connecting node to
the destination node making use of the Cross Link.

=~

The major advantage of this algorithm is that the oblivious selection of quadrant balances the
load globally, whereas the adaptive routing within the selected quadrant performs the local
balancing.

C. Pseudo-code

The algorithm involves the following steps:-

¢ Backtracking: Backtrack from the Destination node denoted by D(x1,y1) where x and
y are the co-ordinates of the node using the Cross Link connected to it to reach the
Connecting node denoted by C(x2,y2). This step is done to minimize the number of
! lookups thereby reducing the time to search for C(x2,y2). C(x2,y2) = BACKTRACK
f D(x1,y1). The backtracking step is similar to the one used in ALBR, which can be
' referred from Section 6(A) Function:(4)LinksO (for Odd) and Function:(5)LinksE (for
Even).
* Quadrant Selection: Select a minimal quadrant obliviously having the Source node
S (x,y) and the Connecting node C(x2,y2) as the corner nodes.
* Initial Phase Routing: Random selection of a node from within the selected quadrant
called the Intermediate node denoted by I(x3,y3) where x2 > x3 > x and y2 >
y3 = y.
; * Intermediate Phase Routing: Use Adaptive routing to route packets from S(x,y) to
i 1(x3,y3) and then again from /(x3,¥3) to C(x2, y2).
* Final Phase Routing: After reaching C(x2,y2) use the Cross Link connected to it to
‘ reach the destination nodeD (x1, y1).




6.2.1 Working of DAR

In the Figure 16(a), considering the node (2, 1) as the source node and the node (-1, 2) as the
destination node, the working of Dual Adaptive Routing is explained as follows: On
backtracking from the destination node using the Cross Link connected to it, we reach the node
(1, -1). Here the node (1, -1) is called the connecting node since it is connected to the destination
node via a Cross Link. Now we apply minimal oblivious routing algorithm to route packets from
the source node i.e. (2, 1) to the connecting node i.e. (1, -1) and once we reach the connecting
node we route packets directly through the Cross Link to the destination node. Minimal quadrant
is chosen such that it contains the source and connecting nodes as the corner nodes. Figure 16(b)
shows the minimal quadrant chosen in this case. Thereafter, an intermediate node is selected
from within the quadrant. Packets are routed from the source to the intermediate node and then
from the intermediate node to the connecting node using adaptive routing. In this example, there
are six possible intermediate nodes as shown in the Figure 6.11.3
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CHAPTER 7
Deadlock in X-Torus Topology

Network interface is used to transmit the data between nodes. Packets travel multiple switches in
a switch based network whereas they travel multiple intermediate nodes in a direct network. Due
to various factors [10], the delivery of the packet might be hindered. This is true even if there are
no faulty connections between source and destination nodes.

At each node, fragments of bits are stored in a buffer. If the frequency of incoming packets is
greater than outgoing, there might be chances that the buffer gets saturated while more traffic is
coming. A deadlock occurs in such situations where the packets may not reach to their
destination due to limited buffer capacity. In this case, the packet is blocked forever, as the
resources needed by it are never free.

Another case of packet blocking is livelock. In this scenario, packets actively move across
nodes hut are not able to reach their destination. This is because the channels involved are
providing resources to other packets. Finally, if the blocking continues over a long period under
high traffic, the packet might get dropped, a process known as starvation. As deadlock causes
packets to wait indefinitely, this might also lead to livelock situation where the packet moves
around its destination. Hence, these three events-deadlock, livelock and starvation needs to be
removed for efficient propagation of data in interconnection networks [16]-[20].

Ay — ..
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7.1 Deadlock Avoidance, Recovery and Detection Mechanism

Routing algorithms are designed in a manner, which tends to avoid deadlock. This is done by
utilizing both physical and virtual channel resources. Avoidance based routing algorithms tend to
cause restrictions in the network while recovery based algorithms need to avoid potential
deadlocks while recovering from the deadlock.

The Channel Waiting Graph (CWG) model captures the relationship between channels in the
same way as the channel dependency graph. However, this model does not distinguish between
routing and selection functions. Thus, it considers the dynamic evolution of the network becausc
the selection function takes into account channel status. However, the most important result is a
necessary and sufficient condition for deadlock-free routing. This condition assumes that a
packet can wait on any channel supplied by the routing algorithm. It uses the concept of true
cycles. A cycle is a true cycle if it is reachable, starting from an empty network. The theorem
states that a routing algorithm is deadlock-free if and only if there exists a restricted CWG that is




wait-connected and has no true cycles. This condition is valid for incoherent routing functions
and for routing functions defined on € X N. However, it proposes a dynamic condition for
deadlock avoidance, thus requiring the analysis of all the packet injection sequences to determine
whether a cycle is reachable (true cycle).

