Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num. :&‘57}/ ?— Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff inmediately.
Otherwise the borrower may be required to replace
the book by a new copy.

@ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

Il

I

il

SP07117

I

!l
i
|
|

—

ARITHMETIC LOGIC UNIT USING VHDL

ARITHMETIC LOGIC UNIT USING
VHDL

Gourav Singhal (071025)
Anshuman Singh (071054)
Shardul Singh (071089)
Supriya Rai (071046)

UNDER THE GUIDANCE OF:
Mr. Vipin Balyan
] Sr.Lecturer

Dept. of Electronics & Comm.

JAYPEE UNIVERSITY OF
INFORMATION TECHNOLOGY

MAY —-2011
Submitted in partial fulfillment of the Degree of
| BACHELOR OF TECHNOLOGY

o DEPARTMENT OF ELECTRONICS AND COMMUNICATION
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT
SOLAN, HIMACHAL PRADESH
INDIA

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

ARITHMETIC LOGIC UNIT USING VHDL

o St tr
Y %
£ e b
i B
- Pl §
i iy °
3, '3
Jﬁt

= Atom

L]

i WFONUATION TECHAOLD
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT

CERTIFICATE

This is to certify that the work titled , “ARITHMETIC LOGIC UNIT USING

VHDL” submitted by “Gourav Singhal(071025), Anshuman Singh(071054), Shardul

Singh(071089), Supriya Rai(071046)” in partial fulfillment for the award of degree of
B.TECH of Jaypee University of Information Technology, Waknaghat has been
carried out under my supervision. This work has not been submitted partially or wholly to

any other University or Institute for the award of this or any other degree or diploma.

Sr.Lecturer
Dept. of Electronics &Comm. _
JUIT,Waknaghat ,17323
Date -

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY ii

ARITHMETIC LOGIC UNIT USING VHDL

[ACKNOWLEDGEMENT

We would like to thank my Project advisor , Mr. Vipin Balyan , Sr. Lecturer, Dept.
of Electronics & Comm., Jaypee University of Information Technology , Waknaghat to
provide me the opportunity to work on this Project , for his guidance ,encouragement,
support and confidence in me through the course of my studies . Without his motivating
discussions and unwavering desire for achieving high research standards , this work
would not have been possible . His flawless & forthright suggestions blended with an

innate intelligent application have crowned our task with success.

We are highly obliged to Prof. Dr. Sunil Bhooshan , H.O.D, Dept. of Electronics &
Comm., Jaypee University of Information Technology , Waknaghat for allowing me to
carry out my project work in this university . We would also like to offer my sincere
thank to Mr. Rachit , all faculty , teaching & non-teaching staff , of E.C.E Dept. and staff
of the Library Jaypee University of Information Technology , Waknaghat for their

assistance.

2
e L

Gourav.Singhal (071025)

Ansh{‘}ggﬁingh(ﬂ, 1054)

Y

Shardul Singh (071089)

b
Supriya Rai (071046)

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY iii

ARITHMETIC LOGIC UNIT USING VHDL

Table of Content
.
| List of Figures 1
List of Tables 3
Abstract 4
1. INTRODUCTION 5
1.1 ALU 5
1.1.1 Logic Unit 6
1.1.2 Arithmetic Unit 7
1.2 Project Overview 8
2. INTRODUCTION TO VHDL 9
2.1 What Is VHDL? 9
2.2 History 9
2.3 Capabilities 10
2.4 Hardware Abstraction 11
3. MODELING FEATURES OF VHDL 12
3.1 Entity 12
3.1.1 Entity Declaration 12
3.1.2 Architecture Body 12
3.1.3 Configuration Declaration 13
| 3.1.4 Package Declaration 13
3.1.5 Package body 13
3.2 Data Objects 13
3.2.1 Constant 13
3.2.2. Variable 13
3.2.3 Signal 14
3.3 Operators 14
3.3.1 Logical Opcrators 14
3.3.2 Relational Operators 14
L9 3.3.3 Adding Operators 14
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY iv

ARITHMETIC LOGIC UNIT USING VHDL

3.3.4 Multiplying Operators 14

r 3.3.5 Miscellaneous Operators 15

| 4. BEHAVIORAL MODELING 16

4.1 Entity Declaration : 16

4.2 Architecture Body 16

4.3 Process Statement 17

4.4 Variable, Signal Assignment Statement 17

4.5 If Statement 18

4.6 Case Statement 18

5. DATAFLOWAND STRUCTURAL MODELING 19

{ 5.1 Data Flow Modeling 19

" 5.2 Concurrent versus Sequential Signal Assignment 19

5.3 Structural Modeling 19

5.3.1 Component Declaration 20

5.3.2Component Instantiation 20

5.3.3Configuration 20

5.3.3.1Configuration Specification 20

5.3.3.2Configuration Declaration 21

6. VHDL FUNCTIONS, PACKAGES AND LIBRARIES 22

6.1Functions 22

6.2Packages 22

6.2.1 Package Declaration 22

6.2.2 Package Body 22

6.3 Libraries 23

7. ALU 24

8. ADDER 26

8.1 Full Adder 27

8.2 4 bit adder 29

8.3 32 bit adder 31
W
(

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY Y

o u‘
|

ARITHMETIC LOGIC UNIT USING VHDL

r/ 9. SUBTRACTOR 33
0.1 Full Subtractor 34
9.2 4 Bit Subtractor ; 35
9.3 32 Bit Subtractor _ 37
10. LEFT SHIFTER 40
11. RIGHTSHIFTER 43
12. LEFT ROTATOR 46
13. RIGHT ROTATOR 49
14. ANDNAND 52
i 15. ORNOR 55
"' 16. 32 BIT ALU 58
CONCLUSION 76
BIBLIOGRAPHY i)
W
{
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY vi

ARITHMETIC LOGIC UNIT USING VHDL
List of Figures

r [

| Figure 1.1: Basic logic gates 6
Figure 1.2: Half Adder : i
Figure 2.1: Device versus device model 11
Figure 2.2: A VHDL view of a device 11
Figure 7.1: Block Diagram of ALU 24
Figure 8.1: Full adder 26
Figure 8.2: Output window for Full adder 28
Figure 8.3: Output window for 4 bit adder 30

! Figure 8.4: Output window for 32 bit adder 32

| Figure 9.1: Full subtractor 33
Figure 9.2: Output window for Full subtractor 35
Figure 9.3: Output window for 4 bit subtractor 37
Figure 9.4: Output window for 32 bit subtractor 39
Figure 10.1: Output window for Left Shifter 42
Figure 11.1: Output window for Right Shifter 45
Figure 12.1: Output window for Left Rotator 48
Figure 13.1: Output window for Right Rotator 51
Figure 14.1: Output window for And Nand 54
Figure 15.1: Output window for Or Nor 57
Figure 16.1: Output window of adder in ALU 63
Figure 16.2: Output window of subtractor in ALU 64
Figure 16.3: Output window of Left shift in ALU 64
Figure 16.4: Output window of Right shift in ALU 65
Figure 16.5: Output window of Left rotate in ALU 65
Figure 16.6: Output window of Right rotate in ALU 66
Figure 16.7: Output window of And Nand in ALU 66
Figure 16.8: Output window of Or Nor in ALU 67

y Figure 16.9: Four Function in ALU 67
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 1

ARITHMETIC LOGIC UNIT USING VHDL

| Figure 16.10: Expanded schematic view of ALU 68

¢ Figure 16.11: Schematic view of 32 bit adder 69

Figure 16.12: Schematic view of 4 bit adder 70

Figure 16.13: Schematic view of Full adder 70

Figure 16.14: Schematic view of 32 bit subtractor | 71

Figure 16.15: Schematic view of 4 bit adder 72

Figure 16.16: Schematic view of full subtractor 72

Figure 16.17: Schematic view of And Nand 73

Figure 16.18: Single unit of And Nand 74

Figure 16.19: Schematic view of Or Nor 74

r Figure 16.20: Schematic view of Or Nor 75
¢

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 2

L
-

ARITHMETIC LOGIC UNIT USING VHDL

r

List of Tables

Table 8.1: Truth table of full adder ' 27

Table 9.1: Truth table of full subtractor 33

Table 14.1: Truth table of AND. 52

Table 14.2: Truth table of NAND 52

Table 15.1: Truth table of OR 55

Table 15.2: Truth table of NOR 55
. Table 16.1: Function table of 8:1 multiplexer 58
|

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 3

ARITHMETIC LOGIC UNIT USING VHDL

| | ABSTRACT

An ALU is the fundamental unit of any computing system. Understanding how an

ALU is designed and how it works is essential to building any advanced logic circuits.

Using this knowledge and experience, we can move on to designing more complex

integrated circuits. We have designed a 32 bit ALU which performs eight functions

through three select pins. According to the values of these pins different functions of the

ALU are represented. After giving a specific combination of input selection pin the

required output is produced. The functions performed by the ALU are and, or, nand, nor,

1 addition, subtraction, left shift, right shift, left rotate, right rotate . All the results are

testified by test bench waveforms .

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 4

ARITHMETIC LOGIC UNIT USING VHDL

SR L.MW

CHAPTER 1

INTRODUCTION

The central processing unit (CPU) of a computer is the main unit that

i W

dictates the rest of the computer organization.
The CPU is made of three major parts
1. Register set: Stores intermediate data during the execution of instructions;
2. Arithmetic logic unit (ALU): Performs the required micro-operations for
executing the instructions.
3. Control unit: supervises the transfer of information among the registers and
L instructs the ALU as to which operation to perform by generating control

signals.

1.1 ALU

An arithmetic logic unit (ALU) is a digital circuit that performs arithmetic and
logical operations. The ALU is a fundamental building block of the central processing
unit (CPU) of a computer, and even the simplest microprocessors contain one for
purposes such as maintaining timers. The processors found inside modern CPUs and
graphics processing units (GPUs) accommodate very powerful and very complex ALUs;
a single component may contain a number of ALUs. Mathematician John von Neumann
proposed the ALU concept in 1945, when he wrote a report on the foundations for a new
computer called the EDVAC. Research into ALUs remains an important part of computer
science, falling under Arithmetic and logic structures in the ACM Computing
Classification System.

Most of a processor's operations are performed by one or more ALUs. An ALU
loads data from input registers, an external Control Unit then tells the ALU what
operation to perform on that data, and then the ALU stores its result into an output
register-Other mechanisms move data-between these registers and memory.

A simple example arithmetic logic unit (2-bit ALU) that does AND, OR, XOR,

| and addition.

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 5

-%
!

N aeanoes

i

ARITHMETIC LOGIC UNIT USING VHDL

Most ALUs can perform the following operations:

1. Integer arithmetic operations (addition, subtraction)

2. Bitwise logic operations (AND, NOT, OR, XOR)

3. Bit-shifting operations (shifting or rotating a word by a specified number of

bits to the left or right.

