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CHAPTER 1: INTRODUCTION AND PROBLEM STATEMENT

1.1 INTRODUCTION

A primary motivation for Data mining (DM) is that a lot of data is inherently distributed
Merging of remote data at the central site to perform data mining will result in unnecessary

communication overhead and algorithmic complexities .

For example, consider the NASA Earth Observing System Data and Information System
(EOSDIS) which manages data from earth science research satellites and field measurement
programs. It provides data archiving, distribution, and information management services and
holds more than 1450 datasets that are stored and managed at many sites throughout the United

States. It manages extraordinary rates and volumes of scientific data.

For example, Terra spacecraft produces 194 gigabytes (GB) per day; data downlink is at 150
Megabits/sec and the average amount of data collected per orbit is 18.36Megabits/secl4. A

centralized data mining system may not be adequate in such a dynamic, distributed environment.

Indeed, the resources required to transfer and merge the data on a centralized site may become
implausible at such a rapid rate of data arrival. Data mining techniques that minimize

communication between sites are quite valuable.

DDM is data mining where the data and computation are spread over many independent sites.
For some applications, the distributed setting is more natural than the centralized one because the
data is inherently distributed. Typically, in a DDM environment, each site has its own data
source and data mining algorithms operate on it producing local models .Each local model
represents knowledge learned from the local data source, but could lack globally meaningful
knowledge. Thus the sites need to communicate by message passing over a network, in order to

keep track of the global information.

1.2 MOTIVATION

Data analysis underlies many computing applications, either in a design phase or as part of their

on-line operations. Data analysis procedures can be dichotomized as either exploratory or




confirmatory, based on the availability of appropriate models for the data_source, but a key
element in both type of procedures (whether for hypothesis formation or decision-making) is the

grouping, or classification of measurements_based on either

(i) goodness-of-fit to a postulated model

{ii) natural groupings (clustering) revealed through analysis.

Cluster analysis is the organization of a collection of patterns (usually represented as a vector of

measurements, or a point in a multidimensional space) into clusters based on similarity.

Intuitively, pattems within a valid cluster are more similar to each other than they are to a
pattern belonging to a different cluster. An example of clustering is depicted in Figure 1. The
input patterns are shown in Figure 1(a), and the desired clusters are shown in Figure 1(b). Here,
points belonging to the same cluster are given the same label. The variety of techniques for
representing data, measuring proximity (similarity) between data elements, and grouping data

elements has produced a rich and often confusing assortment of clustering methods.
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It is important to understand the difference between clustering (unsupervised classification) and
discriminant analysis (supervised classification). In supervised classification, we are provided
with a collection of labeled (pre classified) patterns; the problem is to label a newly encountered,
yet unlabeled, patten. Typically, the given labeled (training) patterns are used to learn the
descriptions of classes which in turn are used to label a new pattern. In the case of clustering, the
problem is to group a given collection of unlabeled patterns into meaningful clusters. In a sense,
labels are associated with clusters also, but these category labels arc data driven; that is, they are

obtained solely from the data.

Clustering is useful in several exploratory pattern-analysis, grouping, decision- making, and
machine-learning situations, including data mining, document retrieval, image segmentation, and
pattern classification. However, in many such problems, there is little prior information (e.g.,
statistical models) available about the data, and the decision-maker must make as few
assumptions about the data as possible. It is under these restrictions that clustering methodology
is particularly appropriate for the exploration of interrelationships among the data points to make

an assessment (perhaps preliminary) of their structure.

1.3 STATEMENT OF PROBLEM

To design a system that can help the victims of various health related data to find solution of
their problem. We aim to design a system that can locate them to specialized health centre for
their problem as well as can provide them measures to keep them secure and health our system
will also warn them various associated diseases which can be their future problem due to present

disease.

1) If a person enter his disease symptoms we can give him the probable disease from which he is
suffering.

2) We can locate the spreading disease in certain location by doing clustering on attributes like

location id and disease id which we collect from the health centers.




CHAPTER 2: BACKGROUND

2.1 ;: HISTORY

Data mining refers to extracting or mining knowledge from large amounts of data. Remember
that the mining of gold from rocks or sand is referred to as gold mining rather than rock or sand
mining. Thus, data mining should have been more appropriately named knowledge mining from
data, which is unfortunately somewhat long. Knowledge mining, a shorter term, may not correct
the emphasis on mining from large amounts of data. Nevertheless, mining is a vivid term , the
characterizing the process that finds a small set of precious nuggets from a great deal of raw
material (Figure). Thus, such a misnomer which carries both data and mining became a popular
choice. There are many other terms carrying a similar or slightly different meaning to data
mining, such as knowledge mining from databases, knowledge extraction, data/pattern analysis,

data archaeology, and data dredging.
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Many people treat data mining as a synonym for another popularly used term, Knowledge

Discovery in Databases", or KDD. Alternatively, others view data mining as simply an essential




step in the process of knowledge discovery in databases. Knowledge discovery as a process is

depicted in Figure 1.2, and consists of an iterative sequence of the following steps:

» Data cleaning (to remove noise or irrelevant data),

e Data integration (where multiple data sources may be combined},

e Data selection (where data relevant to the analysis task are retrieved from the database),

B e Data transformation (where data are transformed or consolidated into forms appropriate

for mining by performing summary or aggregation operations, for instance),

e Data mining (an essential process where intelligent methods are applied in order to
extract data patterns),

e Pattern evaluation (to identify the truly interesting patterns representing knowledge
based on some interestingness measures), and

e Knowledge presentation (where visualization and knowledge representation techniques

are used to present the mined knowledge to the user).
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2.2 ARCHITECTURE OF TYPICAL DATA MINING SYSTEM

LI

The architecture of a typical data mining system may have the following major components as

shown in figure below:
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1. Database, data warehouse, or other information repository. This is one or a set of databases,
data warehouses, spread sheets, or other kinds of information repositories. Data cleaning and

data integration techniques may be performed on the data.

2. Database or data warehouse server. The database or data warehouse server is responsible for

fetching the relevant data, based on the user's data mining request.

3. Knowledge base. This is the domain knowledge that is used to guide the search, or evaluate
the interestingness of resuliing patterns. Such knowledge can include concept hierarchies, used to

organize attributes or attribute values into different levels of abstraction. Knowledge such as user

beliefs, which can be used to assess a pattern's interestingness based on its unexpectedness, may




also be included. Other examples of domain knowledge are additional interestingness constraints

or thresholds, and metadata (e.g., describing data from multiple heterogencous sources).

4. Data mining engine. This is essential to the data mining system and ideally consists of a set of
functional modules for tasks such as characterization, association analysis, classi cation,

evolution and deviation analysis.

5. Pattern evaluation module. This component typically employs interestingness measures and
interacts with the data mining modules so as to focus the search towards interesting patterns. It
may access interestingness thresholds stored in the knowledge base. Alternatively, the pattern
evaluation module may be integrated with the mining module, depending on the implementation
of the data mining method used. For efficient data mining, it is highly recommended to push the
evaluation of pattern interestingness as deep as possible into the mining process so as to confine

the search to only the interesting patterns.

6. Graphical user interface. This module communicates between users and the data mining
system, allowing the user to interact with the system by specifying a data mining query or task,
providing information to help focus the search, and performing exploratory data mining based on
the intermediate data mining results. In addition, this component allows the user to browse
database and data warehouse schemas or data siructures, evaluate mined patterns, and visualize

the patterns in different forms.

From a data warehouse perspective, data mining can be viewed as an advanced stage of on-line
analytical processing (OLAP). However, data mining goes far beyond the narrow scope of
summarization-style analytical processing of data warehouse systems by incorporating more

advanced techniques for data understanding.

While there may be many \data mining systems" on the market, not all of them can perform true
data mining. A data analysis system that does not handle large amounts of data can at most be
categorized as a machine learning system, a statistical data analysis tool, or an experimental
system prototype. A system that can only perform data or information retrieval, including finding
. aggregate values, or that performs deductive query answering in large databases should be more
appropriately categorized as either a database system, an information retrieval system, or a

deductive database system,
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Data mining involves an integration of techniques from multiple disciplines such as database
technology, statistics, machine learning, high performance computing, pattern recognition, neural
networks, data visualization, information retrieval, image and signal processing, and spatial data
analysis. We adopt a database perspective in our presentation of data mining in this book. That
is, emphasis is placed on efficient and scalable data mining techniques for large databases. By
performing data mining, interesting knowledge, regularities, or high-level information can be
extracted from databases and viewed or browsed from different angles. The discovered
knowledge can be applied to decision making, process control, information management, query
processing, and so on. Therefore, data mining is considered as one of the most important
frontiers in database systems and one of the most promising, new database applications in the

information industry.

2.3 DATA WAREHOUSE

A data warehouse is a repository of information collected from multiple sources, stored under a
united schema, and which usually resides at a single site. Data warehouses are constructed via a
process of data cleansing, data transformation, data integration, data loading, and periodic data

refreshing.

In order to facilitate decision making, the data in a data warchouse are organized around major
subjects, such as customer, item, supplier, and activity. The data are stored to provide
information from a historical perspective (such as from the past 5-10 years), and are typically
summarized. For example, rather than storing the details of cach sales transaction, the data
warehouse may store a summary of the transactions per item type for each store, or, summarized

to a higher level, for each sales region.