Deadlock recovery techniques, as the name suggests, are a way to recover from already
occurred deadlocks. They provide a way to recover the resources required by a waiting process.
However, this is only feasible in an environment where deadlock occurrence is rare. It requires
an understanding of all the properties causing the deadlocks are formed in the interconnection
network. Consequently, it releases the resource causing the deadlock. Deadlock recovery
methods differ in ways in which they recognize deadlock. It involves multiple packets and
requires transfer of information between nodes. Tybicdliy, there are two types of detection
mechanisms, centralized and distributed. While the former involves exchange of data between
nodes, the latter involves distribution of information locally. This is more preferred as deadlock
packets might occupy channels in centralized.

As the packet is discovered, the resource management process starts whose purpose is to free
the allocated resources. This can be achieved by either taking the resources from the current
process or by liberating the deadlocked process of its resources. A progressive recovery
technique de-allocates resources from a process and gives it to the process, which is causing the
deadlock. Regressive process on the other hand takes resources from the deadlocked process by
killing them. If a packet is detected at the source node, a kill signal is sent across the nodes to
free up the resources. This is the solution proposed in compression less routing. After a random
delay, the packet is injected again into the network. This re-injection requires a packet buffer
associated with each injection port. Note that a packet that is not really deadlocked may resume
advancement and even start delivering flits at the destination after the source node presumes it is
deadlocked. Thus, this situation also requires a packet buffer associated with each delivery port
to store fragments of packets that should be killed if a kill signal reaches the destination node. If
the entire packet is consumed without receiving a kill signal, it is delivered. Obviously, this use
of packet buffers associated with ports restricts packet size. The texts explain here is taken from
[10], [11], [16]-[20].
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7.2 Deadlock Detection Algorithm for X-Torus

¢ List all the channels gy, €5, i sivis Cn-1 that are being held by packets between any two
S(x1,y1) and D(x2,y2) where x1 and x2 are the x-coordinates and y1and y2 are the
y-coordinates of the nodes S and D respectively. Suppose a channel ¢j is acquired by a
message M; released between nodes S(x1, y1) and D(x2, y2), then we say that M; holds
¢

* i=0ton-1

* j=0ton—-1=+i

* k=0ton-1




* flag: variable used to detect the presence of any cycles in the resource wait-for graphs
* [=setofall values of i or j already taken into consideration
* Initial Values: i =0,/ #i, k=0, = 7]
Step1: Create a new class C), and set flag := ¢;_gy)
Step2: Search for a message M; holding a channel ¢
M; := holds(c;)
Step3: Find out whether M; is waiting for another channel ¢j to proceed or not
Assign [toj(j:=i)
If yes Then check whether ¢j is equal to flag.

If ¢; == flag is True
This means that we have reached the channel with which we started the new
sub-class and hence a cycle is formed indicating a deadlock. Store the
value of ‘k’ as this class will be included in the recovery phase.
End class Cy. Increment k and go to step 1.

If ¢; == flag is False Then go to step 2.

e

If M; is not waiting for another channel ¢; then this means that no cycles
are formed and thus no deadlock. Discard the value of k as this class
would not be included in the recovery phase.

End class (. Increment k and go to step 1.

7.3 A progressive Deadlock Recovery Approach

Deadlocks are quite rare in a network. In case of Adaptive Routing Algorithm, it has been found
that deadlock recovery routing algorithms exhibit superior performance characters over their
deadlock avoidance counterparts. Deadlock occurs in an interconnection network when a group
of agents, usually packets, is unable to make progress because they are waiting on one another to
release resources, usually buffers or channels. If a sequence of waiting agents forms a cycle, the
network is deadlocked. Deadlock is catastrophic to a network. For deadlock free routing a
necessary and sufficient condition is the absence of cycles in channel dependency graph. There
are two phases in any deadlock recovery algorithm: detection and recovery [10], [16]-[20].

The method of detection we present is very simple-and-inexpensive that detects the presence of
all the deadlocks. In addition, a progressive approach to remove deadlock is used which does not
require any exclusive buffer to store a deadlocked packet and solves the problem taking
advantage of the high path diversity of X-Torus. It works by diverting the deadlocked packets
from the current node to its one of the free nei ghbors and then transmission is resumed back
from the free neighbor to the current node.