ALU allows the computer to add, subtract, and to perform basic logical operations
such as AND/OR. Since every computer needs to be able to do these simple functions,
they are always included in a CPU. How a company designs their ALU has a significant
impact on the overall performance of their CPU.ALU is a digital circuit that performs

Arithmetic (Add, Sub . . .) and Logical (AND, OR, NOT) operations.

1.1.1 Logic Unit
Logic unit performs logical operations such as and, or, not etc.

Figure 1.1 shows the basic logic gates.

g

'AND' Gate

Y

'OR' Gate

v

'XOR' Gate

v

'NOT' Gate

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 6

ARITHMETIC LOGIC UNIT USING VHDL

-'?
|
1

-

| NAND' Gate

=E =

'NOR' Gate

)i>

'XNOR'
Figure 1.1: Basic logic gates

These logic gates work by taking two inputs (one input for the 'NOT" gate) and
producing an output. These logic functions are by themselves an important part of a
CPU's functionality, but performing logic operations on two inputs is only so useful. By

combining these gates together we can have devices with more inputs.

1.1.2 Arithmetic Unit

By combining these gates we can perform other useful functions, like addition,

subtraction. Figure 1.2 shows a typical configuration referred to as a half-adder

CARRY

Figure 1.2 Half Adder

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

£
&

ARITHMETIC LOGIC UNIT USING VHDL

1.2 Project Overview

The motive of the project “ARITHMETIC LOGIC UNIT USING VHDL" is
implementing fundamental operations like and, or, nor etc and some upper level functions
like addition, rotation etc .These functions are implemented as well as simulated in
VHDL(VHSIC HARDWARE DESCRIPTION LANGUAGE) using XILINX 8.2i. The
implemented functions are testified successfully by test bench waveform simulation. In
initial phase all eight functions of the ALU are implemented and simulated separately and
later they are multiplexed in one program using port mapping. The faults and errors
occurred in implemented functions and simulations were seriously taken in to

consideration and were efficiently removed.

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 8

Sa arre e e

ARITHMETIC LOGIC UNIT USING VHDL

CHAPTER 2
INTRODUCTION TO VHDL

2.1 What Is VHDL?

VHDL is an acronym for VHSIC Hardware Description Language (VHSIC is an
acronym for Very High Speed Integrated Circuits). It is a hardware description language
that can be used to model a digital system at many levels of abstraction ranging from the
algorithmic level to the gate level. The complexity of the digital system being modeled
could vary from that of a simple gate to a complete digital electronic system, or anything
in between. The digital system can also be described hierarchically. Timing can also be

explicitly modeled in the same description.

2.2 History

The requirements for the language were first generated in 1981 under the VHSIC
program. In this program, a number of U.S. companies were involved in designing
VHSIC chips for the Department of Defense (DoD). At that time, most of the companies
were using different hardware description languages to describe and develop their
integrated circuits. As a result, different vendors could not effectively exchange designs
with one another. Also, different vendors provided DoD with descriptions of their chips
in different hardware description languages. Reprocurement and reuse was also a big
issue. Thus, a need for a standardized hardware description language for design,
documentation, and verification of 'digital systems was generated.

A team of three companies, IBM, Texas Instruments, and Intermetrics, were first
awarded the contract by the DoD to develop a version of the language in 1983. Version
7.2 of VHDL was developed and released to the public in 1985. There was a strong
industry participation throughout the VHDL language development process, especially
from the companies that were developing VHSIC chips. After the release of version 7.2,
there was an increasing need to make the language an industry-wide standard.
Consequently, the language was transferred to the IEEE for standardization in 1986.

After a substantial enhancement to the language, made by a team of industry, university,

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 9

! ARITHMETIC LOGIC UNIT USING VHDL
:
¥

and DoD representatives, the language was standardized by the IEEE in December 1987,
’ this version of the language is now known as the IEEE Std 1076-1987. The official
language description appears in the IEEE Standard VHDL Language Reference Manual
made available by the IEEE. The language described in this book is based on this
standard. The language has since also been recognized as an American National
Standards Institute (ANSI) standard.

The Department of Defense, since September 1988, requires all its digital
Application-Specific Integrated Circuit (ASIC) suppliers to deliver VHDL descriptions of
the ASICs and their subcomponents, at both the behavioral and structural levels. Test
benches that are used to validate the ASIC chip at all levels in its hierarchy must also be
delivered in VHDL. This set of government requirements is described in military
standard 454.

2.3 Capabilities

* The language can be used as an exchange medium between chip vendors and
CAD tool users. Different chip vendors can provide VHDL descriptions of their
components to system designers. CAD tool users can use it to capture the behavior of the
design at a high level of abstraction for functional simulation.

* The language can also be used as a communication medium between different
CAD and CAE tools, for example, a schematic capture program may be used to generate
a VHDL description for the design which can be used as an input to a simulation
program.

* The language supports hierarchy, that is, a digital system can be modeled as a
set of interconnected components; each component, in turn, can be modeled as a set of
interconnected subcomponents.

* The language supports flexible design methodologies: top-down, bottom-up, or
mixed.

It is an IEEE and ANSI standard, and therefore, models described using this
language is portable. The government also has a strong interest in maintaining this as a

standard so that re-procurement and second-sourcing may become easier.

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 10

e

T S ————

I
¢
k
i
g
£
£
E
=

ARITHMETIC LOGIC UNIT USING VHDL

2.4 Hardware Abstraction

VHDL is used to describe a model for a digital hardware device. This model
specifies the external view of the device and one or more internal views. The internal
view of the device specifies the functionality or structure, while the external view
specifies the interface of the device through which it communicates with the other models
in its environment. . Figure 2.1 shows the hardware device and the corresponding
software model.

In VHDL, each device model is treated as a distinct representation of a unique
device, called an entity in this text. Figure 2.2 shows the VHDL view of a hardware
device that has multiple device models, with each device model representing one entity.
Even though entity I through N represents N different entities from the VHDL point of

view, in reality they represent the same hardware device.

Dewceé e g E);lizr‘sal E\g‘ggla
g + ggfearL“_) Model}
| 27 e
; Internal views

Figure 2.1 Device versus device model.

IEnl'rly 1 HDevice model 1)
IEntity 2 }(———-)(stice model 2)

lEmity N }(———)@evice modsl N)

Actual hardware VHDL view

Figure 2.2 A VHDL view of a device.

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 11

PR LI,

ARITHMETIC LOGIC UNIT USING VHDL

CHAPTER 3
MODELING FEATURES OF VHDL

VHDL is a hardware description language that can be used to model a digital

system. The digital system can be as simple as a logic gate or as complex as a complete
electronic system. A hardware abstraction of this digital system is called an entity in this
text. An entity X, when used in another entity Y, becomes a component for the entity Y.
Therefore, a component is also an entity, depending on the level at which you are trying

to model.

3.1 Entity
To describe an entity, VHDL provides five different types of primary constructs,
called" design units . They are
1. Entity declaration
Architecture body
Configuration declaration

Package declaration

el ol

Package body

3.1.1 Entity Declaration
The entity' declaration specifies the name of the entity being modeled and lists the
set of interface ports. Ports are signals through which the entity communicates with the

other models in its external environment.

3.1.2 Architecture Body
The internal details of an entity are specified by an architecture body using any of
the following modeling styles:
1. Asasetof interconneéted components (to represent structure).
2. As a set of concurrent assignment statements (to represent dataflow).
3. As aset of sequential assignment statements (to represent behavioral).
4

. Any combination of the above three.

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 12

i
1

o ——————

et o

S "

ARITHMETIC LOGIC UNIT USING VHDL

3.1.3 Configuration Declaration

A configuration declaration is used to select one of the possibly many architecture
bodies that an entity may have, and to bind components, used to represent structure in
that architecture body, to entities represented by an entity-architecture pair or by a

configuration, that reside in a design library

3.1.4 Package Declaration

A package declaration is used to store a set of common declarations like
components, types, procedures, and functions. These declarations can then be imported

into other design units using a context clause.

3.1.5 Package body
A package body is primarily used to store the definitions of functions

and procedures that were declared in the corresponding package declaration, and also the
complete constant declarations for any deferred constants that appear in the package
declaration. Therefore, a package body is always associated with a package declaration;
furthermore, a package declaration can have at most one package body associated with it.
Contrast this with an architecture body and an entity declaration where multiple

architecture bodies may be associated with a single entity declaration.

3.2 Data Objects
A data object holds a value of a specified type. It is created by means of an object

declaration. Every data object belongs to one of the following three classes:

3.2.1 Constant

An object of constant class can hold a single value of a given type. This value is
assigned to the object before simulation starts and the value cannot be changed during the
course of the simulation.

3.2.2. Variable

An object of variable class can also hold a single value of a given type. However

in mis case, different values can be assigned to the object at different times using a

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 13

ARITHMETIC LOGIC UNIT USING VHDL

variable assignment statement.

3.2.3 Signal
An object belonging to the signal class has a past history of values, a current

“ yalue, and a set of future values. Future values can be assigned to a signal object using a

signal assignment statement.

3.3 Operators

The predefined operators in the language are classified into the following five categories:
Logical operators

Relational operators

Adding operators

Multiplying operators

e R R

Miscellaneous operators

3.3.1 Logical Operators
The six logical operators are
And, Or, Nand, Nor, Xor, Not
These operators are defined for the predefined types BIT and
BOOLEAN. They are also defined for one-dimensional arrays of BIT and BOOLEAN.
During evaluation, bit values '0' and 1' are treated as FALSE and TRUE values of the

BOOLEAN type, respectively.

3.3.2 Relational Operators
These are

= /= < <= + > =

The result type for all relational operations is always BOOLEAN.

3.3.3 Adding Operators
These are
+ - &
The operands for the + (addition) and - (subtraction) operators must be of the

same numeric type with the result being of the same numeric type The operands for the &

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 14

B T pewrigr

PR A el S, R

ARITHMETIC LOGIC UNIT USING VHDL

(concatenation) operator can be either a 1-dirnensional array type or an element type. The

result is always an array type.

3.3.4 Multiplying Operators

These are

- / mod rem
The * (multiplication) and / (division) operators are predefined for both

operands being of the same integer or floating point type. The result is also of the same

type.

3.3.5 Miscellaneous Operators
The miscellaneous operators are
abs **
The abs (absolute) operator is defined for any numeric type.
The ** (exponentiation) operator is defined for the left operand to be of integer or

floating point type and the right operand (i.e., the exponent) to be of integer type only.