A data warehouse is usually modeled by a multidimensional database structure, where each
dimension corresponds to an attribute or a set of attributes in the schema, and each cell stores the
value of some aggregate measure, such as count or sales amount. The actual physical structure of

a data warehouse may be a relational data store or a multidimensional data cube.
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2.4 CLASSIFICATION AND PREDICTION

Classification is the processing of finding a set of models {or functions} which describe and
distinguish data classes or concepts, for the purposes of being able to use the model to predict the
class of objects whose class label is unknown. The derived model is based on the analysis of a

set of training data (i.e., data objects whose class label is known).

The derived model may be represented in various forms, such as classification (IF-THEN) rules,
decision trees, mathematical formulae, or neural networks. A decision tree is a flow-chart-like
tree structure, where each node denotes a test on an attribute value, each branch represents an
outcome of the test, and tree leaves represent classes or class distributions. Decision trees can be
easily converted to classification rules. A neural network is a collection of linear threshold units

that can be trained to distinguish objects of different classes.

Classification can be used for predicting the class label of data objects. However, in many

applications, one may like to predict some missing or unavailable data values rather than class




labels. This is usually the case when the predicted values are numerical data, and is often
specifically referred to as prediction. Although prediction may refer to both data value prediction

and class label prediction, it is usually confined to data value prediction and thus is distinct from

classification. Prediction also encompasses the identification of distribution trends based on the

available data.
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CHAPTER 3: DATA MINING ALGORITHMS

3.1 CLASSIFICATION AND PREDICTION

Data classification is a two step process (Figure). In the first step, a model is built describing a
predetermined set of data classes or concepts. The model is constructed by analyzing database
tuples described by attributes. Each tuple is assumed to belong to a predefined class, as
determined by one of the attributes, called the class label attribute. In the context of
classification, data tuples are also referred to as samples, examples, or objects. The data tuples
analyzed to build the model collectively form the training data set. The individual tuples making
up the training set are referred to as training samples and are randomly selected from the sample
population, Since the class label of each training sample is provided, this step is also known as
supervised learning (i.e., the learning of the model is 'supervised' in that it is told to which class
each training sample belongs). It contrasts with unsupervised learning (or clustering), in which
the class labels of the training samples are not known, and the number or set of classes to be

learned may not be known in advance.

Typically, the learned model is represented in the form of classification rules, decision trees, or
mathematical formulac. For example, given a database of customer credit information,
classification rules can be learned to identify customers as having either excellent or fair credit
ratings (Figure a). The rules can be used to categorize future data samples, as well as provide a

better understanding of the database contents.

In the second step (Figure b), the model is used for classification. First, the predictive accuracy
of the model(or classifier) is estimated. The holdout method is a simple technique which uses a

test set of class-labeled samples.

11




ad)

Training
- Data N

Classification
Aldgosithen

- T S e
T \'\“--.\
e . - Ravles e
//r‘ R e s e =
P aali—
B nanye age inceme credit rating [ IF nge 30-10
Sandy Jones < 30 low fair AND income=high
Biil L.ee +. 30 low excellent | THEN .
Comtmey Fox 30 - 40 high exceallent i i cxedit_r:ui&%fﬁ:‘scelleu(
Susan Lake = 40 med fair
Claire Phips R 1 ) naed fair
Andre Beau 30 - 40 high excellear
R g
i Classifieation
Rulas p
R =
R - e
Tast i
i
Data :
et e - foe Y j
- e / y 1
o / \
b \
{ o (John Hanri, 30-40. highy
| name age incoma credit rating S i
i ) Cradit rating”
Frank Jonas = 40 high fair
Sylvia Crest < 30 fow fai
Anne Ve 30-40 | high excaliont
exeailent

Figare 7.1: The data classification process; 4} Leansing: Training data are analyzed by 4 clasification aloorith.
lleve, the chass babel witribte s crcdii_raling, and the learned todel or clasalier is tepresented m the forny of
claseificativn tales, b} Classficalion: Test data are wsind 1o estivrate the aceuracy of the elassifiestion rules. 17 the
accuras i consilered accepfable, 1he riles can be applied 1o the classification of new data tnples.

The accuracy of a model on a given test set is the percentage of test set samples that are correctly
classified by the model. For each test sample, the known class label is compared with the learned
model's class prediction for that sample. Note that if the accuracy of the model were estimated

based on the training data set, this estimate could be optimistic since the learned model tends to

12




overt the data (that is, it may have incorporated some particular anomalies of the training data

which are not present in the overall sample population). Therefore, a test set is used.

If the accuracy of the model is considered acceptable, the model can be used to classify future
data tuples or no objects for which the class label is not known. (Such data are also referred to in
the machine learning literature as ‘unknown" or \previously unseen" data). For example, the
classification rules learned in Figure 7.1a from the analysis of data from existing customers can

be used to predict the credit rating of new or future (i.c., previously unseen) customers,

Prediction can be viewed as the construction and use of a model to assess the class of an
unlabeled object, or to assess the value or value ranges of an attribute that a given object is likely
to have. In this view, classification and regression are the two major types of prediction problems
where classification is used to predict discrete or nominal values, while regression is used to

predict continuous or ordered values.

Classification and prediction have numerous applications including credit approval, medical

diagnosis, performance prediction, and selective marketing.

3.2 ISSUES REGARDING CLASSIFICATION AND PREDICTION

Preparing the data for classification and prediction. The following preprocessing steps may be '
applied to the data in order to help improve the accuracy, efficiency, and scalability of the

classification or prediction process.

* Data cleaning. This refers to the preprocessing of data in order to remove or reduce noise
(by applying smoothing techniques, for example), and the treatment of missing values
(c.g., by replacing a missing value with the most commonly occurring value for that
attribute, or with the most probable value based on statistics). Although most
classification algorithms have some mechanisms for handling noisy or missing data, this
step can help reduce confusion during learning.
- ¢ Relevance analysis. Many of the attributes in the data may be irrelevant to the
classification or prediction task. For example, data recording the day of the week on
which a bank loan application was _led is unlikely to be relevant to the success of the

application. Furthermore, other attributes may be redundant. Hence, relevance analysis

13




may be performed on the data with the aim of removing any irrelevant or redundant
attributes from the learning process. In machine learning, this step is known as feature
selection. Including such attributes may otherwise slow down, and possibly mislead, the
learning step. Ideally, the time spent on relevance analysis, when added to the time spent
on leaming from the resulting \reduced” feature subset, should be less than the time that
would have been spent on learning from the original set of features. Hence, such analysis
can help improve classification efficiency and scalability.

o Data transformation. The data can be generalized to higher-level concepts. Concept
hierarchies may be used for this purpose. This is particularly useful for continuous-valued
attributes. For example, numeric values for the attribute income may be generalized to
discrete ranges such as low, medium, and high. Similarly, nominal-valued attributes, like
street, can be generalized to higher-level concepts, like city. Since generalization
compresses the original training data, fewer input/output operations may be involved
during learning. The data may also be normalized, particularly when neural networks or
methods involving distance measurements are used in the learning step. Normalization
involves scaling all values for a given attribute so that they fall within a small specified
range, such as -1.0 to 1.0, or 0 to 1.0. In methods which use distance measurements, for
example, this would prevent attributes with initially large ranges (like, say income) from

outweighing attributes with initiaily smaller ranges (such as binary attributes).
3.3: CLASSIFICATION BY DECISION TREE ALGORITHM
1) create a node N;
2) if samples are all of the same class, C then
3) return N as a leaf node labeled with the class C;
4} if attribute-list is empty then
_ 5) return N as a leaf node labeled with the most common class in samples; // majority voting
6) select test-attribute, the attribute among attribute-list with the highest information gain;

7) label node N with test-attribute;

14




8) for each known value ai of test-attribute // partition the samples
i 9) grow a branch from node N for the condition test-atfribute=ai;
10) let si be the set of samples in samples for which test-attribute=ai; // a partition
11) if si is empty then
12) atta.ch a leaf labeled with the most common class in samples;
13) else attach the node returned by Generate decision tree(si, attribute-list - test-attribute),

3.3.1 DECISION TREE INDUCTION:

The basic algorithm for decision tree induction is a greedy algorithm which constructs decision

trees in a top-down recursive divide-and-conquer manner.
‘The basic strategy is as follows:

¢ The tree starts as a single node representing the training samples (step 1).

¢ Ifthe samples are all of the same class, then the node becomes a leaf and is labeled with
that class (steps 2and 3).

¢ Otherwise, the algorithm uses an entropy-based measure known as information gain as a
heuristic for selecting the attribute that will best separate the samples into individual
classes (step 6). This attribute becomes the \test" or \decision" attribute at the node (step
7). In this version of the algorithm, all attributes are categorical, i.e., discrete-valued.
Continuous-valued attributes must be discrete.

e A branch is created for each known value of the test attribute, and the samples are
partitioned accordingly(steps 8-10).

* The algorithm uses the same process recursively to form a decision tree for the samples at
each partition. Once an attribute has occurred at a node, it need not be considered in any
of the node's descendents (step 13).

» The recursive partitioning stops only when any one of the following conditions is true:

1. All samples for a given node belong to the same class (step 2 and 3), or

15




2. There are no remaining attributes on which the samples may be further

partitioned (step 4). In this case, majority voting is employed (step 5). This

. e i L“MWW

involves converting the given node into a leaf and labeling it with the class in
majority among samples. Alternatively, the class distribution of the node samples

maybe stored; or

3. There are no samples for the branch test-attribute=ai (step 11). In this case, a

leaf is created with the majority class in samples (step 12).