7.4 Deadlock Recovery Algorithm for X-Torus

. For every class , in which deadlock was detected in phase 1 repeat the
following steps:

2. Stepl: For every channel in the class held by packets in between the nodes

and check whether any of the nelghbormg nodes of are

free except the one that is deadlocked until one such node is found. Let this node be
denoted by

3. Step2: Divert the deadlocked packets from to for some time. Once
all other deadlocked packets move towards their destination then packets are traversed
back from to ).

7.5 X-Torus Topology Interface

Finally, to understand the working of DAR we have designed a X-Torus Topology Interface

(build using Visual C#.NET Technology) that implements the DAR algorithm incase of multiple

source and destination nodes. The interface is designed for both even and odd X-Torus |
topologies and calculates the connecting node by examining the Cross Link that is connected to
the destination node and also finds the intermediate node and hence displays all the nodes in the | :
path from source to destination node and draws the route of packets accordingly. It also displays i
an error message to the user incase a deadlock occurs when the user selected multiple source and

multiple destinations. A snapshot of the interface are shown using Figure 7.1
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1 CONCLUSION AND FUTURE WORK

We have proposed a new Adaptive Load Balanced Routing Algorithm for Odd and Even forms
of X-Torus topologies, where after sensing the congestion through Channel Queues, packets are
diverted to alternate paths, chosen by backtracking from destination using Cross Link connected
to it, and reaching the other end of it by minimal sequence of random X,y traversal.

Superseding the work done earlier on X-Torus topology [2], which focused only on shortest
route algorithm .In current work, congestion/deadlock issues caused due to it has been tackled.
To come across the same, several formulas from equation 1-4 and 8-11 were developed, which
eventually lead to ALBR and DAR algorithms.

The performance of the same is measured using NS-2 and Gawk, a 60% drop in average time
for Even while 59.37% drop for Odd is observed after congestion, by the end of 5 seconds of
simulation, with respect to peak value observed respectively. Hence, showing almost similar
behavior between Odd and Even topologies. Further, using Perl for text analysis of tracefile,
stable throughput after congestion is also observed. On testing the algorithm using CBR, we
observe the rise of the same in alternate path during congestion after around mid-time. Time
Complexity of ALBR is O(N?). Therefore, showing the algorithm’s capability to perform

nl optimal in all kind of loads on network.

We have also proposed Dual Adaptive Routing (DAR) Algorithm, which is a blend of
Oblivious Routing and Adaptive Routing. The major advantage of this algorithm is that the
oblivious selection of quadrant balances the load globally, whereas the adaptive routing within
the selected quadrant performs the local balancing. It efficiently makes use of Cross Links and
hence works explicitly for X-Torus topology thus providing more efficient routing. The proposed
progressive deadlock recovery mechanism takes advantage of the high path diversity of X-Torus.
The low cost and simple mechanism for deadlock detection as against many conservative
mechanisms is very effective.

A lot of issues concerning X-Torus needs further research. Some of them are implementation of
similar Adaptive Load Balanced Routing Algorithm on non-symetric forms of topology, which
will further require new set of formulations of Cross Links and more concentration on fault—
tolerant aspects of the same. Other issues are: broadcasting, multicast routing and fault tolerant
routing, Broadcasting and multicasting are fundamental collective communication operations.
What’s more, as the number of nodes in an X-Torus topology increases, the chance of failure
also increases. Hence, it is essential to design a fault-tolerant algorithm that can route packets in
the presence of faulty components. Furtlier, since this is the first improvement over existing
algorithm for X-Torus topology and the earlier was not simulated [2], in the current version we
used Constant Bit Rate and simulation lasted for 5 seconds. However, we plan to use Gaussian
distribution to approximate the behavior of VBR traffic for longer duration in future work.
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SOURCE CODE

A. The ALBR Algorithm
1) Main Function

Begin

Switch(k)

CaseI: kis Odd

{

//Condition I under Odd

If (x=A and y=0) a
Send the message to the local node and EXIT:;
//Condition IT under Odd

If (JAx|+|Ay|<=k-1/2)

{

IsCongestion = CheckCongestion(x,y);
If(IsCongestion = True)

{
LinksO(x,y);

//Calling Cross Links function Jor Odd topology
}
Else

D_Forward = Select (Ax,Ay);
}
//Condition III under Odd
Else if (Ax>0 and Ay>0)
{
IsCongestion=
CheckCongestion(x,y):
If(IsCongestion = True)
{
LinksO(x,y);

//Calling Cross Links function Jor Odd topology
}
Else

D_Forward = UFD;
b



HCondition IV under Odd

Else if (Ax<0 and Ay<0)
1 {
i IsCongestion = CheckCongestion(x,y);
If(IsCongestion = True)