(==Y
un

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

"
| -

ARITHMETIC LOGIC UNIT USING VHDL

CHAPTER 4

BEHAVIORAL MODELING

In this modeling style, the behavior of the entity is expressed using sequentially

's
g

e

executed, procedural code. A process statement is the primary mechanism used to model
the procedural type behavior of an entity. Irrespective of the modeling style used, every

E
f entity is represented using an entity declaration and at least one architecture body.

E 4.1 Entity Declaration
F An entity declaration describes the external interface of the entity. It specifies the
name of the entity, the names of interface ports, their mode (i.e., direction), and the type
. of ports. The syntax
entity entity-name is
[port (list-of-interface-port-names-and-their-types) ; |
end [entity-name];

The entity-name is the name of the entity and the interface ports are the signals
through which the entity passes information to and from its external environment. Each
interface port can have one of the following modes:

1. in: the value of an input port can only be read within the entity model.
2. out: the value of an output port can only be updated within the entity model; it
cannot be read.
. 3. inout: the value of a bidirectional port can be read and updated within the entity
' model.

buffer: the value of a buffer port can be read and updated within the entity model.

e

However, it differs from the inout mode in that it cannot have more than one
source and that the only kind of signal that can be connected to it can be another
buffer port or a signal with at most one source.

4.2 Architecture Body
An architecture body describes the internal view of an entity. It describes the

functionality or the structure of the entity. The syntax of an architecture body is

architecture architecture-name of entity-name is

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 16

T——— {eror

e e

!
:
8

e e R =T

T

ARITHMETIC LOGIC UNIT USING VHDL

[architecture-item-declarations |
begin

concurrent-statements; these are —>
process-statement
block-statement
concurrent-procedure-call
concurrent-assertion-statement
concurrent-signal-assignment-statement
component-instantiation-statement

end [architecture-name | ;

4.3 Process Statement
A process statement contains sequential statements that describe the functionality

of a portion of an entity in sequential terms. The syntax of a process statement is

process [(sensitivity-list)]
[process-item-declarations]
begin
sequential-statements; these are ->
variable-assignment-statement
signal-assignment-statement
if-statement
case-statement
loop-statement
end process ;
4.4 Variable, Signal Assignment Statement
Variables can be declared and used inside a process statement. A variable is
assigned a value using the variable assignment statement that typically has the form
variable-object ;= expression,
The expression is evaluated when the statement is executed and the computed
value is assigned to the variable object instantaneously, that is, at the current simulation

time.

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 17

C et

- e e

e P R —— e = e e -

ARITHMETIC LOGIC UNIT USING VHDL

Signals are assigned values using a signal assignment statement The simplest

form of a signal assignment statement is
signal-object <= expression ;

A signal assignment statement can appear within a process or outside of a process.
If it occurs outside of a process, it is considered to be a concurrent signal assignment
statement.

When a signal assignment statement appears within a process, it is considered to
be a sequential signal assignment statement and is executed in sequence with respect to

the other sequential statements that appear within that process.

4.5 If Statement
If statement selects a sequence of statements for execution based on the value of a
condition. The condition can be any expression that evaluates to a boolean value. The
general form of an if statement is
it boolean-expression then
sequential-statements
[elsif boolean-expression then
sequential-statements |
[else
sequential-statements]
end if;
4.6 Case Statement
The format of a case statement is
case expression is
when choices => sequential-statements
when choices => sequential-statements
-~ Can have any number of branches.
[when others => sequential-statements |
end case;
The case statement selects one of the branches for execution based on the value of

the expression.

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 18

ARITHMETIC LOGIC UNIT USING VHDL

CHAPTER 5

DATAFLOW AND STRUCTURAL MODELING
5.1 Data Flow Modeling

A dataflow model specifies the functionality of the entity without

explicitly specifying its structure. This functionality shows the flow of information
through the entity, which is expressed primarily using concurrent signal assignment
statements. The structure of the entity is not explicitly specified in this modeling style,

but it can be implicitly deduced. In a signal assignment statement, the symbol <= implies

T T I T e P T W

an assignment of a value to a signal. The value of the expression on the right-hand-side of
the statement is computed and is assigned to the signal on the left-hand-side, called the
target signal. A concurrent signal assignment statement is executed only when any signal
1 used in the expression on the right-hand-side has an event on it, that is, the value for the
signal changes. Concurrent signal assignment statements are concurrent statements, and

therefore, the ordering of these statements in an architecture body is not important.

| 5.2 Concurrent versus Sequential Signal Assignment

Signal assignment statements can also appear within the body of a
process statement. Such statements are called sequential signal assignment statements,
while signal assignment statements that appear outside of a process are called concurrent
signal assignment statements. Concurrent signal assignment statements are event
triggered, that is, they are executed whenever there is an event on a signal that appears in
its expression, while sequential signal assignment statements are not event triggered and
' are executed in sequence in relation to the other sequential statements that appear within

the process.

5.3 Structural Modeling
s An entity is modeled as a set of components connected by signals. The
behavior of the entity is not explicitly apparent from its model. The component
instantiation statement is the primary mechanism used for describing such a model of an

entity.

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 19

b
3

ARITHMETIC LOGIC UNIT USING VHDL

5.3.1 Component Declaration

A component instantiated in a structural description must first be declared using a
component declaration. A component declaration declares the name and the interface of a
component. The interface specifies the mode and the type of ports. The syntax of a

simple form of component declaration is

component component-name
port (list-of-interface-ports) ;

end component;

5.3.2 Component Instantiation

A component instantiation statement defines a subcomponent of the
entity in which it appears. It associates the signals in the entity with the ports of that

subcomponent.

component-label: component-name port map (association-list) ;

5.3.3 Configuration
It is convenient to specify multiple views for a single entity and use any one of

these for simulation. This can be easily done by specifying one architecture body for each
view and using a configuration to bind the entity to the desired architecture body also it is
desirable to associate a component with any one of a set of entities. The component
declaration may have its name and the names, types, and number of ports different from
those of its entities.
A configuration is, therefore, used to bind

1. An architecture body to its entity declaration,

2. A component with an entity.
The language provides two ways of performing this binding:

I.—Byusingaconfiguration specification,

2. By using a configuration declaration.

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 20

T

S — S —

L=

|
|

ARITHMETIC LOGIC UNIT USING VHDL

5.3.3.1 Configuration Specification

A configuration specification is used to bind component instantiations to specific
entities that are stored in design libraries. The specification appears in the declarations
part of the architecture.
The syntax of a configuration specification is

for list-of-comp-labels: component-name binding-indication;

The binding-indication specifies the entity represented by the entity-architecture

pair, and the generic and port bindings, its forms is

use entity entity-name [(architecture-name)] ;

5.3.3.2 Configuration Declaration

A configuration declaration is a separate design unit, therefore, it allows for late
binding of components, that is, the binding can be performed after the architecture body
has been written. It is also possible to have more than one configuration declaration for
an entity, each of which defines a different set of bindings for components in a single
architecture body, or possibly specifies a unique entity-architecture pair
Format of a configuration declaration is

configuration configuration-name of entity-name is
block-configuration

end [configuration-name];

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 21

ARITHMETIC LOGIC UNIT USING VHDL

CHAPTER 6
VHDL FUNCTIONS, PACKAGES AND LIBRARIES

6.1 Functions

Functions are used to describe frequently used sequential algorithms that
return a single value. This value is returned to the calling program using a return
statement. The general form of a function declaration is
function function-name (formal-parameter-list)
return return-type is
[declaration]
begin
sequential statements
end function —-name ‘
6.2 Packages !

‘ A package provides a convenient mechanism to store and share

! declarations that are common across many design units. A package is represented by
1. A package declaration, and optionally,

2. A package body.

6.2.1 Package Declaration

A package declaration contains a set of declarations that may possibly be
shared by many design units. It defines the interface to the package, that is, it defines
items that can be made visible to other design units.

package package-name is

package-item-declarations

end [package-name] ;
6.2.2 Package Body
A package body primafily contains the behavior of the subprograms and the
values of the deferred constants declared in a package declaration. It may contain other
i declarations as well, as shown by the following syntax of a package body. The package

! name must be the same as the name of its corresponding package declaration.

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 22

ARITHMETIC LOGIC UNIT USING VHDL

package body package-name is
package-body-item-declarations "

end [package-name J;

6.3 Libraries

Each design unit — entity architecture, configuration, package declaration and
package body is analyzed (compiled) and placed in design library. Libraries are generally
implemented as directories and are referenced by logical names. In the implementation of

VHDL environment, this logical name maps to a physical path to the corresponding

directory and this mapping is maintained by the host implementation.

In VHDL, the libraries STD and WORK are implicitly declared therefore the user

o b

programs do not need to declare these libraries. The STD contains standard package

T e

provided with VHDL distributions. The WORK contains the working directory that can

be set within the VHDL environment you are using. However if a program were to access

functions in a design unit that was stored in a library with a logical name IEEE .Then this

library must be declared at the start of the program.

S S S S —

T e e e e

st L

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 23

ARITHMETIC LOGIC UNIT USING VHDL

CHAPTER 7

ARITHMETIC LOGIC UNIT
Addition
a(31:0)
Subtraction
Left Shift
b(31:0) i : result (31:0)
i Right Shift
] cout
tl Left Rotate
cin
Right Rotate
clk
TS And, Nand
Or, Nor
el
Sel(1) Sel (3)
‘ Figure 7.1 Block Diagram of ALU
|

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 24

ARITHMETIC LOGIC UNIT USING VHDL

ALU as shown in figure 7.1 consists of eight functions
1. Addition

Subtractions

Left Shift

Right Shift

Left Rotate

Right Rotate

And, Nand

Or, Nor

00 53 B OMIER T T U e)

e

ALU consists of two 32 bit inputs and 1 bit cin (carry input). It consists
of three select pins through which different functions are implemented. The output of

ALU is result which is 32 bit and 1 bit cout which is carry out.

P e e~ e

e | e

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 25

ARITHMETIC LOGIC UNIT USING VHDL

i
8

CHAPTER 8

ADDER

To understand how this adder works we have to think of the inputs not
as true or false but as 'l' or '0". The output of this adder is the sum of the inputs with a
carry bit. If the inputs are 'l' and 'l' we are adding 1 plus 1. The output labeled 'SUM' is
just an 'XOR' of the inputs which will be '0". The output labeled 'CARRY" is an AND gate
which of course will be '1'. The addition answer therefore is 10 which is the binary
addition of '1" and 'l". If the inputs are '1' and '0' the 'SUM' will be '1' and the 'CARRY"
will be '0', giving
1 answer of 01 or just 1.