Attribute selection measure. The information gain measure is used to select the test attribute at
each node in the tree. Such a measure is referred to as an attribute selection measure or a
measure of the goodness of split. The attribute with the highest information gain (or greatest
entropy reduction) is chosen as the test attribute for the current node. This attribute minimizes
the information needed to classify the samples in the resulting partitions and reflects the least
randomness or \impurity” in these partitions. Such an information-theoretic approach minimizes
the expected number of tests needed to classify an object and guarantees that a simple (but not

necessarily the simplest) tree is found.
3.4 BAYESIAN CLASSIFIERS

Bayesian classifiers are statistical classifiers. They can predict class membership probabilities,
such as the probability that a given sample belongs to a particular class. Bayesian classification is
based on Bayes theorem, described below. Studies comparing classification algorithms have
found a simple Bayesian classifier known as the naive Bayesian classifier to be comparable in
performance with decision tree and neural network classifiers. Bayesian classifiers have also

exhibited high accuracy and speed when applied to large databases.

Naive Bayesian classifiers assume that the effect of an attribute value on a given class is
independent of the values of the other attributes. This assumption is called class conditional
independence. It is made to simplify the computations involved, and in this sense, is considered
\naive". Bayesian belief networks are graphical models, which unlike naive Bayesian classifiers,
allow the representation of dependencies among subsets of attributes. Bayesian belief networks

can also be used for classification.
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3.4.IBAYES THEOREM:

Let X be a data sample whose class label is unknown. Let H be some hypothesis, such as that the
data sample X belongs to a specified class C. For classification problems, we want to determine

P(H;jX), the probability that the hypothesis H holds given the observed data sample X.

P(HjX) is the posterior probability, or a posteriori probability, of H conditioned on X. For
example, suppose the world of data samples consists of fruits, described by their color and shape.
Suppose that X is red and round, and that H is the hypothesis that X is an apple. Then P(HjX)
reflects our confidence that X is an apple given that we have seen that X is red and round. In
contrast, P(H) is. the prior probability, or a priori probability of H. For example, this is the
probability that any given data sample is an apple, regardless of how the data sample looks. The
posterior probability, P(HjX) is based on more information (such as background knowledge)

than the prior probability, P(H), which is independent of X.

Similarly, P(XjH) is the posterior probability of X conditioned on H. That is, it is the probability
that X is red and round given that we know that it is true that X is an apple. P(X) is the prior
probability of X.

3.4.2 NAIVE BAYESIAN CILASSIFIER:
The naive Bayesian classifier, or simple Bayesian classifier, works as follows:

1. Each data sample is represented by an n-dimensional feature vector, X = (x1; x2; : : :; xn),

depicting n measurements made on the sample from n attributes, respectively Al;A2; :;;An.

2. Suppose that there are m classes, C1; C2; : : ;; Cm. Given an unknown data sample, X (ie.,

having no class label), the classifier will predict that X belongs to the class having the highest

17
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posterior probability, conditioned on X. That is, the naive Bayesian classi_er assigns an unknown

sample X to the class Ci if and only if :

PCNY > PICHN )Y for 1< j <o, j 4,

Thus we maximize P(CijX). The class Ci for which P(CijX) is maximized is called the maximum

posteriori hypothesis. By Bayes theorem,

PUXCPCy)
I N 3

PO Ny o=

P(CijX) =P(XjCi)P(Ci)/P€%()

3. As P(X) is constant for all classes, only P(X/Ci)P(Ci) need be maximized. If the class prior
probabilities arenot known, then it is commonly assumed that the classes are equally likely, i.e.
P(C1) = P(C2) = : : : = P(Cm), and we would thercfore maximize P(X/Ci). Otherwise, we
maximize P(X/CiP(Ci)). Note that the class prior probabilities may be estimated by P(Ci) = si/s ,
where si is the number of training samples of class Ci, and s is the total number of training

samples.

4. Given data sets with many attributes, it would be extremely computationally expensive to
compute P(Xj/Ci). In order to reduce computation in evaluating P(Xj/Ci), the naive assumption
of class conditional independence is made. This presumes that the values of the attributes are
conditionally independent of one another, given the class label of the sample, ie., that there are

no dependence relationships among the attributes. Thus,

PN () = H Plasp i),

hazl
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The probabilities P(x1jCi); P(x2jCi), : : :; P(xnjCi) can be estimated from the training samples,

where:

(a) If Ak is categorical, then P(xkj/Ci) = sik/si ,where sik is the number of training samples of

class Ci having the value xk for Ak, and si is the number of training samples belonging to Ci.

(b) If Ak is continuous-valued, then the attribute is assumed to have a Gaussian distribution.

Therefore,

Plag O = glag, e, 00, ) = —mm—0 70

where P(xkjCi) = g(xk; Ci,where g(xk; Ci; Ci) is the Gaussian (normal) density function for
attribute Ak, while Ci and Ci are the mean and variance respectively given the values for

attribute Ak for training samples of class Ci.

5. In order to classify an unknown sample X, P(XjCi}P(Ci) is evaluated for each class Ci. Sample i
X is then assigned to the class Ci if and only if ; \

PN CHPCH > PINCHPIC ) Tor 1< j<m, j£ i,

3.4.3 EFFECTIVENESS OF BAYESIAN CLASSIFIER

In theory, Bayesian classifiers have the minimum error rate in comparison to all other classifiers.
However, in practice this is not always the case owing to inaccuracies in the assumptions made
for its use, such as class conditional independence, and the lack of available probability data.
- However, various empirical studies of this classifier in comparison to decision tree and neural

network classifiers have found it to be comparable in some domains.

Bayesian classifiers are also useful in that they provide a theoretical justification for other

classifiers which do not explicitly use Bayes theorem. For example, under certain assumptions, it

19




can be shown that many neural network and curve fitting algorithms output the maximum

posteriori hypothesis, as does the naive Bayesian classifier

P

P AL Ao

-

e

dr g s
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CHAPTER 4: CLUSTER TECHNIQUES

Different approaches to clustering data can be described with the help of the hierarchy shown in
Figure 7 (other taxonometric representations of clustering methodology are possible; ours is
based on the discussion in Jain and Dubes [1988]). At the top level, there is a distinction between
hierarchical and partitional approaches (hierarchical methods produce a nested series of
partitions, while partitional methods produce only one). The taxonomy shown in Figure 7 must
be supplemented by a discussion of cross-cutting issues that may (in principle) affect all of the

different approaches regardless of their placement in the taxonomy.

Clustering
mr”’d‘?f---ff o “-‘%\“'-n
il .S
' Hierarchical | ' Partitional
Single | Complete Square 3 Graph | | Mixture | | Mode |
Link | Link Error | |Theoretic| | Resolving Seekingé

i
k-meansj Expectation
Maximization

Figure 7. A taxonomy of clustering approaches.

4.1 HIERARCHICAL CLUSTERING ALGORITHM

Most hierarchical clustering algorithms are variants of the single-link, complete-link, and
minimum-variance algorithms. Of these, the single-link and complete link algorithms are most

popular. These two algorithms differ in the way they characterize the similarity between a pair of

clusters.
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In the single-link method, the distance between two clusters is the minimum of the distances
between all pairs of patterns drawn from the two clusters (one pattern from the first cluster, the
other from the second). In the complete-link algorithm, the distance between two clusters is the
maximum of all pair wise distances between patterns in the two clusters. In either case, two
clusters are merged to form a larger cluster based on minimum distance criteria. The complete-
link algorithm produces tightly bound or compact clusters. The single-link algorithm, by
contrast, suffers from a chaining effect .It has a tendency to produce clusters that are straggly or

elongated.
4.2 PARTITIONED ALGORITHMS

A partitional clustering algorithm obtains a single partition of the data instead of a clustering
structure, such as the dendrogram produced by a hierarchical technique. Partitional methods have
advantages in applications involving large data sets for which the construction of a dendrogram
is computationally prohibitive. A problem accompanying the use of a partitional algorithm is the
choice of the number of desired output clusters, A seminal paper provides guidance on this key
design decision. The partitional techniques usually produce clusters by optimizing a criterion
function defined either locally (on a subset of the patterns) or globally (defined over all of the
patterns). Combinatorial search of the set of possible labelings for an optimum value of a
criterion is clearly computationally prohibitive. In practice, therefore, the algerithm is typically
run multiple times with different starting states, and the best configuration obtained from all of

the runs is used as the output clustering.
SQUARED ERROR CLUSTERING METHOD
(1) Select an initial partition of the patterns with a fixed number of clusters and cluster centers.

(2) Assign each pattern to its closest cluster center and compute the new cluster centers as the
centroids of the clusters. Repeat this step until convergence is achieved, i.e., until the cluster

membership is stable.
(3) Merge and split clusters based on some heuristic information, optionally

repeating step 2.
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K-MEAN CLUSTERING ALGORITHM

(1) Choose k cluster centers to coincide with £ randomly-chosen patterns or & randomly defined

points inside the hypervolume containing the pattern set.
(2) Assign each pattern to the closest cluster center.
(3) Recompute the cluster centers using the current cluster memberships.

(4) If a convergence criterion is not met, go to step 2. Typical convergence criteria are: no (or

minimal) reassignment of patterns to new cluster centers, or minimal decrease in squared error.

Several variants of the k-means algorithm have been reported in the literature. Some of them
attempt to select a good initial partition so that the algorithm is more likely to find the global

minimum value.
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The two key features of k-means which make it efficient are ofien regarded as its biggest

drawbacks:

» FEuclidean distance is used as a metric and variance is used as a measure of cluster scatter.
o The number of clusters  is an input parameter; an inappropriate choice of k£ may yield
poor results. That is why, when performing k-means, it is important to run diagnostic

checks for determining the number of clusters in the data set.