{
LinksO(x,y);
#Calling Cross Links function SJor Odd topology
}
Else
D_Forward = LBD,
¥
//Condition V under Odd
Else

{

IsCongestion = dieckCongestion(x,y);

If (IsCongestion = True)
{ iy
LinksO(x,y); /
//Calling Cross Links function for Odd topology

}
Else

D _Forward = LBD or UFD;
}
YWEnd of Case I
CaseIl: k is Even
{
//Condition I for Even
If (x=Ay=0)
Send the message to the local node and EXIT;
//Condition II for Even
If (|Ax[+|Ayl<=k/2)
- {
IsCongestion = CheckCongestion(x,y);
If (IsCongestion = True)

{
LinksE(x,y);




//Calling Cross Links function for Even topology

}
Else
D_Forward = Select(Ax,Ay);
}
//Condition III for Even
Else
{

IsCongestion = CheckCongestion(x,y);
If (IsCongestion = True)
{
LinksE(x,y);
//Calling Cross Links function for Even topology
} _J
Else
D_Forward = UFD;
}

YV/End of Case IT
EXIT

2) Select Function

#/Choose one direction between d1 and d2,
Select(d1,d2)

{
r = random(0, 1);

/fchoose 0 or 1 with equal probability for r;
If(r=0)
{
If(d1>0) return X+;
Else return X-;

}

Else
{
If(d2>0) return Y+;
Else return Y-;

}



W/End of Select function

3 3) CheckCongestion Function

// Function to check congestion
CheckCongestion (x,y)
{
//Using Channel Queues, network load imbalance is sensed while at the same time relying the

network’s implicit backpressure to collect approximate global information Jrom further parts of
the network, as done in Adaptive Channel Queue Routing Algorithm

}
4) LinksO Function (for Qdd)

//Function to use Cross Links during Congestion in Odd topology
LinksO(x,y)
{
If (x>0 and y>0) /I Quadrant
{ /
//Finding other end of link by Backtracking
Ix = x-k/2;
Iy = y-ki2;
Ax1 = Ix-Sx1; /Sx1,8x1 is source, in this case 0,0
Ayl =1y-Syl;
If (Ax1==0 and Ay1==0)
D_Forward = UFD;
Else
{
//Reach from source to other end of Cross Link, connected to Destination
Reach(Sx1, Syl, Ax1, Ayl);

//Reach from the other end of Destination’s Cross Link to Destination
D Forward = UFD;

}

}
If (x<0 and y>0) ZII Quadrant

{




//Finding other end of link by Backtracking
IIx = x+k/2;
1 My = y-k/2-1;
Ax2 = IIx-Sx2; //Sx2,8x2 is source, in this case 0, 0
Ay2 = Ily-Sy?2;

//Reach from source to other end of Cross Link, connected to Destination
Reach(Sx2, Sy2, Ax2, Ay2);

//Reach from the other end of Destination’s Cross Link to Destination
D_Fotward = UBD;
}
If (x<0 and y<0) ZIIT Quadrant
{
//Finding other end of link by Backtracking
Ix = x+k/2;
Iy = y+k/2;
Ax3 = I1Ix-Sx3; //5x3,5x3 is source, in this case 0,0
Ay3 = I1Ily-Sy3;
If (Ax3==0 and Ay3==0)
D_Forward = LBD;
Else
{
//Reach from source to other end of Cross Link, connected to Destination
Reach(Sx3, Sy3, Ax3, Ay3);

//Reach from the other end of Destination’s Cross Link to Destination
D_Forward = LBD,;
¥
1
If (x>0 and y<0) ZIV Quadrant
{
//Finding other end of link by Backiracking
IVx = x-k/2;
IVy = y+k/2+1;
Ax4 = IVx-Sx4; //Sx4,Sx4 is source, in this case 0,0
Ay4 = [Vy-Sy4,




//Reach from source to other end of Cross Link, connected to Destination
3 Reach(Sx4, Sy4, Ax4, Ay4);

//Reach from the other end of Destination’s Cross Link to Destination
D_Forward=LFD,;
}
If (x=0) /Y Axis ¢
{
r=random(1,0);
/fchoose 0 or 1 with equal probability for r;
//For using Cross Links as in I Quadrant
If(r=0)
{
//Finding other end of link by Backtracking
Vx = x-k/2;
Vy=y-k2;
AXS5 = Vx-Sx5; //8x5,5x5 is source, in this case 0,0
Ay5 = Vy-Sys5;