In order to add binary numbers greater than two bits we need the adder
to be able to take in a carry bit along with the two input bits. This full-adder is shown in
Figure 8.1. You can see that the full-adder is two half-adders with one additional 'OR'
gate. To use a full-adder to add two binary numbers of arbitrary size you will begin with i
the right most bit, called the least significant bit (LSB) of each number with a carry in bit '
of '0". You would then add the two bits, record the sum, and use the carry out bit as the
carry in bit when adding the next two bits and moving towards the most significant bits
(MSB). By repeating this process you can add two binary numbers of any arbitrary

length. This process is known as a ripple carry.

e+}
=

rl' .I Cour

[O

Figure 8.1: Full adder

e

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 26

ARITHMETIC LOGIC UNIT USING VHDL

A B Cin Cout Sum
0 0 0 0 0
0 0 1 0 |
0 1 0 0 |
0 1 1 1 0
1 0 0 0 1
1 0 | 1 0
1 1 0 1 0
E | | | ‘1 1

Table 8.1 Truth table of full adder
8.1 Full Adder

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

use IEEE.STD LOGIC ARITH.ALL;

use IEEE.STD LOGIC UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity full adder is
Port (a:in STD LOGIC;
b+in-STD-LOGIC;
cin:in STD LOGIC;
cout : out STD LOGIC;
sum : out STD LOGIC);

forr—e

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 27

ARITHMETIC LOGIC UNIT USING VHDL

end full_adder;

architecture Behavioral of full_adder is

begin
process(a,b,cin)

begin

sum <= a xor b xor cin;

cout <= (a and b) or (b and cin) or (a and cin);
end process;

end Behavioral;

CAXro\hull_adder\full_adderine - [Sirrudation]

B File Edit View Project Scurce Process TestBench Simulation Window Help =19| %
IDPESL¥BRX [0a[Q[LL HAEA B ABBEBDD SR MR e e @A
| 22224280000t ASHALPHX a s b 2w s

: E
[Behav =] tmbef 105 <] Now:
Sourcea] Behav =] trbef LUTv 7] | 1200 ns 0ns 240 ts{iﬂs 720 gsTns 120
Hewdy | IR (e | R M R AN | JEe | o) L 2]
[Ea_paer M a 1 J I I 1 [| [| [| | !
= O xa%20 Mo 1 [aaisiit] J
[4 P
bY I 1 | P |
yo 2 o h g | 1 J L [1
13 Sources [o5 Grapatet]) Lbraves ot
e M sum 1 I1 I | [| J] | | I
e
w P bw mwtelb;:h,Tdi___
-
| A et] LR KT i
) | [Rfuladdervhd | 55 Desgn Summay -Srum»}
Simulation stopped when executing process: W, vhwi 77 = E = = R e e TR 5 -
on line 146 in file "C:/Xilinx/full adder/tbw.vhw"
e K3
[l | z
If ‘MJ) Ema | A Warigs |_.Te¢5mm I 3% Frdin Fles .Srr.(_mn‘q-r:»‘_j
- Time 8136
e

Figure 8.2: Output window for Full adder

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 28

ARITHMETIC LOGIC UNIT USING VHDL

:' 8.2 4 bit adder

! library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

: use IEEE.STD_LOGIC_ARITH.ALL;

' use [EEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

* entity adderdbit is
Port (a:in STD LOGIC vector(3 downto 0);
b:in STD _LOGIC vector(3 downto 0);
cin:in STD LOGIC;
cout : out STD LOGIC;
sum : out STD_LOGIC vector(3 downto 0));
end adder4bit;

architecture Behavioral of adder4bit is
component full adder
: port (a:in STD LOGIC;
F b:in STD LOGIC;
; eifi 7ifi STD T LOGIC:
cout : out STD LOGIC;
sum : out STD LOGIC);
end component ;
b | forul,u2,u3,u4 : full adder
i use entity work.full adder(Behavioral);
signal t: STD_LOGIC vector(2 downto 0);
begin

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 29

| v prvrprE———— s -

ARITHMETIC LOGIC UNIT USING VIIDL

ul : full_adder port map (a=>a(0),b=>b(0),cin=>cin,cout=>t(0),sum=>sum(0));
u2 : full_adder port map (a=>a(1),b=>b(1),cin=>t(0),cout=>t(1),sum=>sum(1));
u3 : full_adder port map (a=>a(2),b=>b(2),cin=>t(1),cout=>1(2),sum=>sum(2));

ud : full_adder port map (a=>a(3),b=>b(3),cin=>t(2),cout=>cout,sum=>sum(3));

end Behavioral;

Project Source Process TestBench Simulstion Window Help -8

ﬁﬂe(dn_v-mi _ ey
jnpHe L¥eaXwe QXA BB E OB s RE

Now;] 20 660 1100
ns ns 880 ns 1

(1 dieons | B A e e b R R o i
@ 3 a[3.0) 10 RO [X ¥ 4§] X 4 B 10 3}

& ¢ ol30) 1. (Gl 3) X [] . 1

Han 1 [| B f 1 f] [1 f

o] T Lorre] | B cout 0 | | | R e
| 8 & sum(30| 12 Gl o O B W AT e Y D e WD 15 12 1
e RS e fY -
Ehomm .'-'Vﬂ H“-ﬂ'b"'f-ll =
X Simulation atcpped when ;xe:::inq process: thw.vhwi?7 G T FETT, _:
i on line 152 in file "Ci/Xilinx/addersbit/cbw.vhu"

L s
B i 3

|
|| Zla] Corwie | @ Erons |, Worwn] {0 7 Corade | g i s | [S Corets - |

Time: 1097.5 ns

Figure 8.3: Output window for 4 bit adder

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 30

ARITHMETIC LOGIC UNIT USING VHDL

8.3 32 bit adder

library IEEE;

use IEEE.STD_LOGIC 1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.

--use UNISIM.VComponents.all;

entity adder32bit is
Port (a:in STD LOGIC VECTOR(31 downto 0);

b:in STD LOGIC VECTOR(31 downto 0);
cin: in STD LOGIC;
sum : out STD LOGIC VECTOR(31 downto 0);
cout : out STD_ LOGIC);

end adder32bit;

architecture Behavioral of adder32bit is

component adder4bit

port (a:in STD LOGIC vector(3 downto 0);

b:in STD LOGIC vector(3 downto 0);
cin: in STD LOGIC;
cout : out STD_ LOGIC;
sum : out. STD LOGIC vector(3 downto 0));

end component;

for ul,u2,u3,u4,u5,u6,u7,u8 : adderdbit

use entity work.adderdbit(Behavioral);

il 1 signal t: STD_LOGIC vector(6 downto 0);

begin

ul : adderdbit port map (a=>a(3 downto 0),b=>b(3 downto 0),

cin=>cin,cout=>t(0),sum=>sum(3 downto 0));

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 31

b
i |
= 3

ARITHMETIC LOGIC UNIT USING VIIDL

u2 : adder4bit port map (a=>a(7 downto 4),b=>b(7 downto 4),
cin=>1(0),cout=>1(1),sum=>sum(7 downto 4));

u3 : adderdbit port map (a=>a(11 downto 8),b=>b(11 downto 8),
cin=>t(1),cout=>t(2),sum=>sum(1 1 downto 8));

ud + adderdbit port map (a=>a(15 downto 12),b=>b(15 downto 12),
cin=>1(2),cout=>1(3),sum=>sum(15 downto 12));

u5 : adderdbit port map (a=>a(19 downto 16),b=>b(19 downto 16),
cin=>1(3),cout=>1(4),sum=>sum(19 downto 16));

u6 : adder4bit port map (a=>a(23 downto 20),b=>b(23 downto 20),

cin=>1(4),cout=>t(5),sum=>sum(23 downto 20));

u7 : adder4bit port map (a=>a(27 downto 24),b=>b(27 downto 24),
s cin=>1(5),cout=>t(6),sum=>sum(27 downto 24));

2

u8 : adder4bit port map (a=>a(31 downto 28),b=>b(31 downto 28),
cin=>1(6),cout=>cout,sum=>sum(31 downto 28));

end Behavioral,;

9 Xl - I5E - CAOGhinod\ adderd Ztat\sdder 12t ise (1w thi]

[File Edit View Project Source Process TestBench Simulation Window Help
loPAe LxpEXx[na[RlprpxaBnanoewinm: ~ dF@a @8XTAA](C[(0O
leEz|zo 24200t &AHAPEM D Gy [0 ~fm - e s

x
By] e 07s =) End Time:
Souscus[Behay 7] Mt (T 1000 ns 100ns 100 nia 500 ns 700 ns 900 s
Herarchy -] BT S i e Y T S ey el sy By e A BT RSy SO
= ﬂl AR Z0HG A cin] [|] [[J
} E:":ﬁ“ﬁ;‘mibﬂ & g a310) 1 GEeek 5 X 1 D& 9 X 1
\ "
Al S| | L 4 CEETREN ‘ K z X o X 1
S R A Y | "t 0
B Sources ; Snapact] Oy Loraciea] | V<0
D Lo o FK suml3t.0} 8§ [b.& [b4 4 X 10 X 3
]
Hemydbw
v @ adderizn
. I"'l]| o] i .
n : ;
e (el 2l s 2]
= :’”j, ,!_A—ﬁﬁ ,E",'J| X Design Summary }Mﬁlmm - [I
X Compiling vhdl file "C:/Xilinx/adder32bit/adder3ibit.vhd® in Library work. A S i e B AR TR e |
Entity <adder3zbit> compiled.
L Entity <adder32bit> (Architectuzre <behavioral>) compiled.
1|

L] | =i

[Consoie [@Bron | j\ Wamegs | @i Tel Consote | T Frd Fiea

Figure 8.4: Output window for 32 bit adder

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 32

ARITHMETIC LOGIC UNIT USING VHDL

CHAPTER9
SUBTRACTOR

Subtractor consists of two inputs and two outputs. The outputs in

subtractor are difference bit and a borrow bit. The difference bit is the subtraction of the
bits and borrow is what we have
borrowed from the previous bit.