A key limitation of k-means is its cluster model. The concept is based on spherical clusters that
are separable in a way so that the mean value converges towards the cluster center, The clusters
are expected to be of similar size, so that the assignment to the nearest cluster center is the
correct assignment. When for example applying k-means with a value of k = 3 onto the well-
known Iris flower data set, the result often fails to separate the three Iris species contained in the
data set. With k = 2, the two visible clusters (one containing two species) will be discovered,
whereas with £ = 3 one of the two clusters will be split into two even parts. In fact, £ = 2 is more
appropriate for this data set, despite the data set containing 3 classes. As with any other
clustering algorithm, the k-means result relies on the data set to satisfy the assumptions made by

the clustering algorithms, It works very well on some data sets, while failing miserably on others.
APPLICATION OF ALGORITHM

k-means clustering in particular when using heuristics such as Lioyd's algorithm Is rather easy to
implement and apply even on large data sets. As such, it has been successfully used in various topics,
ranging from market segmentation, computer vision, geo statistics and astronomy to agriculture. It

often is used as a preprocessing step for other algorithms, for example to find a starting configuration.

4.3 REPRESENTATION OF CLUSTERS

In applications where the number of classes or clusters in a data set must be discovered, a
partition of the data set is the end product. Here, a partition gives an idea about the reparability of
the data points into clusters and whether it is meaningful to employ a supervised classificr that
assumes a given number of classes in the data set. However, in many other applications that
involve decision making, the resulting clusters have to be represented or described in a compact

form to achieve data abstraction. Even though the construction of a cluster representation is an
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important step in decision making, it has not been examined closely by researchers. The notion
of cluster representation was introduced in Duran and Odell [1974] and was subsequently studied
in Diday and Simon [1976] and Michalski et al. [1981}. They suggested the following

representation schemes:

(1) Represent a cluster of points by their centroid or by a set of distant points in the cluster.

Figure 17 depicts these two ideas.
(2) Represent clusters using nodes in a classification tree. This is illustrated in Figure 18,

(3) Represent clusters by using conjunctive logical expressions. For example, the expression

X1>3, X2<2 in Figure 18 stands for the logical statement ‘X1 is greater than 3’ and *X2 is less
than 2°.

XE.‘ le
" ) G
@ 3 . #
. ’ & o, 0
By The CentroidX - X,
y 1he Lentrol By Three Distant Points

Figure 17. Representation of a cluster by points.
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Figure 18. Representation of clusters by a classification tree or by conjunctive statements.

Use of the centroid to represent a cluster is the most popular scheme. It works well when the
clusters are compact or isotropic. However, when the clusters are clongated or non-isotropic, 1
then this scheme fails to represent them properly. In such a case, the use of a collection of
boundary points in a cluster captures its shape well. The number of points used to represent a
cluster should increase as the complexity of its shape increases. The two different representations
illustrated in Figure 18 are equivalent. Every path in a classification tree from the root nodeto a
leaf node corresponds to a conjunctive statement. An important limitation of the typical use of

the simple conjunctive concept representations is that they can describe only rectangular or

isotropic clusters in the feature space. |
Data abstraction is useful in decision making because of the following:

(1) It gives a simple and intuitive description of clusters which i1s easy for human |
comprehension. In both conceptual and symbolic clustering [Gowda and Diday 1992] this ‘
representation is obtained without using an additional step. These algorithms generate the ‘

clusters as well as their descriptions. A set of fuzzy rules can be obtained from fuzzy |
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clusters of a data set. These rules can be used to build fuzzy classifiers and fuzzy

controllers.

(2) It helps in achieving data compression that can be exploited further by a computer [Murty

and Krishna 1980]. Figure 19(a) shows samples belonging to two chain-like clusters

labeled 1 and 2. A partitional clustering like the k-means algorithm cannot separate these

two structures properly. The single-link algorithm works well on this data, but is

computationally expensive. So a hybrid approach may be used to exploit the desirable

properties of both these algorithms. We obtain 8 sub clusters of the data using the

(computationally efficient) k-means algorithm. Each of these sub clusters can be

represented by their centroids as shown in Figure 19(a). Now the single- link algorithm

can be applied on these centroids alone to cluster them into 2 groups. The resulting

groups are shown in Figure 19(b). Here, a data reduction is achieved by representing the

sub-clusters by their centroids.

N

Rl

{a)

(b)

Figure 19. Data compression by clustering.
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(3) It increases the efficiency of the decision making task. In a cluster based document
retrieval technique [Salton 1991], a large collection of documents is clustered and each of the
clusters is represented using its centroid. In order to retrieve documents relevant to a query,
the query is matched with the cluster centroids rather than with all the documents. This helps
in retrieving relevant documents efficiently. Also in several applications involving large data

sets, clustering is used to perform indexing, which helps in efficient decision making.

4.4: K-MEAN CLUSTERING EXAMPLE

Clustering allows for unsupervised learning. That is, the machine / software will learn on its
own, using the data (learning set), and will classify the objects into a particular class — for
example, if our class (decision) attribute is Tumor Type and its values are: malignant,
benign, etc. - these will be the classes. They will be represented by clusterl, cluster2, etc.
However, the class information is never provided to the algorithm. The class information can

be used later on, to evaluate how accurately the algorithm classified the objects.

(‘'mvature | Textwe | Blood | Tumor (wvatwre | Textme | Blood | Tumor
Consmp | Type Consunp | Type
xl |08 12 (A Benign xl 08 12 |A Benign
005 |4 |B |Bum | =P [2[05 |14 |B
x3 | 0.23 04 |D Malignant x3 | 0.3 04 |D
023 05 |D Malignant 41023 05 |D
(lcaming ct)
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The way we do that, is by plotting the objects from the database into space. Each attribute is

one dimension:

[}
A Cluster2 !
Texturg ‘ malionant
12 Cluster 1 A,
““ | benign (o ®
LX) ‘"

Blood

04l D Consump

Curvatur

After all the objects are plotted, we will calculate the distance between them, and the ones

that are close to each other — we will group them together, i.e. place them in the same cluster.
With the K-Means algorithm, we recall it works as follows:

29




K MEANS CLUSTERING

¢ Partition clustering approach.

s Each cluster is associated with the centroid (central point).
e FEach point is assigned to the cluster with nearest centroid.
¢ Number of clusters k must be specified.

¢ The basics of algorithm are very simple.
DETAIL:

¢ Initially centroids are often chosen randomly.

- Clusters produced vary from one run to another.
¢ The centroid is the mean point in clusters.
e Closeness is measured by Euclidean distance formula

+ K-MEANS will converge , most of the convergences occur in the first few steps.

-

EXAMPLE:

Problem: Cluster the following eight points (with (x, y) representing locations) into three clusters
Al(2, 10) A2(2, 5) A3(8,4) A4(5, B) A5(7,5) A6(6,4) AT(l, 2) A8(4, 9). Initial cluster
centers are: Al(2, 10), A4(5, 8) and A7(1, 2). The distance function between two points
a=(x1, yl) and b=(x2, y2) is defined as: pfa b) = |x2 -xI| + |y2-yl|.

4 = o

Use k-means algorithm to find the three cluster centers after the second iteration.

Solution:
(2,10) (5, 8) 1,2)
Point Dist Mean 1 Dist Mean 2 Dist Mean 3 Cluster
Al | (2, 10}
_ A21(2,5)
A3 | (8,4)
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(A4 [G.9)

A5 (7,3)

A6 | (6, 4)

A7((1,2)

A8 (4,9

First we list all points in the first column of the table above. The initial cluster centers — means,
are (2, 10), (5, 8) and (1, 2) - chosen randomly. Next, we will calculate the distance from the

first point (2, 10) to each of the three means, by using the distance function:

point mean]
xd, yl x2, y2
(2, 10) (2, 10)

pla, b) = |x2 —xI| + |y2 - ylf

pfpoint, meanl) = |x2 —x1| + [y2 —yl|

=12-2| +|10 - 10|
=0+0
=0

point mean?2

xl,yl x2, y2

(2,10 5,8

pla, b) = |x2 —xi| + [y2 - yl|
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plpoint, mean2) = |x2 —x1 | + |y2—yi|

=15-2| +18-10|
=3+2
=3

point mean3

xi, vl x2, y2

(2, 10) (1, 2)

pla, &) = 1x2—xI| + 2yl
plpoint, mean) = |x2 —xl| + |y2 - yij
=[1-2] +[2-10]

=1+8

So, we fill in these values in the table:

(2, 10) (5, 8)

(1,2)

Point Dist Mean 1 | Dist Mean 2

Dist Mean 3

Cluster

Al | (2,10) 0 5

A2 1 (2,5)

A3 [ (8, 9)

Ad | (5,8)

A5 [ (7, 9)
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(A6 [ (6,4)

AT (1, 2)

A8 [ (4,9

So, which cluster should the point (2, 10) be placed in? The one, where the point has the shortest

distance to the mean — that is mean 1 (cluster 1), since the distance is 0.
Cluster 1 Cluster 2 Cluster 3
(2, 10)

So, we go to the second point (2, 5) and we will calculate the distance to each of the three

means, by using the distance function:

point mean| ;
xi, yl x2,y2
2,5) (2,10 ?

pla, b) = |x2 —x1| + |y2 —yl|

p(point, meanl) = |x2 —xI| + |y2 - y1|

=12-2| +]10-5]
=0+3
=5
point mean2
) xl, yi x2,y2
(2,5) (5, 8)

pla, b) = |x2 —x1| + |[y2 - yi| |
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p(point, mean2) = |x2 — x| + |[y2 — yl|

point
xl, vyl

2, 5)

=152 +|8 -5

pla, b) = |x2 ~xi| + |y2 -yl

p(point, mean2) = \x2 —xlI| + |y2 - yi|

=|1-2]+[2-5]

So, we fill in these values in the table:

(2, 10) (5, 8) (1,2)
Point Dist Mean 1 | Dist Mean 2 | Dist Mean3 | Cluster
Al | (2,10 0 5 9 1
A2 [(2,5) 5 6 4 3
A3 [ (8,4)
A4 | (5,8)
AS [ (7,5)
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Ab (6,4)

A7 |1(1,2)

A8 | (4,9 |
|

So, which cluster should the point (2, 5) be placed in? The one, where the point has the shortest

distance to the mean — that is mean 3 (cluster 3), since the distance is 0.

