Jaypee University of Information Technology, Waknaghat

TEST-3 Examination - December 2024

Ph.D (Mathematics) - I Semester

Course Code/Credits: 18P1WGE101/3 Max. Marks: 25
Course Title: Research Methodologies and Quantitative Methods and Computer Applications
Course Instructor: RAD Max. Time: 2 Hours

Note: (a) ALL questions are compulsory.

(b) Scientific calculators are allowed.

(c) The candidate is allowed to make suitable numeric assumptions wherever required.

O No	Question	Marks
Q.No Q1	 Question Answer the following questions: (a) Explain the difference between linear codes and block codes. Why are linear codes preferred for error correction in practical communication systems? (b) Consider a binary block code with generator matrix: G = [1 0 0 1 1] 0 1 0 0 1 0 1] Encode the message vector m = [1 0 1]. 	5
Q2	 (a) Define the generator matrix and the parity-check matrix of a linear code. How are these matrices related? (b) For a linear code with parity-check matrix: H = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}\$ determine if the vector \mathbf{v} = [1 & 0 & 1 & 0] is a valid codeword. 	5
Q3	 (a) What is a primitive polynomial, and why is it important in the construction of cyclic codes? (b) Verify whether the polynomial p(x) = x³+x+1 over F₂ is a primitive polynomial. 	5

Q.No	Question	Marks
· Q4	(a) Define the dual code of a linear code. What is the significance of the dual code in coding theory?	5 .
	(b) Given a linear code with generator matrix:	
	$\mathbf{G} \; = \; egin{bmatrix} 1 & 0 & 0 & 1 & 1 \ 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & 1 \end{bmatrix},$	÷.
	find the parity-check matrix for the dual code.	19 19, 18, 19, 18
Q5	(a) Explain the construction of Hamming codes and their error-detection and correction capabilities.	5
, i	(b) Construct a Hamming code for $n=7$ and $k=4$ using the parity-check matrix:	
	$\mathbf{H} \ = \ \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$	
	Encode the message $\mathbf{m} = [1\ 0\ 1\ 1]$.	