Like the half-adder, the half-sub can be used to implement a full-sub, shown in Figure 9.1
s e
A N

=

B

_"! W > 24 BOR -

Figure 9.1 Full subtractor

Borin Diff Borrow

A B

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 I 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 - 1 1 1

Table 9.1 Truth table of I;ull subtractor

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 33

ARITHMETIC LOGIC UNIT USING VHDL

9.1 Full Subtractor

library IEEE;

use IEEE.STD_LOGIC 1164.ALL;

use IEEE.STD_LOGIC ARITH.ALL;

use IEEE.STD_LOGIC UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity full subt is
Port (a +in STD LOGIC;
b:in STD LOGIC;
cin; i STD LOGIC;
diff: out STD LOGIC;
bor: out STD LOGIC);
end full subt;

architecture Behavioral of full subt is

begin
process(a,b,cin)
begin
diff <= a xor b xor cin;
bor <= ((not a) and b) or (b and cin) or ((not a) and cin);

end-process;

end Behavioral;

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

34

ARITHMETIC LOGIC UNIT USING VHDL

PP e - 18 CAGhnaA il subt\full swbtie |

[File Edit View Project Source Process TestBench Simulation Window Help ,lé)‘,
DREA|LXpax[ocRppxapR(BEnC e el @@ @TAAX
(22240900l t AU ALPKEKID . by T e -]

x —— 21
Sourf Behavond S 7] thrf 7] Now: ons z30 ns 650 83Qns 110
[s | | e R e A e b e T e N e e
Era_nee Ma 1 | 1 1] 1 I L | 1 | R B
= xads2 Mo 0 [|
+[Hw Men 3 oo

8 Sourcen [p Scapirt] Y Lbrared M o 0 [1 J L I 1 J LS 1 I

—_———— e 7';” Mum] r] I E i
Howdyolte
= @bw wiesbench ach |

| 1 el e |

oty | [| g vt Sy | Il Svuien |

A Simalavion stopped when executing processs tow.vawi?? g |

on line 150 in file "C:/Xilinx/full subt/tbw.vhw" =

| J

|| JalComoe | @Ern | _f\Warngs | {1 Td Consse | igg o ries | [Sm Concie- e

e R e R 1 7 [l e

Figure 9.2: Output window for Full subtractor

9.2 4 Bit Subtractor

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD _LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity subtdbit-is

Port (a:in STD _LOGIC vector(3 downto 0);
b:in STD _LOGIC vector(3 downto 0);

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 35

EES L T .

P

ARITHMETIC LOGIC UNIT USING VHDL

cin: in/8TD LOGIC;
diff: out STD_LOGIC_vector(3 downto 0);
bor: out STD LOGIC);

end subt4bit;

architecture Behavioral of subt4bit is
component full subt
Port (a:in STD LOGIC;

b:in STD LOGIC;

oin s ini STD-LOGIC:

diff: out STD LOGIC;

bor: out STD LOGIC);

end component ;

for ul,u2,u3,u4 : full subt {
use entity work.full subt(Behavioral);

signal t: STD_LOGIC vector(2 downto 0); I'
begin)

ul : full subt port map (a=>a(0),b=>b(0),cin=>cin,bor=>t(0),diff=>diff{0));
u2 : full_subt port map (a=>a(1),b=>b(1),cin=>t(0),bor=>t(1),diff=>diff(1));
u3 : full_subt port map (a=>a(2),b=>b(2),cin=>t(1),bor=>t(2),diff=>diff(2)):
u4 : full subt port map (a=>a(3),b=>b(3),cin=>t(2),bor=>bor,diff=>diff(3));

end Behavioral;

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 36

ARITHMETIC LOGIC UNIT USING VHDL

P o - 1SE - CAGrofoutadbat bttt ne - [Simlatcon]
[9) File Edt View Project Source Process TestBench Simulation Window Help =8 x
DRPHACIXBAaX|(va Rl xupBeand| e sl cliaar| 8o
E = st s ann o0 tAFSH ALPHE B a2 A
= SR Rt e L = A e e
Barav v] bl LT Now:
Sources[Behav] b (072 <] 1100 ns 0ns z0 AL?r.a ﬁio esins 1100
[| [e et o] s it ehE{il (EEe [
Fentn @ 3 al20) 1 GERhE F] x a b & [M 5 Ve i |
B C'_'-’?'IZ % 3 613 0} 2 (RO 2 X 4 K [] X 6 X 2
M ein 1 | | R 1 | | | | | |
v 3 am30) TR G Gt A0 G o, AL M, e AL, Cooias o, el v, | G R0 (R Van, (e i S
A bor 1 |
+ @bwibwtesbach ach
|
a
7,’,'-)_ Simulatien :“tn:‘ppésr when executing ﬁroces:l tl:w‘v?;'i = S L i T A
on line 153 in file "Ci/Xilinx/subtdbit/tbw,vhw"
L -
‘ 3

[:
[i] Corece | @]) Worw | 7 Corssie | g rimFis | [SmCoris - |

Figure 9.3: Output window for 4 bit subtractor

9.3 32 Bit Subtractor

library IEEE;

use IEEE.STD _LOGIC_1164.ALL;

use IEEE.STD LOGIC_ARITH.ALL;

use IEEE.STD LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity subt32bit s -
Port (a:in STD LOGIC VECTOR(31 downto 0);
b:in STD LOGIC VECTOR(31 downto 0);

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 37

R T e e o

ARITHMETIC LOGIC UNIT USING VHDL

cin:in STD LOGIC;
diff : out STD_LOGIC VECTOR(31 downto 0);
bor : out STD_LOGIC);

end subt32bit;

architecture Behavioral of subt32bit is
component subt4bit
Port (a:in STD_LOGIC_vector(3 downto 0);

b:in STD LOGIC vector(3 downto 0);
cin:in STD LOGIC;
diff : out STD_LOGIC vector(3 downto 0);
bor : out STD LOGIC);

end component;

for ul,u2,u3,ud,u5,u6,u7,u8 : subt4bit

- A

use entity work.subt4bit(Behavioral);
signal t: STD _LOGIC _vector(6 downto 0);

L -

begin

ul :subt4bit port map (a=>a(3 downto 0),b=>b(3 downto 0),
cin=>cin,bor=>t(0),diff=>diff(3 downto 0));

u2 :subt4bit port map (a=>a(7 downto 4),b=>b(7 downto 4),
cin=>t(0),bor=>t(1),diff=>diff{7 downto 4));

u3 :subt4bit port map (a=>a(11 downto 8),b=>b(11 downto 8),
cin=>t(1),bor=>t(2),diff=>diff(11 downto 8));

ud :subt4bit port map (a=>a(15 downto 12),b=>b(15 downto 12),
cin=>t(2),bor=>t(3),diff=>diff(15 downto 12));

u5 :subt4bit port map (a=>a(19 downto 16),b=>b(19 downto 16),
cin=>t(3),bor=>t(4),diff=>diff(19 downto 16));

u6 :subt4bit port map (a=>a(23 downto 20),b=>b(23 downto 20),
cin=>t(4),bor=>t(5),diff=>diff(23 downto 20));

u7 :subt4bit port map (a=>a(27 downto 24),b=>b(27 downto 24),
cin=>t(5),bor=>t(6),diff=>diff(27 downto 24));

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 38

ARITHMETIC LOGIC UNIT USING VHDL

u8 :subt4bit port map (a=>a(31 downto 28),b=>b(31 downto 28),
cin=>t(6),bor=>bor,diff=>diff(31 downto 28));

end Behavioral;

[] ! TR

DREHA LY RX [va[RAo A RN PEnOseieml: — SHEH[@BTHILT

EE[C22(A4an o XIOO[IARHLPAKRXID ar 20 fE

i """I = ,,:‘; How: 0ns 279 na 0 ns 110

; || s P N e P e N e N T R S T

S P ® 3 af310) L o ey va X X 0 I
= (k2 @ & bi31.0) [N 4 X [] b ¢ 0

+@e Men 1)0([1 [Jemie] _)|(I 1]]

o1 Sovrces [om0y L] | & 26 3101 20 (70 o e s 5 (4204987295 0 Xaz04987205(0 X4204987295K_ 0
—fLL——; 2 vor 1 [1 | 1

) tbw tbw testbench_arch

| EEEETIeE i N]|
e k1B Al i
S | e

X Simulacien stopped when exacuting process: t
on line 143 in file "C:/Xilinx/subt32bit/tbw.vh

v
| |
[l Corsde | @Eron |\ Wamngs | [@iTeiConle | g FrdiFies | [l S Cormoid -t

Figure 9.4: Output window for 32 bit subtractor

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 39

ARITHMETIC LOGIC UNIT USING VHDL

CHAPTER 10

LEFT SHIFTER

Shifter consists of one input and it consists of one output. In left shift the
output is shifted to one bit left as compared to the input. After shifting the LSB of the
output gets a NULL value.

For eg. we consider eight bit input

Input is
1 1 0 0 0 1 1 0
Output is ;
1 0 0 0 | 1 0 0
1
/
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;

entity Ishift32bit is
Port(a :in std logic vector (31 DOWNTO 0);
cin :in std logic;

b :out std logic vector (31 DOWNTO 0));

end Ishift32bit;
architecture Behavioral of Ishift32bit is

begin

process(a,cin)

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 40

ARITHMETIC LOGIC UNIT USING VHDL

begin

b(0) <= cin;
b(1) <= a(0);
b(2)<=a(l);
b(3)<=a(2);
b(4)<=a(3);
b(5)<=a(4);
b(6)<=a(5);
b(7)<=a(6);
b(8)<=a(7);
b(9)<=a(8);
b(10)<=a(9);
b(11)<=a(10);

b(12)<=a(11); 4
b(13)<=a(12):

b(14)<=a(13); |
b(15)<=a(14); g

b(16)<=a(15);
b(17)<=a(16);
b(18)<=a(17);
b(19)<=a(18);
b(20)<=a(19);
b(21)<=a(20);
b(22)<=a(21);
b(23)<=a(22);
b(24)<=a(23);
b(25)<=a(24);
b(26)<=a(25);
b(27)<=a(26);
b(28)<=a(27);
b(29)<=a(28);

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 41

ARITHMETIC LOGIC UNIT USING VHDL

b(30)<=a(29);
b(31)<=a(30);
end process;

end Behavioral;

B Xline - ISF - CAGRnAbMRIZba\ 3 A e - [Sirrrslation] ppet.$and
[File Edit View Project Source Process TestBench Simulation Window Help =8| x
DRHG GIXRRX e QIPLPXKA R |AIDEH DL YOO [SRR
EE|[Z2Z2 (433 20RI0Q I 1AM 2APHXID @b 3|0 . v

sz e 7| Now
[T]| b bl plaiee SOR RS Ty e o e S e R b
i 2e = B af310) o (FEIRE 99 X [] |
o ak ; Hon 1 J 1 f 1 J | | 1 | |
atl @ 3 b[31.0) N G e R ey, O D SRR SR S G e (D O R R

s | LTI rialf sid]
E“"‘L's‘""“ﬁfjl (@324 04 | Desgn Surmay | [l Soon |

x Simulation stopped when exscuting process: thw)
on 1ine 108 in file "Ci/Xilinx/1shift32bit/chw.vhw

ool +f
[8] Consoe | @ Erens | g Wamngs | (@TeiConsole | igg Frdin Fies | [l S Coroie- e |