Cluster 1 Cluster 2 Cluster 3

2, 10) 2,5

Analogically, we fill in the rest of the table, and place each point in one of the clusters:

2, 10) G (1.2)

-

Point Dist Mean 1 | Dist Mean 2 | Dist Mean3 | Cluster ﬁ

Al |(2,10) 0 5 9 1 i

i’

A21(2,5) 5 6 4 3 I
A3 (8,4 12 7 9 2

Ad[(5,8) 5 0 10 2

A5 [ (7,5) 10 5 9 2
A6 | (6,4) 10 5 7 2
AT [(1,2) 9 10 0 3
A8 [(4,9) 3 2 10 2

b
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Cluster 1 Cluster 2 Cluster 3 !
1 (2, 10) (8, 4) (2, 5)

(,8) (1,2)

(7, 3)
(6,4)
(4,9)

Next, we need to re-compute the new cluster centers (means). We do so, by taking the mean of

all points in each cluster.

For Cluster 1, we only have one point Al1(2, 10), which was the old mean, so the cluster center

remains the same.

For Cluster 2, we have ( (84+5+7+6+4)/5, (4+8+5+4+9)/5 ) = (6, 6)

;
For Cluster 3, we have ( (2+1)/2, (5+2)/2)=(1.5,3.5) i
ﬂ
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new clusters: 1 {A1}. 20 {A3. Ad. AS. A6, A8}, 3: {A2 AT}

b) centers of the new clusters:

Y]
S

Cl1= (2. 10). C2= ((8=5=7=06=4)/5. (4=8+5+4+0)/5) = (0, 6). C3=((2=L¥2. (53=2)/2) = (1.5,

c)
A Al
10 195} l ' 10 @
" ) AS g (LAS
A Ad
8 e § o
7 7
6 6
5 A2 A5 , 1A AS
e - < A ] -y
4 u_‘ég_;_ a3 4 qL.AE_J A3
3 3
5 A7 , A7
1 1
0 0
2 03 4 5 6 7 8 9 10 1 2 3 & $¢d 7 & & 1D
10 (@A] 10 ({“AJ/
5 ! ;'/\[AS g - (/{[As
8 \ V'H $ \ \
7 \ N 7 \ N\ 1
. 6 A N\ N 6 A N N )
5 /r “‘\ \ \\Aﬁ 5 /(LA:[ \\ (:‘\AS \\
4 -/ j: AG I" :;A ) _I_ I‘ / _‘\Aﬁ l:\ A_}
1 747 AN A =2 T/ I AN 1 !
. A?/ I s %‘ ‘A?/ — f
| é z 1
0 0
01 2 3 4 5 6 78 9 10 0 1L 2 3 4 56 78 9 10
The initial cluster centers are shown in red dot. The new cluster centers are shown in red x.
That was Iterationl (epochl). Next, we go to Iteration2 (epoch2), Iteration3, and so on until the
means do not change anymore.
In Iteration2, we basically repeat the process from Iterationl this time using the new means we
computed.
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d

\‘\)/e would need two more epochs. After the 2 epoch the results would be:
1: {Al, A8}. 2: {A3. Ad. A5, AG}, 3: {A2, A7)

with centers C1=(3, 9.5), C2=(6.5. 5.25) and C3=(1.5. 3.5).

After the 3*4 epoch. the results would be:

: 1: {Al. A4, A8}, 2: {A3. AS, AG}. 3: {A2, A7)

[ with centers C1=(3.66. 9). C2=(7. 4.33) and C3=(1.5. 3.5).
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CHAPTER 5 CODING OF THE PROJECT

5.1 Areaclust.java:

import java.io.BufferedReader;
import java.io.File,
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
* import java.util. Vector;
import java.util.Iterator; !

import java.util.Scanner;

¥

import java.util. String Tokenizer;

o~ ———

public class Areaclust {

A\

private static int Lt;
private static int rowtota=0; |
private static int rowtotal=0; |
private static int ClustNumber;
private String ad;
public Areaclust (String as) throws FileNotFoundException, IOException{

ad=as;

Vector dataPoints = new Vector();

1 File filel = new File("hospitals.csv");

BufferedReader bufRdrr = new BufferedReader(new FileReader(filel));
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BufferedReader bufRdrrl = new BufferedReader(new FileReader(filel));
String lines = null;
int rowl =0;

int coll = 0;

while((lines = bufRdrr.readLine(}) '= null )
{

rowtotal++;

)

File file = new File("area.csv');

—

BufferedReader bufRdr = new BufferedReader(new FileReader(file)); L

BufferedReader bufRdr2 = new BufferedReader(new FileReader(file));

String line = null;

int row = 0; !
-

int col=0;

while({line = bufRdr.readLine(}) = null )
{

rowtotatt;

}

String [1[] numbers = new String [rowtota][3];
double Cordx[] =new double[rowtota];
double Cordy[] =new double{rowtota];

String Cordz{]} =new String[rowtotal;
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//read each line of text file

while((line = bufRdr2.readLine(}) != null && row< rowtota )
o

StringTokenizer st = new StringTokenizer(line,",");

while {st.hasMoreTokens(})

{ |

{/get next token and store it in the array

numbers[row][col] = st.nextToken();
cokHt;
} !

col =0;

row++;

}

for(row=0;row < rowtota;row++)

{

for(col=0; col<3;colt++)

{

System.out.print(" "' + numbers[row][col]);

e mie, iy, o oy S

Cordz[row]=numbers{row][2];
} |
System.out.println(" "); ‘:
} .

for(row=0;row<rowtota;row++)

{
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Cordx[row]=Double.parseDouble(numbers[row][0]);

Cordy[row]}=Double.parseDouble(numbers{row][1]);
’ H

for(1=0;l<rowtota;++)

{

dataPoints.add(new DataPoint(Cordx[1],Cordy[1],+1+"th location"));

System.out.printIn("Enter no. of clusters : ");

Scanner input = new Scanner{System.in};

ChustNumber=input.nextint();

Jea jea = new Jea(ClustNumber,1000,dataPoints);

jea.start Analysis();

Vector[] v = jca.getClusterQutput();

for (int i=0; i<v.length; i++){

Vector tempV = v[i};

System.out.println("'----------- Cluster™+H(i+1)+"------—- "

Iterator iter = tempV.iterator(); |
while(iter.hasNext()){ | I
|

DataPoint dpTemp = (DataPoint)iter.next();

System.out.println{dpTemp.getObjName()+"["+dpTemp.getX()+","+dpTemp.get Y()+"]");

for{row=0;row < rowtota;row++) ‘
|
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\ if{Cordx[row]==dpTemp.getX()&& Cordy[row]==dpTemp.getY())
" {
if{ad.equals(Cordz[row]))
{
=(it+1);
!
7 )
}
}
}
System.out.printin(" J"+t);

Areaclust(String[ ] Cordxx, double[] Cordyx, double[] Cordzx, int rox) {

String[] corx=Cordxx;

double[] cory=Cordyx;

double[] corz=Cordzx;
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5.2 DataPoint.java: |

public class DataPoint {
private double mX,mY;

|
private String mObjName; ‘
private Cluster mCluster; ‘

\

private double mEuDt;

public DataPoint(double x, double y, String name) {
!
} this.mX = x; "

this.mY = y;
this. mObjName = name;

this.mCluster = null;

public void setCluster(Cluster cluster) {

\ this.mCluster = cluster;

calcEuclideanDistance();

public void calcEuclideanDistance() {

/{called when DP is added to a cluster or when a Centroid is recalculated.

mEuDt = Math.sqrt(Math.pow((mX - mCluster.getCentroid().getCx()), ,
2) + Math.pow((mY - mCluster.getCentroid().getCy()), 2)); |

/ }
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public double testEuclideanDistance(Centroid ¢} {
return Math.sqri{Math.pow((mX - ¢.getCx()), 2) + Math.pow((mY - c.getCy()), 2));

public double getX() {

return mx;

public double getY() {

retum my,

public Cluster getCluster() {

return mCluster;

public double getCurrentEuDt() {

return mEuDt;

public String getObjName(} {

return mObjName;
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5.3 Jea.java:

/ public class Jca {
private Cluster[] clusters;

private int miter;

private Vector mDataPoints = new Vector(};

private double mSWCSS;

public Jea(int k, int iter, Vector dataPoints) {
clusters = new Cluster(k];
for (int i=0; i <k; it+) {

clusters[i] = new Cluster("Cluster" + 1);

H
this.miter = iter;

this.mDataPoints = dataPoints;

private void caleSWCSS() {
double temp = 0;
for (int i = 0; i < clusters.length; i++) {

temp = temp + clusters[i].getSumSqr(};

