Jaypee University of Information Technology, Waknaghat ## TEST-3 Examination - December 2024 ## Ph.D (Mathematics) - I Semester Course Code/Credits: 18P1WGE101/3 Max. Marks: 25 Course Title: Research Methodologies and Quantitative Methods and Computer Applications Course Instructor: RAD Max. Time: 2 Hours Note: (a) ALL questions are compulsory. (b) Scientific calculators are allowed. (c) The candidate is allowed to make suitable numeric assumptions wherever required. | O No | Question | Marks | |------------|--|-------| | Q.No
Q1 | Question Answer the following questions: (a) Explain the difference between linear codes and block codes. Why are linear codes preferred for error correction in practical communication systems? (b) Consider a binary block code with generator matrix: G = [1 0 0 1 1] 0 1 0 0 1 0 1] Encode the message vector m = [1 0 1]. | 5 | | Q2 | (a) Define the generator matrix and the parity-check matrix of a linear code. How are these matrices related? (b) For a linear code with parity-check matrix: H = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}\$ determine if the vector \mathbf{v} = [1 & 0 & 1 & 0] is a valid codeword. | 5 | | Q3 | (a) What is a primitive polynomial, and why is it important in the construction of cyclic codes? (b) Verify whether the polynomial p(x) = x³+x+1 over F₂ is a primitive polynomial. | 5 | | Q.No | Question | Marks | |------|--|-------------------------| | · Q4 | (a) Define the dual code of a linear code. What is the significance of the dual code in coding theory? | 5 . | | | (b) Given a linear code with generator matrix: | | | | $\mathbf{G} \; = \; egin{bmatrix} 1 & 0 & 0 & 1 & 1 \ 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & 1 \end{bmatrix},$ | ÷. | | | find the parity-check matrix for the dual code. | 19
19, 18,
19, 18 | | Q5 | (a) Explain the construction of Hamming codes and their error-detection and correction capabilities. | 5 | | , i | (b) Construct a Hamming code for $n=7$ and $k=4$ using the parity-check matrix: | | | | $\mathbf{H} \ = \ \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$ | | | | Encode the message $\mathbf{m} = [1\ 0\ 1\ 1]$. | |