=

Time:8274 ns

400 AM

Figure 10.1: Output window for Left Shifter

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 42

ARITHMETIC LOGIC UNIT USING VHDL

CHAPTER 11

RIGHT SHIFTER

Shifter consists of one input and it consists of one output. In right shift

the output is shifted to one bit left as compared to the input. After shifting the MSB of the

output gets a NULL value. For eg we consider eight bit input

Input is

1 | 0 0 0 1
Output is

0 1 1 0 0 0
library IEEE;

use [IEEE.STD LOGIC 1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL,;

entity rshift32bit is
Port (a :in std logic vector (31 DOWNTO 0);

cin :in std logic;
b :out std logic vector (31 DOWNTO 0));

end rshift32bit;

architecture Behavioral of rshift32bit is

begin

process(a,cin)

begin

b(0) <=a(1);

b(1)<=a(2);

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

43

£

~

ARITHMETIC LOGIC UNIT USING VHDL

b(2)<=a(3);
b(3)<=a(4);
b(4)<=a(5);
b(5)<=a(6);
b(6)<=a(7);
b(7)<=a(8);
b(8)<=a(9);
b(9)<=a(10);
b(10)<=a(11);
b(11)<=a(12);
b(12)<=a(13);
b(13)<=a(14);
b(14)<=a(15);
b(15)<=a(16);
b(16)<=a(17);
b(17)<=a(18);
b(18)<=a(19);
b(19)<=a(20);
b(20)<=a(21);
b(21)<=a(22);
b(22)<=a(23);
b(23)<=a(24);
b(24)<=a(25);
b(25)<=a(26);
b(26)<=a(27);
b(27)<=a(28);
b(28)<=a(29);
h(29)<=a(30);
b(30)<=a(31);
b(31)<=cin;

R e —r £

end process;

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 44

ARITHMETIC LOGIC UNIT USING VHDL

end Behavioral;

IS Xahin - ISE - CAGlnadrsht 3 2ty shaft 10 ie - [Sarnidation]

[) File Edt View Project Scurce Process TestBench Simulstion Window Help

CAHg LsaRXx[weRppXxpB e 0T seinmE -FE@QB8AITAX0
£ 12 CEL AR 0X QO AR 2AXKIB . @ I o =] 5
g 20 =
Bahav =] Mnbef (075 <] Now:
Sarces(Bohav] hnbef 1072 7] 1100 08 ons 220 #igns 850 Barlms 1100
[Fety o [0 mm B ke B i =2 v e B s] R e B e |
Fnraiae ® @ al31.0] LR R] X [|
3 ?’5&‘“‘:‘) Hcn 1 [| B 1 I] | L [|
- & 3 bi31.0] 24 (0 QEIATEETE W GEurioesy 6 K2141483648Y 0 Y21a74sieasy . 0 X2147453648% 0
93 Sowrces [Srapatct] Y Livares ;
v @ n bwlestbench_ach
-
) R i L W PO B il
Rt | 5 Oosn Sy | Bl Seen |
A simalatien stopped when exacuting process: chu.vhw:7l UL i oty === _-‘
on line 108 in file "C:/Xilinx/rshifcidbic/cbw.vhu"
; :‘
| | 2
) Cornde | @ Erons |\ Wamngs | [Tl Consce | i Frodin Fies | [S Carsie 2w |
[Time 10615 ns

Figure 11.1: Output window for Right Shifter

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 45

ARITHMETIC LOGIC UNIT USING VHDL

CHAPTER 12

LEFT ROTATOR

Rotator consists of one input and it consists of one output. In left rotator

the output is shifted to one bit left as compared to the input. The difference between left
shift and left rotate is that in case of left rotator the LSB of the output is equal to the MSB
of the input.

For eg we consider eight bit input

Input is
1 1 0 0 0 1 1 0
Output is .;
i.\
1 0 0 0 1 1 0 | '
l?
library IEEE;

use IEEE.STD LOGIC_1164.ALL;
use IEEE.STD LOGIC_ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;
entity lrot32bit is
Port (a :in std logic vector (31 DOWNTO 0);
b :out std logic vector (31 DOWNTO 0));
end lrot32bit;
architecture Behavioral of Irot32bit is
begin
process(a)
begin
b(0) <= a(31);
b(1) <= a(0);
b(2)<=a(1);

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 46

ARITHMETIC LOGIC UNIT USING VHDL

b(3)<=a(2);

b(4)<=a(3);

b(5)<=a(4);

b(6)<=a(5);

b(7)<=a(6);

b(8)<=a(7);

b(9)<=a(8);

b(10)<=a(9);

b(11)<=a(10);
b(12)<=a(11);
b(13)<=a(12);
b(14)<=a(13);
b(15)<=a(14);
b(16)<=a(15); {
b(17)<=a(16);
b(18)<=a(17);
b(19)<=a(18);
b(20)<=a(19);
b(21)<=a(20);
b(22)<=a(21);
b(23)<=a(22);
b(24)<=a(23);
b(25)<=a(24);
b(26)<=a(25);
b(27)<=a(26);
b(28)<=a(27);
b(29)<=a(28);
b(30)<=a(29);
b(31)<=a(30);

end process;

Tt

L -

end Behavioral;

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 47

[

ARITHMETIC LOGIC UNIT USING VHDL

Xifin - 5E

A\t 320t s oL s o
[5) File Edit View Project Source Process TestBench Simulstion Window Help -l %

[rmidatoon]

DREG (LXBaX[we QP AlB v Lsemml -li6@ @ @R
Ex|—252(aaanon[iArH 2K @y [0 e o] S e BT
- op
Sources[Behay 7] tanbef LUT2] ;‘000:' 0ns % 8083 if@ 160 ns 20
[acichy s [eesonsmnnsan A Y T A B o e A S W e R sl R
[F&wonze ® B a1 01 ¢ [X 198 |
= al2 @ @ b3 0 0 b 396
Rl
+ Wibw lbwlesbonch_ach
%]
AsE St)
= kI E51 LAY N BLIKY| L
M—L'_ [reizan | I smisen |
W simalation stopped when executing process: tbw.vhwiSd i %
on line 92 in file "Ci/Xilinx/lroc32bic/thbw.vhw"
* -
| | |
8] Corscn | @ Eron | _f\ Worwon | Q@i TeCornls] gy et ies | [Sm o 10 |

[Time: 1285 ns

5 Bt vt o1 | A e e e e TP Chocn T A RN O A

Figure 12.1: Output window for Left Rotator

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 48

ARITHMETIC LOGIC UNIT USING VHDL

CHAPTER 13

RIGHT ROTATOR

Rotator consists of one input and it consists of one output. In right

rotator the output is shifted to one bit left as compared to the input. The difference

between right shift and right rotate is that in case of right rotator the MSB of the output is

equal to the LSB of the input. For eg we consider eight bit input

Input is

1 | 0 0 0 1
Output is

0 1 1 0 0 0

library [EEE;

use IEEE.STD LOGIC 1164.ALL;

use [EEE.STD LOGIC ARITH.ALL;

use [EEE.STD LOGIC UNSIGNED.ALL;

entity rrot32bit is
Port (a :in std logic vector (31 DOWNTO 0);
b :out std logic vector (31 DOWNTO 0));

end rrot32bit;
architecture Behavioral of rrot32bit is
begin
process(a)
begii
b(0) <= a(l);
b(1)<=a(2);
b(2)<=a(3);

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

49

e

e

ARITHMETIC LOGIC UNIT USING VHDL

b(3)<=a(4);
b(4)<=a(5);
b(5)<=a(6);
b(6)<=a(7);
b(7)<=a(8);
b(8)<=a(9);
b(9)<=a(10);
b(10)<=a(11);
b(11)<=a(12);
b(12)<=a(13);
b(13)<=a(14);
b(14)<=a(15);
b(15)<=a(16);
b(16)<=a(17);
b(17)<=a(18);
b(18)<=a(19);
b(19)<=a(20);
b(20)<=a(21);
b(21)<=a(22);
b(22)<=a(23);
b(23)<=a(24);
b(24)<=a(25);
b(25)<=a(26);
b(26)<=a(27);
b(27)<=a(28);
b(28)<=a(29);
b(29)<=a(30);
b(30)<=a(31);
b(31)<=a(0);

end process;

B e -~

end Behavioral,;

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 50

_

ARITHMETIC LOGIC UNIT USING VHDL

B Kibinx - ISE - COGkrodrmot 32bd ot Ztet e - [Sunulation]
F) Fite Edit View Project Soutce Process TestBench Simulation Window Help

DBHG LixeRxwaRpeoxupaiae o s nmls -l INE@E@THELAN
ex[Z2Z2(4aa3n oK 1ACH2AEX O @) 2[00 < ity

3 S =
sawcee{ v 7] umeef 7)| Now: ol o 005 20 ogns 2
[o) e L) e S T v R B O R Tt
[~ #ra32a @ B al310) 0 2 X 198 |
= Q'Bf % X bi310} o (g ; X 9

415 M| al4]

2| Rz | [sesan |

x Simulation stopped when executing process; t
on line 22 in file "C:/Xilinx/rroc3ibit/chw.

Figure 13.1: Output window for Right Rotator

.~ ——

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 51

ARITHMETIC LOGIC UNIT USING VHDL

CHAPTER 14

AND NAND
A Simple AND and NAND consist of two inputs and one output. NAND

can also be taken as complement of the output of AND.

A B ouTPUT
0 0 0
0 1 0
1 0 0
1 1 1

e e . —

Table 14.1: Truth table of AND.

4 L ouTPUT
0 0 1
0 1 1
1 0 |
1) 1 .
v Table 14.2: Truth table of NAND
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 52

—

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

use IEEE.STD _LOGIC_ARITH.ALL;

use IEEE.STD LOGIC UNSIGNED.ALL;

entity andnand is
Port (a:in STD LOGIC_vector(31 downto 0);
b:in STD LOGIC vector(31 downto 0);
cin:in STD LOGIC;
c:out STD LOGIC vector(31 downto 0));
end andnand;

architecture Behavioral of andnand is

begin
process(a,b,cin)
begin
if (cin ='0")
then c<=a and b;
clse
c<=anandb;
end if;

end process;

end Behavioral;

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

ARITHMETIC LOGIC UNIT USING VHDL

53

ARITHMETIC LOGIC UNIT USING VDL

P Xdi - 15E - CAGhrodandnand\andnand =e - [Simedation]

[File Edit View Project Source Process TestBench Simulstien Window Help

DPHG LIxbAX(na[RipAXp BB O |semme 0@ E BTV
LER 2 AR AHHIOD ‘ Mt APHER w G b y8|[100 lne =]
2 FiLo B aFuld. b]
a] tharef (072] Moo 0ns 220 #4908 €50 88Qns 1104
| e T s A T S S P e Y
® 3 ap310) 0. oY Z X 7 X [X B e 0 3
= (dxals2 ® & bi31.0) 0 GG X] b g V4 16 X 4 X [
Hae Men :) 1 T ! | | l !
ug 5"‘”“[&3“"_*‘3‘]—@3 ¥ @ q31.0] 420 (0 Yazweerzey 6 fa(izsmeraaid_ 8 f9(azeaveressy 00 (4204967295 0 Xa204967295 0
Myd;ydlb\:- 1
+ @towibw lesbanch_ach

Simulation stopped wh
cn line 128 in file

|* |

o s

Figure 14.1: Output window for And Nand

-

NTme—

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 54

ARITHMETIC LOGIC UNIT USING VHDL

CHAPTER 15
OR NOR

A Simple OR and NOR consist of two inputs and one output. NOR can

also be taken as complement of the output of OR.