//Reach from source to other end of Cross Link, connected to Destination
Reach(Sx5, Sy5, AxS5, Ay5);

//Reach from the other end of Destination’s Cross Link to Destination
D Forward = UFD;

h

//For using Cross Links as in II Quadrant

Else if(r=1)

{

//Finding other end of link by Backtracking

VIx = x+k/2;

Vly = y-k/2-1;

Ax6="VIx=Sx6; //Sx6,5x6 is source, in this case 0,0
Ay6 = Vly-Sy6;

//Reach from source to other end of Cross Link, connected to Destination
Reach(Sx6, Sy6, Ax6, Ay6);




//Reach fromithe other end of Destination’s Cross Link to Destination
g D_Forward = UBD;
}
}
If (y=0) /X Axis
{

//For using Cross Links as in I Quadrant

If(x>0)
{
//Finding other end of link by Backtracking
VIIx = x-k/2;
Vily = y-k/2;

Ax7 = VIIx-Sx7; //Sx7,5x7 is source, in this case 0,0
Ay7 = Vlly-Sy7;

//Reach from source to other end of Cross Link, connected to Destination
Reach(Sx7, Sy7, Ax7, Ay7); I

//Reach from the other end of Destination’s Cross Link to Destination
D_Forward = UFD;
h
/{For using Cross Links as in III Quadrant
Else if(x<0)

{

//Finding other end of link by Backtracking
VIIIx = x+k/2;
VIIly = y+k/2;

Ax8 = VIIIx-Sx8; //Sx8,Sx8 is source, in this case 0,0
Ay8 = IIIly-Sy8;

//Reach from source to other end of Cross Link, connected to Destination
Reach(Sx8, Sy8, Ax8, Ay8);

//Reach from the other end of Destination’s Cross Link to Destination
D_Forward = LBD, .
t

{




1 } I/End of LinksO

5) LinksE Function (for Even)

/Function to use Cross Links during Congestion in Even Topology
LinksE(x,y)
{
If (x>0 and y>0) /I Quadrant

{

//Finding other end of link by Backtracking

Ix = x-k/2;

Iy = y-k/2;

Ax1 = Ix-Sx1; //Sx1,5x1 is source, in this case 0,0

Ayl = Iy-Syl;

If (Ax1 == 0 and Ayl == 0)

D_Forward = UFD; ‘
Else
{

//Reach from source to other end of Cross Link, connected to Destination
Reach(Sxl1, Syl, Ax1, Ayl);

//Reach from the other end of Destination’s Cross Link to Destination
D_Forward = UFD;
}
}
If (x<=0 and y>0) /II Quadrant
{
//Finding other end of link by Backtracking
IIx = x+k/2;
Iy = y-k/2;
Ax2 = 1Ix=8x2;//5x2,8x2 is source, in this case 0,0
Ay2 = Ily-Sy2,;

//Reach from source to other end of Cross Link, connected to Destination !
Reach(Sx2, Sy2, Ax2, Ay2); |




//Reach from the other end of Destination’s Cross Link fo Destination
D _Forward=UBD;

3
If (x<=0 and y<=0) /I Quadrant
{
//Finding other end of link by Backtracking
IMIx = x+k/2;
Ily = y+k/2;

Ax3 = 1IIx-Sx3; //Sx3,8x3 is source, in this case 0,0
Ay3 = Illly-Sy3;

//Reach from source to other end of Cross Link, connected to Destination
Reach(Sx3, Sy3, Ax3, Ay3);

//Reach from the other end of Destination’s Cross link to Destination
D Forward = LBD;

J
If (x>0 and y<=0) /IV Quadrant
{
//Finding other end of link by Backtracking
IVx =x-k/2;
IVy = y+k/2;
Ax4 = 1Vx-Sx4; //8x4,5x4 is source, in this case 0,0
Ay4 = TVy-Sy4;

//Reach from source to other end of Cross Link, connected to Destination
Reach(Sx4, Sy4, Ax4, Ay4);

//Reach from the other end of Destination’s Cross Link to Destination
D_Forward = LFDy,

}
} //End of LinksE

6) Reach Function




//Function to Reach from source to the other end of Cross Link, connected to Destination
through a randomized sequence of X and Y traversals.

| Reach (Sx, Sy, Ax, Ay)
{
While (Ax == Sx and Ay == Sy)
{
r = random(0, 1);
If (r=0)
{
H(Ax>0)
Sx+;
Else
Sx-;

}
Else

{
If(Ay>0)
Syt;

Else
Sy-;
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