}
mSWCSS = temp;
}
public void startAnalysis() { - .|

//set Starting centroid positions - Start of Step 1
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setlnitialCentroids();
int n=0;
[ /fassign DataPoint to clusters
loopl: while (true) {
for (int 1 = 0; | < clusters.length; 4++)

{
clusters[l].addDataPoint((DataPoint)mDataPoints.element At(n));

n++;

if (n >= mDataPoints.size())

break loopl;

//calculate E for all the clusters

caleSWCSS();

/frecalculate Cluster centroids - Start of Step 2
for (int 1= 0; i < clusters.length; i++) {

clusters[i].getCentroid().calcCentroid();

//recalculate E for all the clusters

caleSWCSS();

for (int i = 0; i < miter; i++) {
/lenter the loop for cluster 1

for (int j = 0; j < clusters.length; j++) {
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for (int k = 0; k < clusters[j].getNumDataPoints(); k++} {

/fpick the first element of the first cluster

//get the current Euclidean distance

double tempEuDt = clusters[j].getDataPoint(k). getCurrentEuDt();
Cluster tempCluster == null;

boolean matchFoundFlag = false;

//call testEuclidean distance for all clusters

for (int 1= 0; | < clusters.length; 1++) {

//if testEuchdean < currentEuclidean then

if (tempEulnt
clusters[j].getDataPoint(k).testEuclideanDistance{clusters|1].getCentroid()}) {

tempEubDt
clusters{j].getDataPoint{k).testEuclideanDistance(clustersfl].getCentroid());

tempCluster = clusters{l];

matchFoundFlag = true;

}
/7if statement - Check whether the Last EuDt is > Present EuDt

}

/for variable 'I' - Looping between different Clusters for matching a Data Point.

/fadd DataPoint to the cluster and calcSWCSS

if (matchFoundFlag) {
tempCluster.addDataPoint(clusters[j]. getDataPoint(k));

clusters[j].removeDataPoint(clusters[j].getDataPoint(k));
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for (int m = 0; m < clusters.length; m++) {

clusters[m).getCentroid().calcCentroid();

/ffor variable 'm' - Recalculating centroids for all Clusters

calcSWCSS();

/fif statement - A Data Point is eligible for transfer between Clusters. '
} y

//for variable k' - Looping through all Data Points of the current Cluster.

}//for variable Yj' - Looping through all the Clusters.

}/for variable '1' - Number of iterations.

public Vector[] getClusterOutput() {
Vector v[] = new Vector[clusters.length];
for (int i = 0; i < clusters.length; i++} {

v[i] = clusters[i].getDataPoints();

return v;

private void setInitialCentroids() {

/fkn = (round({max-min)/k)*n)+min where n is from 0 to (k-1).
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double cx =0, cy=0;
for (int n = 1; n <= clusters.length; n++} {

/ cx = (((getMaxXValue() - getMinXValue()) / (clusters.length + 1)) * n) +
getMinXValue();

cy = (((getMaxYValue() - getMinYValue()) / (clusters.length + 1)) * n) -+
getMinY Value();

Centroid ¢l = new Centroid{cx, cy);
clusters[n - 1].setCentroid(c1);

cl.setCluster{clusters[n - 11);

private double getMaxXValue() { |

double temp;

temp = ((DataPoint) mDataPoints.clement At(0)).getX();

for (int i = 0; i < mDataPoints.size(); i++) |

DataPoint dp = {(DataPoint) mDataPoints.elementAt(i};
temp = (dp.getX() > temp) ? dp.getX() : temp;
}

return temp;

private double getMinXValue() {
double temp = 0;
temp = ((DataPoint) mDataPoints.clement At(()).getX(};
for (int i = 0; i < mDataPoints.size(); i++) {
DataPoint dp = (DataPoint) mDataPoints.elementAt(i);

temp = (dp.getX() < temp) 7 dp.getX() : temp;
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}

return temp,;

private double getMaxYValue() {
dbuble temp = 0;
temp = ((DataPoint) mDataPoints.clement At(0)).getY();
for (int i = 0; i < mDataPoints.size(); i++) {
DataPoint dp = {DataPoint) mDataPoints.clement At(i);
temp = (dp.getY() > tenﬁp) ?dp.getY() : temp;
}

return temp,

private double getMinY Value() {
double temp = 0;
temp = ({DataPoint) mDataPoints.element At(0)).getY ();
for (int i = 0; i < mDataPoints.size(); i++) {
DataPoint dp = (DataPoint) mDataPoints.element At(i);
temp = (dp.getY() < temp) 7 dp.getY() : temp;
}

return temp;

public int getKValue() {

return clusters.length;
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public int getlterations() {

i return miter;

public int getTotalDataPoints() {

return mDataPoints.size();

public double getSWCSS() {
return mSWCSS;

public Cluster getCluster(int pos) {

return clusters[pos];

5.4 Centroid.java:

class Centroid {
'/ private double mCx, mCy;

private Cluster mCluster;
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public Centroid(double cx, double cy) {
this.mCx = ¢x;

this.mCy = cy;

public void calcCentroid() { //only called by C Alnstance

int numDP = mCluster.getNumDataPoints();

double tempX = 0, tempY = 0;

int i;

/fcaluclating the new Centroid

for (i=0; i < numDP; i++) {
tempX = tempX + mCluster.getDataPoint(i}.get X();
/ftotal for x

tempY = tempY + mCluster.getDataPoint(i).getY{);

/ftotal for y
¥
this. mCx = tempX / numDP;
this.mCy = tempY / numDP;

//calculating the new Euclidean Distance for each Data Point

tempX = 0;
tempY = Q;
for (i=0; i < numDP; i++) { ||

mCluster.getDataPoint(i).calcEuclideanDistance();

}

//calculate the new Sum of Squares for the Cluster I

mCluster.calcSumOfSquares();
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public void setCluster(Cluster ¢) {

this.mCluster = ¢;

public double getCx() {

return mCx;

public double getCy() {

return mCy;

public Cluster getCluster(} {

return mCluster;

5.5 Cluster.java:
import java.util. Vector;

class Cluster { private String mName;
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private Centroid mCentroid,
private double mSumSqr;

private Vector mDataPoints;

public Cluster(String name) {
this.mName = name;
this.mCentroid = null;

mDataPoints = new Vector();

public void setCentroid{Centroid ¢) {

mCentroid = ¢;

public Centroid getCentroid() {

return mCentroid;

public void addDataPoint(DataPoint dp) {

this.mDataPoints.addElement(dp);

calcSumOfSquares();
} .

public void removeDataPoint(DataPoint dp) {
this.mDataPoints.removeElement(dp);

caleSumOfSquares();
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public int getNumDataPoints() {

return this.mDataPoints, size(),;

public DataPoint getDataPoint(int pos) {

return (DataPoint) this.mDataPoints.clement At(pos);

public void calcSumOfSquares() { //called from Centroid
int size = this.mDataPoints.size();
double temp = 0;
for (int 1= 0; i < size; i++) §
temp = temp + ((DataPoint)
this.mDataPoints.element At(i)).getCurrentEuDt();

}

this.mSumSqr = temp;

public double getSumSqr() {

return this.mSumSqr;

public String getName() {

return this.mName;
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public Vector getDataPoints() {

return this.mDataPoints;

5.6 Location.java:

/*
* To change this template, choose Tools | Tempiates
* and open the tempiate in the editor.

*/

/*
* customer.java

*

* Created on 8 May, 2011, 8:37:28 PM
®/

/**

*

* @author K
*/

import java.io.FileNotFoundException;
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import java.io.IOException;
import java.lang.System;
import java.util.logging.Level;
import java.util.logging. Logger;

public class customer extends javax.swing.JFrame {

/** Creates new form customer */
public customer() {

initComponents(};

/** This method is called from within the constructor to

* initialize the form.

* WARNING: Do NOT modify this code. The content of this method is
* always regenerated by the Form Editor.

4/

@Suppress Warnings("unchecked")

I <editor-fold defaultstate="collapsed" desc="Generated
BEGIN:initComponents

private void initComponents() {

jPanell = new javax.swing.JPanel();
cl = new javax.swing.JCheckBox();
¢2 = new javax.swing.JCheckBox();
c3 = new javax.swing.JCheckBox();
¢4 = new javax.swing.JCheckBox();
c5 = new javax.swing.JCheckBox();

c6 = new javax.swing.JCheckBox();
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¢7 = new javax.swing.JCheckBox();

¢8 = new javax.swing.JCheckBox();

¢9 = new javax.swing.JCheckBox();

¢10 = new javax.swing.JCheckBox();
cll = new javax.swing.JCheckBox();
¢12 = new javax.swing.JCheckBox();
¢13 = new javax.swing.JCheckBox();
cl4 = new javax.swing.JCheckBox();
¢l5 = new javax.swing.JCheckBox();
cl6 = new javax.swing.JCheckBox();
c17 = new javax.swing.JCheckBox{);
¢18 = new javax.swing.JCheckBox();
¢19 = new javax.swing.JCheckBox();
c20 = new javax.swing.JCheckBox();
¢21 = new javax.swing.JCheckBox();
¢22 = new javax.swing.JCheckBox();
¢23 = new javax.swing.JCheckBox();
¢24 = new javax.swing.JCheckBox();

submit = new javax.swing.JButton(};

setDefaultCloseOperation(javax.swing. WindowConstants. EXIT_ON_CLOSE);

cl.setText("head ache");
cl.addActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(java.awt.event. ActionEvent evt) {

cl ActionPerformed(evt);