A B ouTPUT
0 0 0
0 I 1
| 0 | h
1 1 I
i

Table 15.1: Truth table of OR

A B . OUTPUT
0 0 1
0 1 0
1 0 0
1 1 0 |

Table 15.2: Truth table of NOR

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 55

|

|

| ARITHMETIC LOGIC UNIT USING VHDL
|

\

library IEEE,;

use [IEEE.STD LOGIC 1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD LOGIC_UNSIGNED.ALL;

entity ornor is
Port (a:in STD LOGIC vector(31 downto 0);

b:in STD LOGIC vector(31 downto 0);
cin:in STD LOGIC;
c:out STD LOGIC vector(31 downto 0));

end ornor;

architecture Behavioral of ornor is

begin ;\‘
process(a,b,cin) .)
begin [
if (cin ='0") /
then c<=aorb;
clse
c<=anorb; ‘
end if;

end process;

end Behavioral;

56

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

ARITHMETIC LOGIC UNIT USING VHDL

i Xibna - 151 - CAhna\ornad\oma ise — [Sanulabon] '
[\) File Edit View Project Source Process TestBench Simulation Window Help -8 x
DPHA L XDEX wa(ppexxdBAlae o s eliamls @ Ed SAEAAX 0O
£ ; ladan oMt A NAL XX @ v S s [0 Ffe -]
|
v v] bumbef 1075 <] Now:
Saurces[Behav 7] trbe] . 1100 ns 0ns 20 uTn-; e?u aalins 110
[S5 fieisie i Bty o iy iy B {2 [T
@ X aj31.0) 0 (e 52) & : 0
@ X bi31.0] R LT 50 X 0
2 cin 1 I t | [[|
st 4 T @R X
|
= | < £ oy 201 DT g i1
! oot |5 Ooogn Sumay | [l Saien |

in file "C:/Xilinx/ornor/tbw.v]

Figure 15.1: Output window for Or Nor

7

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

ARITHMETIC LOGIC UNIT USING VHDL

CHAPTER 16

32 BIT ALU

ALU consist of eight functions. The functions which are to be
implemented are selected by 8:1 multiplexer. The order of the select pins defines the

function to be implemented.

Sel(2) Sel(1) Sel(0) Result

0 0 0 Addition

0 0 1 Subtraction

0 1 * 0 Left shift

0 1 1 Right shift

1 0 0 Left rotate 4

1 0 1 Right rotate

| | 0 If cin=0 and I/
If cin=1 nand

1 1 1 If cin =0 or
If cin=1 nor

Table 16.1: Function table of 8:1 multiplexer.

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 58

ARITHMETIC LOGIC UNIT USING VHDL

library IEEE,;

use [EEE.STD LOGIC 1164.ALL;

use IEEE.STD LOGIC ARITH.ALL;

use IEEE.STD LOGIC UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity alu is
Port (a :in STD LOGIC VECTOR(31 downto 0);

b :in STD LOGIC VECTOR(31 downto 0);
sel :instd logic_vector(2 downto 0); \
cin : in STD _LOGIC; |
result : out STD LOGIC VECTOR(31 downto 0), ;
cout :out STD LOGIC;

clk : in STD_LOGIC);

end alu;
architecture Behavioral of alu is

component adder32bit
Port (a:in STD LOGIC VECTOR(31 downto 0);
b:in STD LOGIC_VECTOR(31 downto 0);
cin:in STD LOGIC;
sum : out STD LOGIC VECTOR(31 downto 0);
4 cout--out- STD_LOGIC);

end component;

for ul : adder32bit

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 59

ARITHMETIC LOGIC UNIT USING VHDL
| use entity work.adder32bit(Behavioral);

' component subt32bit

‘ Port (a:in STD LOGIC VECTOR(31 downto 0);

| b:in STD LOGIC VECTOR(31 downto 0);
cin:in STD_LOGIC;

3 diff : out STD LOGIC VECTOR(31 downto 0);

! bor : out STD LOGIC);

| end component;

] for u2 : subt32bit
use entity work.subt32bit(Behavioral);

component Ishift32bit
Port(a :in std logic vector (31 DOWNTO 0);

cin :in std_logic;
b :out std logic vector (31 DOWNTO 0));

end component;

for u3 : Ishift32bit
use entity work.Ishift32bit(Behavioral);

component rshift32bit
Port (a :in std_logic vector (31 DOWNTO 0);
cin :in std logic;
b :out std logic vector (31 DOWNTO 0));

end component;

for u4 : rshift32bit
use entity work.rshift32bit(Behavioral);

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 60

ARITHMETIC LOGIC UNIT USING VHDL

| component lrot32bit
Port (a :in std logic vector (31 DOWNTO 0);
b :out std logic vector (31 DOWNTO 0));

end component;

for u5 : lrot32bit
use entity work.Irot32bit(Behavioral);

‘ component rrot32bit
| Port(a :in std logic_vector (31 DOWNTO 0);
! b :out std logic vector (31 DOWNTO 0)),

end component;

for u6 : rrot32bit

i use entity work.rrot32bit(Behavioral),

component andnand
‘ Port (a:in STD LOGIC_vector(31 downto 0);
E b:in STD LOGIC vector(31 downto 0);
cin:in STD LOGIC;
¢ :out STD LOGIC vector(31 downto 0));

end component;

for u7 : andnand

use entity work.andnand(Behavioral);

| component ornor
| Port (a:in STD LOGIC vector(31 downto 0);
| b:in STD LOGIC vector(31 downto 0);
cin:in STD LOGIC;
c:out STD LOGIC vector(31 downto 0));

|
i JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 61

ARITHMETIC LOGIC UNIT USING VHDL
| end component;

for u8 : ornor

use entity work.ornor(Behavioral);

signal ta,tb : std_logic ;

signal t1,t2,t3,t4,15,t6,t7,t8: STD_LOGIC_vector(31 downto 0);

! begin

ul : adder32bit port map (a=>a,b=>b,cin=>cin,cout=>ta,sum=>t1);

| u2 : subt32bit port map (a=>a,b=>b,cin=>cin,bor=>tb,diff=>t2);
u3 : Ishift32bit port map (a=>a,cin=>cin,b=>t3);

! u4 : rshift32bit port map (a=>a,cin=>cin,b=>t4),

u5 : Irot32bit port map (a=>a,b=>t5),

u6 : rrot32bit port map (a=>a,b=>16);

u7 : andnand port map (a=>a,b=>b,cin=>cin,c=>t7),

~ T

1 u8 : ornor port map (a=>a,b=>b,cin=>cin,c=>t8);

process(sel,clk)
begin
if clk ="1" then
case sel is
when "000" =>result<=t1;

cout<=ta,

when "001" =>result<=t2;
cout<=tb;
when "010" =>result<=t3;

when "011" =>result<=t4;

when "100" =>result<=t5;
when "101" =>result<=t6;
when "110" =>result<=t7;

when "111" =>result<=t8;

|
| JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 62

ARITHMETIC LOGIC UNIT USING VHDL

|
|
1
|

when others
=>result<="00000000000000000000000000000000";

end case;
end if}

end process;

end Behavioral;

L File Edt View Project Source Process TestBench Simufation Window Help
| Y T Y Py P e I LR P T Y Yomc ([1 4 A 13 3 ST
| 1A 2280 0 S 2100 =ffw +]

s
Now:
‘Sources| Behav +] 1100 ns ons 2?0 uTm eTo sanins 1100
Hearchy R JEE i e B e R o) (EPCA R [olasti]
e @ g a[31.0) 0. . (EEaFENX]] X pizl W § S = =+
3 aﬁm: @ 3 ba10) 0 (oY 7]) 4 Y T
AL ? = g seliz 0] 0. @ [
g = - 0
0 Sorces [ggg Srapct] [y Lorarer] | AN
S @ @resui3to] 0 @ZAUOOOUX i) X Fill X [
= A cout 0 ———
| Hearchyolew. 3 1
+ @ 1bw tow testbench_ach i I 1 J 1 | L J L
| |
o 13 & /
S e £ |] pidl] 2] »)
B Proc Sm Herrchy -1 | f———————— & o
S sl E Desgn Sumay | [} Sewsaton |
] Simulation scopped when executing Process: tbw.vhwif3d -
én line 149 in file "C:/Xilinx/alu/thw.vhu"
A

TOLN iAo

4 | ;
| il Conacle | @ Eros | 3\ Womings | @iVl Console | igh Fodn Foes | [l Sm Coruole -tow |
| [Time: 2237 s

Figure 16.1: Output window Iof adder in ALU

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

i
!