59




3

c2.setText("body ache™);
c2.addActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(java.awt.event. ActionEvent evt) {

c2ActionPerformed{evt);

}
1

c3.setText("stomach pain");
c3.addActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(java.awt.event. ActionEvent evt) {

c3ActionPerformed(evt);

i
3%

c4.setText("sneezes");
cd.addActionListener(new java.awt.event. ActionListener(} {
public void actionPerformed(java.awt.event. ActionEvent evt) {

cdActionPerformed(evt);

}
1

c5.setText("shivering™);
c5.addActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(java.awt.event. ActionEvent evt) {

c5ActionPerformed(evt);

60




}
13K

c6.setText("eye itching");

c7.setText("joint pain"),
c7.addActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(java.awt.event. ActionEvent evt) {
¢7ActionPerformed(evt); | l
\ ‘
135

c8.setText("yellowish nail and eye");
c8.addActionListener(new java.awt.cvent. ActionListener() {

public void actionPerformed(java.awt.event. ActionEvent evt) {

c8ActionPerformed(evt);
) “
3% |

c9.setText("fever");
c9.addActionListener(new java.awt.event. ActionListener() { 1
public void actionPerformed(java.awt.event. ActionEvent evt) {

c9ActionPerformed(evt);

}
3>

| ¢10.setText("urinal pain");
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cll.setText("muscle pain™);
cll.addActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(java.awt.event. ActionEvent evt) {
cl1ActionPerformed(evt);
H
1)

cl12.setText("chest pain");
cl2.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event. ActionEvent evt) {

cl2ActionPerformed(evt);

}
1

cl3.setText("jCheckBox13");

cl4.setText("jCheckBox14");

cl5.setText("jCheckBox15");

cl6.setText("jCheckBox16");

c17.setText("jCheckBox17");

cl8.setText("jCheckBox18");
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cl9.setText("iCheckBox19");
cl9.addActionListener(new java.awt.event. ActionListener() {

public void actionPerformed(java.awt.event. ActionEvent evt) {

cl9ActionPerformed(evt);

}
1

c20.setText("jCheckBox20");

c21.setText("jCheckBox21");

c22.setText("jCheckBox22");

c23.setText("jCheckBox23");

c24.setText("jCheckBox24");

submit.set Text("submit");

submit.add ActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event. ActionEvent evt) {

submitActionPerformed(evt);

}
s

javax.swing.GroupLayout jPanell Layout = new javax.swing.GroupLayout(jPanell);

jPanell .setLayout(jPanell Layout);

jPanell Layout.setHorizontalGroup(
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jPanell Layout.createParallelGroup(javax.swing.GroupLayout. Alignment. LEADING)
.addGroup(jPanell Layout.createSequential Group()
.addContainerGap()

.addGroup(jPanell Layout.createParallelGroup(javax.swing.GroupLayout. Alignment. LEADING)

.addGroup(jPanell Layout.createSequentialGroup()

.addGroup(jPanell Layout.createParallelGroup(javax.swing.GroupLayout. Alignment. LEADING)
.addComponent(cl)
.addComponent(c2)
.addComponent(c3)
.addComponent(c4)
.addComponent(c5)
.addComponent(c6)
.addComponent(c7)
.addComponent(c9)

.addComponent(c10)

.addComponent(cl1)
.addComponent(c12))
.addGap(27, 27, 27)
.addComponent(submit))
.addComponent(c8))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. RELATED, 32,
Short. MAX VALUE)

.addGroup(jPanell Layout.createParallelGroup(javax.swing.GroupLayout. Alignment. LEADING)
.addComponent(c13)
.addComponent(c14)
.addComponent(c15)
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.addComponent(c16)
.addComponent(c17)
.addComponent(c18)
.addComponent(c19)
.addComponent(c20)
.addComponent(c21)
.addComponent(c22)
.addComponent(c23)
.addComponent(c24))
.addContainerGap(260, Short. MAX_VALUE))
)
JPanell Layout.setVerticalGroup(
jPanell Layout.createParallelGroup(javax.swing.GroupLayout. Alignment. LEADING)
.addGroup(jPanell Layout.createSequential Group()
.addContainerGap()

.addGroup(jPanell Layout.createParallelGroup(javax.swing.GroupLayout.Alignment. BASELIN
E)

.addComponent(c1)
.addComponent(c13))
-addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. RELATED)
.addGroup(jPanell Layout.createParallelGroup(javax.swing.GroupLayout. Alignment. BASELIN
E)
.addComponent(c2)
.addComponent(c14))

.addPreferredGap(javax.swing.LayoutStyle. ComponentPlacement RELATED)

.addGroup(jPanell Layout.createParallelGroup(javax.swing. GroupLayout. Alignment. BASELIN
E)
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.addComponent(c3)
.addComponent(c15))
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

-addGroup(jPanell Layout.createSequentialGroup()
.addComponent(c4)
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement .RELATED)
.addComponent(c5)
.addPreferredGap(javax.swing.LayoutStyie.ComponentPlacement.RELATED)
.addComponent(c6)
.addPreferredGap(javax.swing‘LayoutStyle.ComponentPlacement.RELATED)
.addComponent(c7)
.addPreferredGap(javax.sw ing.LayoutStyle.ComponentPlacement. RELATED)

.addComponent(c8, Javax.swing.GroupLayout. PREFERRED SIZE,
javax.swing.GroupLayout. PREFERRED SIZE)

.addPreferredGap(javax.swing.LayoutSter.ComponentPlacement.R_ELATED)
.addComponent(c9)
.addPreferredGap(javax.swing.LayoutSter.ComponentPlacement.RELATED)
.addComponent(c10)
.addPreferredGap(javax.swmg.LayoutStyle.ComponentPlacement.RELATED)
.addComponent(c11)
,addPreferredGap(javax.swing.LayoutStyle.ComponentPlaccment.RELATED)
.addComponent(c12))
.addGroup(jPanell Layout.createSequentialGroup()

.addComponent(c16)
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)
.addComponent(c17)
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-addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. RELATED)
.addComponent(c18)
.addPreferredGap(javax.swing.LayoutStyle. ComponentPlacement. RELATED)
.addComponent(c19)
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. RELATED)

.addComponent(c20)
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. RELATED)
.addComponent(c21)
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. RELATED)
.addComponent(c22)
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. RELATED)
.addComponent(c23)
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. RELATED)
.addComponent(c24)))
.addContainerGap(17, Short. MAX_ VALUE))

.addGroup(javax.swing.GroupLayout.Alignment. TRAILING,
! jPanell Layout.createSequentialGroup()

.addContainerGap(277, Short MAX_VALUE)

.addComponent(submit))

javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane());

getContentPane().setLayout(layout);

layout.setHorizontalGroup(
layout.createParallelGroup(javax.swing.GroupLayout. Alignment. LEADING)

.addComponent(jPanell, javax.swing.GroupLayout. DEFAULT SIZE,
javax.swing.GroupLayout. DEFAULT SIZE, Short. MAX VALUE)

)
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layout.setVertical Group(

layout.createParallelGroup(javax.swing.GroupLayout. Alignment. LEADING)

.addComponent(jPanell, javax.swing.GroupLayout. DEFAULT SIZE,
Javax.swing.GroupLayout. DEFAULT _SIZE, Short MAX VALUE)
);
pack();

1/ </editor-fold>//GEN-END:initComponents
int a[]=new int[8],i=0;

private void cl ActionPerformed(java.awt.event. ActionEvent evt) {//GEN-
FIRST:event_clActionPerformed

// TODO add your handling code here:
H/GEN-LAST:event _clActionPerformed

private void c2ActionPerformed(java.awt.event. ActionEvent evt) {//GEN-
FIRST:event_c2ActionPerformed

// TODO add your handling code here:
}//GEN-LAST:event_c2ActionPerformed

private void c4ActionPerformed(java.awt.event. ActionEvent evt) {//GEN-
FIRST:event c4ActionPerformed

// TODO add your handling code here:
$//GEN-LAST:event_c4ActionPerformed

private void c5ActionPerformed(java.awt.event. ActionEvent evt) {//{GEN-
FIRST:event_c5ActionPerformed

// TODO add your handling code here:
}//GEN-LAST:event c5ActionPerformed

68




private void ¢7ActionPerformed(java.awt.event. ActionEvent
FIRST:event_c7ActionPerformed

// TODO add your handling code here:
}//GEN-LAST:event_c7ActionPerformed

private void c8ActionPerformed(java.awt.event. ActionEvent
FIRST:event_c8ActionPerformed

// TODO add your handling code here:
}//GEN-LAST:event_c8ActionPerformed

private void c9ActionPerformed(java.awt.event. ActionEvent
FIRST:event_c9ActionPerformed

// TODO add your handling code here:
}//GEN-LAST:event_c9ActionPerformed

private void cl1ActionPerformed(java.awt.event. ActionEvent
FIRST:event cl1ActionPerformed

// TODO add your handling code here:
}//GEN-LAST:event_cl1ActionPerformed

private void c19ActionPerformed(java.awt.event. ActionEvent
FIRST:event_c19ActionPerformed

// TODO add your handling code here:
}//GEN-LAST:event_c19ActionPerformed

private void c12ActionPerformed(java.awt.event. ActionEvent
FIRST:event c12ActionPerformed

// TODO add your handling code here:

}//GEN-LAST:event_cl12ActionPerformed

69

evt)

evt)

evt)

evt)

evt)

evt)
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private void c3ActionPerformed(java.awt.event. ActionEvent
FIRST:event c3ActionPerformed

// TODO add your handling code here:
}//GEN-LAST:event_c3ActionPerformed

private  void  submitActionPerformed(java.awt.event. ActionEvent
FIRST:event_submit ActionPerformed

new customer().setVisible(false);

iffcl.isSelected(})

alil=1;

P

Vi

if{c2.isSelected())

{

afit+1=2;

}

if(c3.isSelected())
{
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{//GEN-
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b

{

a[i++]=3;

}
MIT
iflc4.isSelected(})

{

{

af[i++]=4;

}
T
if(c5.1sSelected())

{

{

a[it+]=5;

}
WiT
if{c6.isSelected())

{

{

afit++]=6;

}
MIT
if{c7.isSelected())

{
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{

a[i++]=7;

}
WIT
if(c8.isSelected())

{

(

afi++]=8;

}
WT
if{c9.isSelected())

{

{

afi++]=9;

}
HIT
if{c10.isSelected())

{

{

a[i++]=10;

}
VIT

iflc11.isSelected())




i

afit+]=11;

}
MIT
if(c12.isSelected())

{

{

a[it+]=12;

1
T
iflc13.isSelected())

{

{

a[it+]=13;

}
MIT
if{c14.isSelected())

{

{
a[it+]=14;
}

WiT
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if{c15.isSelected())
{

{

a[i++]=15;

}
}
if{c16.isSelected())

{

a[it+]=16;

}
1
if{c17.isSelected())
{

{

a[i++]=17;

}
I
if(c18.isSelected())
{

{

a[i++]=18;

}
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if{c19.isSelected())

{

a[i++1=19;

}
2/
if{c20.isSelected())

{

it++;

a[i]=20;

}
Y
if{c21.isSelected())

{

{

a[it+]=21;

}
Hl
if{c22.isSelected())

i

{

a[it+]=22;
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}
3
if{c23.isSelected())

{ p

a[it+]=23;
}
M
if{c24.isSelected())

{

a[i++]=24;

4/

try {
/

choice ch = new choice(a, i);
} catch (FileNotFoundException ex) {
Logger.getLogger(customer.class.getName()).log(Level. SEVERE, null, ex);
} catch (IOException ex) {
Logger.getLogger(customer.class.getName()).log(Level. SEVERE, null, ex);

3
}/GEN-LAST:event_submitActionPerformed
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* * @param args the command line arguments

*/

// Variables declaration - do not modify//GEN-BEGIN:variables
private javax.swing.JCheckBox ¢l1;
private javax.swing.JCheckBox ¢10;
private javax.swing.JCheckBox ¢11;
private javax.swing.JCheckBox ¢12;
private javax.swing.JCheckBox ¢13;
private javax.swing. JCheckBox cl14;
private javax.swing.JCheckBox ¢15;
private javax.swing. JCheckBox ¢16;
private javax.swing. JCheckBox ¢17;
private javax.swing.JCheckBox ¢18;
private javax.swing.JCheckBox cl19;
private javax.swing.JCheckBox ¢2;
private javax.swing.JCheckBox c20;
private javax.swing.JCheckBox ¢21;
private javax.swing. JCheckBox ¢22;
private javax.swing.JCheckBox ¢23;
private javax.swing.JCheckBox ¢24;
private javax.swing.JCheckBox c3;
private javax.swing.JCheckBox c4;

private javax.swing.JCheckBox c5;

77




private javax.swing.JCheckBox ¢6;
private javax.swing.JCheckBox ¢7;
private javax.swing.JCheckBox c8;
private javax.swing.JCheckBox c9;
private javax.swing.JPanel jPanell;
private javax.swing.JButton submit;

/{ End of variables declaration//GEN-END:variables
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Chapter 6: TESTING

6.1 Testing

Testing is the process of executing the program(s) with the intention of finding out errors. During
testing, the program to be tested is executed with a set of test cases and the output of the
programs for the test case is evaluated to determine if the program is performing as it is expected
to be. The success of testing in revealing errors in programs depends critically on the test cases

6.1.1 LEVELS OF TESTING

UNIT TESTING: The first level of testing is called unit testing. In this different modules are
tested against the specifications produced during design of the modules. Unit testing is
essentially for verification of the code produced during coding phase, and hence the goal is to
test the internal logic of the modules. The programmer of the module typically does it.

INTEGRATION TESTING: The next level of testing is often called integration testing. In this,
many unit-tested modules are combined into subsystems, which are then tested. The goal is here
to see if the modules can be integrated properly. Hence, the emphasis is on testing interfaces
between modules. The testing activity can be considered testing the design. The integration plan
specifies the steps and order in which modules are combined to realize the full system. After
each integration step, the partially integrated system is tested. An important factor that guides the
integration is the module dependency graph.

SYSTEM TESTING: System tests are designed to validate a fully developed system to assure
that it meets its requirements. There are essentially three main kinds of system testing:

ALPHA TESTING: Alpha refers to the system testing carried out by the test team within the
developing organization.

BETA TESTING: Beta testing is the system testing performed by a select group of friendly
customers.

ACCEPTANCE TESTING: Acceptance testing is the system testing performed by the customer
to determine whether to accept or reject the delivery of the system.

6.1.2 TYPES OF TESTING: E
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BLACK BOX TESTING: This testing is also known as functional testing. The basis for
deciding test cases in functional testing is the requirements or specifications of the system or
modules. For the entire system test cases are designed form the requirement specification
document from the system. There are number of techniques that can be used to select test cases
that have been found to be very successful in detecting errors.Some of them are:

Equivalence class partitioning: In this we divide the domain of all the inputs into a set of
equivalence classes. That is we want to identify classes of test cases such that the success of one
test case in a class implies the success of others. It is often useful to consider equivalence classes
in the output. For an output equivalence class, the goal is to generate test cases such that the
output of that test case lies in the output equivalence class.

Boundary value analysis: In boundary value analysis, we choose an input for a test case from an
equivalence class, such that the input lies at the edge of the equivalence class. Boundary value
rest cases are also called “extreme cases”.

Cause-effect graphing: It is a technique that aids in selecting combinations of input conditions in
a systematic way. A cause is a distinct input condition, and an effect is n distinct output
condition. Each condition forms a node in the cause-effect graph. Beyond generating high-yield
test cases, it also aids the understanding of the functionality of the system, because the tester
must identify the distinct causes and effects.

Special cases: It depends on the data structures and the function of the module. There are no
rules to determine special cases, and the tester has to use his intuition and experience to identify
such test cases. Consequently, determining special cases is also called “error guessing.

WHITE BOX TESTING: There are several white box-testing strategies. Each testing strategy
is based on some heuristic. One white box testing strategy is said to be stronger than another
strategy, if all types of errors detected by the first testing strategy (say B) are also detected by the
second testing strategy (say A), and the second strategy additionally detects some more types of
errors. When two testing strategies detect errors that are different at least with respect to some
types of errors, they are then called complementary.

Statement coverage: It aims to design test cases so that every statement in the program is
executed at least once. The principal idea is that unless we cxecute a statement, we have no way
of determining if error exists in that statement.
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Branch coverage: In this strategy, test cases are designed to make each branch condition assume
true and false value in turn. It is also known as “edge-testing” as in this testing scheme, each
edge of a program’s control flow graph is traversed at least once.

Condition coverage: In this test cases are designed to make each component of a composite
conditional expression assume both true and false values. Thus, condition testing is a stronger
testing strategy than branch testing. For conditional coverage, the number of test cases increases
exponentially with the number of component conditions.

Path coverage: It requires us to design test cases such that all linearly independent paths in the
program are executed at least once. These paths are defined in terms of control-flow graph of a
program.

As testing forms the first step towards determining the errors in a program it should be properly
carried out.

UNIT TESTING:

Unit testing was carried out for each module against the specifications produced during the
design of the module.

Unit testing of cach program and module was done with the following perception.

USER INTERFACE:

User interface was tested which gave rise to more user understandable errors and help messages.
INTERNAL LOGIC:

While testing a module, the internal logic was tested.

INTEGRATED TESTING:

Tint the integrated testing, the unit-tested modules were combined into subsystems and then
tested.

The strategies for integrated tested comprised of :
» Performance time testing.
» Logical cycle of data.
o Test data.

¢ Live data obtained from users.

81




6.1.3.3 Environments

The environment on which we have performed the firewall configuration and testing was a linux
workstation that has virtual network of virtual computers that arc managed by the MLN tool. The
network schema is described in the lab document. The tests are done using external and internal
UML instances.
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Chapter 7: Results and Analysis

do you want to get the informalion on spreading disease??

Fig. Initial.gui
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. Choughplace

. Krishna nagar

From the project we came to a conclusion that the person who suffer from a particular disease
they enter the symptoms they are facing after gelting the symptoms from the patient we tell them
the probable disease he may be facing from and on the basis of their location id . We divide them
into clusters and tell them the nearest possible hospital he can visit. Then on the basis of location

id to we can find out the area which is prone to a particular disease.

85




Chapter 8 : OBJECTIVE AND SCOPE

This project aims to automate the process of finding solutions to some health related problems

spreading al} over the world.
Objectives:

s Provide the system that automates the process of health surveys in different part of the

world
s+ Optimal solutions for the various heath related problems.
s Prevent the myths to spread in the field of medicine.

The Scope of the project is to overcome the exhaustive process of surveying for different health
related problems to find out the spreading areas ,symptoms of various diseases people can get the

specialise health centre location near their home for their health problem.
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