ARITHMETIC LOGIC UNIT USING VHDL

na - ISE - CAXfrtal\aluase - [Samwlation]
£ Fle Edit View Project Source Process TestBench Simulation Window Help =18 %

DPH? LIXBBX e RleoXxA BB 0D eaal SiN@a @8xxx%[v[(o o
TaFE*AEEHO (G HE[[0 <fm
L]

somoft] e]| Now:

[L e S S A T e R AR
T&mmm]2 X apra o X L & &
e m § bi310] 0 i : 4) & z e [

. ?m:b:aj“w) ﬂ-ﬂ‘massgzm 0 ({==§ 3 [

TR i o HMen 0

WE&:;_]_@ m @resun3to] 0 GIRUDUOUY 2)4 Z7 X L]

e e————) | {2 0 s :

Herarchy of thw. 3

R | ! 1 1 I 1 ! bl Biandd L
L2, el rie] 3

Proc S |
A Ll Tl s] I smsten |

X Simulation stopped when executing process: tbw,vhwigd
on line 151 in file "C:/Xilinx/alu/tbw.vhw"

L]

< |
[l Cosde | @ Ern | i\ Womegs | [l TeiCorsie | igg Pt Fies | [l S Corata e |

it - I5E - CAGrodalu\alu e Sermudation]
E Fild de View Project Source _P_rocm teﬂlench Simulation Window Help 5 ;
DAHALxeaxma(RpsxxA@sae nojseem: @@ (@xxu%xe[io o
[TAEHAEHER(Q &y [0 s <]

Now:
ons ns 830 ns 1
"w"'|II;2T°IJT“TH|IGT°I!ITIIIM
® g a{31.0] 0 EEoRny: 3 b é { [-
@ g bi31:0] [-]
® X senzo) o (RO 2 D4 [
M cin 0
@ eesuio] 0 GZNOUDUUY ¥ X [
M cout o L L
Mex 1 I 1 I 1 f 1 I 1 | |
:-—-——————- —"I 4 K} » 3 .
3&% .Hﬂe&o‘w—l J‘—IVM‘:T# 2 I —IJ

x Simulation stopped when exécuting process; tbw.vhwifl
on 1ine 144 in file "Ci/Xilinx/alu/cthbw.vhu"

Figure 16.3: Output window of Left shift in ALU

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 64

e

j
&

ARITHMETIC LOGIC UNIT USING VHDL

L File Edt View Project Source Process TestBench Simulation Window Help i : =18 %
DPH? L yaax[vaRlepoxxaBans 00| Lielsnnme T @@ e nslelool
tAC R A2HHB « G X100 = <] 2 A

x
Sources|Behav =] Numbe LUT: <] Now: 20 88 1100
ey sl 810008 [S L0 DAy Ly e EAON B ol i BB R R
I ?‘d!mkmm - ® 310 0 [} 1@] ; g |
= .”.\ ek’ || E Kooy 0 ; 7 [TAGE g
" DTM _,j-l @ 3 sen20] 0 (e 3 2K 0
TR .- A cin]
M;‘_;.i“f Libraries @ pCresuite 0 GZIODOOON ; %) Y [

2] A cout 0 1
Herarchy of thw.
¢ @)lbwibwlesibench_arch ;e) ,_“ﬁ_I I 1 J I / L
s |) . -l
- = | LIKTNRIRY 2
B Processes .Smnmw_l m_——; B J

] Simulation stopped when executing process: tbw.vhwig3
I on line 144 in file “C:/Xilinx/alu/tbw,vhw"

By
| {8 Corsoe] Q&m)\ Wamngs]imamh} _Fndnﬂa ;.Smtms.x-m J

o Ml < I5F CAXGheutstutabuase - [Samdation] Yo
I File Edit View Project Source Process TestBench Simulation Window Help HETES
0REGLxRax/palPlppxap@aine noleeinm: diwwa @ 0)ioo
[t &EH[APEXO (S WX [0 > =]
= £

Now: A 1100
ns ns ns
130008 i P e kR R e S
= 32310 ¢ - R R et T e bt) : g~
@ G o{310] o G5 3 s : e [E 3 T 5 7 ==
® 3K seliz0] 0 3 [
A cin 0
@ resuli310] 0 @GZHUUDOUY 3) 4 0
MLM] v 8
2 o 1 J 1 f 1 I 1 [1 | |
.
R S | i -
== 1 4] e
s o 2 Llel) 2l
Sibeomn o oty) X Design Sumnay | [Smdson |
| Simulation Stopped when executing process; tbw.vhwifl 2 -
| on line 144 in file "C:/Xilinx/alu/ebw.vhw"
I -
I I} .',F

| [BConscle | @Eron | j) Warngs | i Ta Consaie | O e |

[Time: 6774 ns
CERI WA A

Figure 16.5: Output window of Left rotate in ALU

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 65

ARITHMETIC LOGIC UNIT USING VHDL

X File Edit View Project Source Process Test Bench Simulation Window Help 7 =18 %
D2H0 sxoaxoaRleexxpRNae naeeiame cl@dd8XAAR[NCIOO
1A APHKIE (S b 100 =l =]
-

Sources r&mh:_ﬂ_rm Now:

ons 443ns 6580 880ns 1109
[Howey 10008 i e s ST A R S e s P iy VA
[® @ ap310) o @eeEX i) b i 0 sl
L Clxai200-419256 e s =
i 'BMTM ® B sen20] v GEonX 5 3
03 Sources [os Srapshor K e o
= ___m;:L__ o §resunio] 0 @ERUULLIU [Z] X 0
21 hcont 0
Faerarchy of thw
e | Bl K 0 Blnalniad | Jo 1 | L I l I
It b |y slol] ol i
P Sim Hherarchy - | [o X
Kheme Wity || [mr] M S |
X Simulacion stopped when executing process: tbw.vhwif3

on line 144 in file "C:/Xilfnx/alu/tbw,vhw"
L]
I 4 |
|] Console | @ |\ Wamings | T Corcia | g Findin Fies | [l Sm Conie e |

5] the Edit \ﬂm Pm;m Source Process TestBench Simulation Window Nllp =|8x

XBRX| ﬂﬂl"-f}‘l,\ D?CKp Q (Al® B oA e eimle JEgF ﬂ&c’txta‘ﬁ '8
'441.%9)4'0‘:) FAEN APEEID Sy [0 <=]

ans ng & 880 ns 1100
Y T T e e R e S el e
oL Lo G 2 D G e W0 A gl
® Bl P10 (X 8 X R L
A cin . | [1
@ el 7 T Yameusizes . 0. Xezeweraesy, 0
s
Herarchy of tbw. =2
o v tow leabanch_wch
e | T ATV 3T ‘ A
& Processes _.s-nmmsv, || o I] I s J N 2
x Simulation stopped when exascuting process: thw.vhw:74 L‘
m S PR Sl PR PO S Sy PSSP o]

‘ A

I ﬁ @b |_j\ Wamegs 'm i ndnfies | .S'“C"*“’“} Lo : : : 2 |

Flgure 16.7: Output wmdow of And Nand in ALU

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 66

ARITHMETIC LOGIC UNIT USING VHDL

B File Edit View Project Source Process TestBench Simulation Window Help : =18 x|
D;)unﬂ Gl¥aax/ea(plpexxp Blxina mbo) A’Q Hlll— @/ 8xxxxelod
© = t‘t%r"s)iﬁ_'l!u‘“‘llax)(mu'-b)lf‘
Sources[Behav ¥ u.me{___‘] Now:
ons 8 830ns 1100
7 ISR || il A e T R A e b T P
I~ Eomer w B a31 0] o GG [X Y] [] 1)
=- Qak2 1 8K b31:0) 0 CHiEEE 50 b 4 R ; [] :
T Wan | ek e A R I | | B | [1
0 Scurces [Srapept]) Lirotes B A3 429 (07 Df(azeassziiy 56 @(esamsrasy | 0 X4204961295(" 0 0 Ya29a987295_ 0
Herarchy of thw.
O o

il 3 R T S5
MJE_ " | Fomerhd | 3 Design Summary | .Si'hilml =

X on line 113 in file "C:/Xilinx/ornor/tbw,vhw"

< |
g Corecs | @)Eron | i\ Wamegs | (i Tl Corwcle | 3y Frd Fles | B S Cormola -t |

X Fie bt View m,«t Source Process tm!en:h Simulation Window mlp =18 %

[BlrexxrBAeeonjavinals - dgd(@xestxie]ioo /
x){':‘.‘l..wbahm K |

Sources| Benav] tumbe{ (075 = Now: 25 00
[Ts]fjeativa e S O R e b A L S T e
[FEs @ B al31.0] o CEoeEERN I3 X Fiz] G e 198 (N [=
'aﬁmi) || = @b ¢ (itoany % >4 7 N 0 :

i | @ X self20] 07 ¢ e b4 0 B & 2 € 3 X 0

2 cin 0

® Presu31o] 0 GENUUODUX i) X 77 X 39 X 9 X]

: ‘A1 M o 0 —

Herarchy of thw 3

+ Q@ tow thw testbanch_sch Wekk ; | I A l I I l

ADDITION gupTRACTION L SHIFT R SHIFT

Leleeesniai] 3 ol | 2l ae » =
A oot ISty 1| e | R s | =

2 Simulation stopped when executing process: tbw.vhwifd -
on line 160 in file "C:/Xilinx/alu/cbw.vhw"

| _[a]comas | @Emn | g varngs]jruc&i.uf[“hm.«m I 5 Consde -0 |

| Figure 16.9: Output window of 4 Functions in ALU

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 67

ARITHMETIC LOGIC UNIT USING VHDL

a(31:0) s e
b(31:0) ' . . -
Ciﬂ DBt} agLe R
Bl e m | result(31:0)
sel(2:0) -
clk
sel(2:0)
A(1).sel(1)
sel(0:2)
10).5e1(2) B el S et
el(1).sel(1)

Figure 16.10: Expanded schematic view of ALU

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 68

I —

ARITHMETIC LOGIC UNIT USING VHDL

. 1 0{3.0) SUm{3.0) i
= Lo ‘
3 — §D€3-U)
T . L ein cout }

a(3:0)

b(3:0)

cin

a(7:4) - _. Eﬁ.é_m sum(3.0}

h(Z2) e
a(l 1 '8) A R 0{3 0; lum(J.O.!
b(11:8) il : ”;».‘3:0) :
a(15:12) A Y S—
b(1512) E - bj20) |
3(19: 16) | (3.0} sum{3.0) —_—
b(19:16) i
3(2320) ! (30 Wm0}
b(23:20) oo

8(2724) AT (a0 R S —
b(2724) { bl3.0)

3(3 1 28) e
b(31:28) | : _ W

“r

Figure 16.11: Schematic view of 32 bit adder.

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 69

e ———

ARITHMETIC LOGIC UNIT USING VHDL

: |
Cin L: I a cout
b
cin sum (il >
3(30) I Sum(3:())
b(3:0) :
Figure 16.12: Schematic view of 4 bit adder.
g [e R
a o)7 ey)) e g
ANDZ _—‘2__ N
OR3 cout
\ 0 o —
b =2 ANE_Z—J 1" sum
—I2
AND2 : >
Figure 16.13: Schematic view of Full adder.
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 70

—

ARITHMETIC LOGIC UNIT USING VHDL

a(3:0)
b(3:0)
cin
8(74) il A0 HMI0) -
67 HET R o vl
a(l 1 ‘8) :a{an) AN30)
BbLig) - |
a(15:1 2) 3(3.0) AH30)
b(15:12) | I8 o Nl
a(l 9:1 6) a(4.0) e
b(19:1 6) f E) b0
3(23:20) e - anu) T aran
b(23:20) == . husn _l
a(27.24) RO a@0) a0} e
b(2724) { bla.0;
3(3 1 28) D HE0) -
b(3 1 28) 5 (3.0} ‘§|
=
B l Bor
Figure 16.14: Schematic view of 32 bit subtractor diff(31:0
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 71

—

ARITHMETIC LOGIC UNIT USING VHDL

| ; or
o O b
————— b
¢in aiff A
a(3:0) diff(3:0)
b(3:0)
=

Figure 16.15: Schematic view of 4 bit adder

Cin F i s
a D1
.
AND2B1
Figure 16.16: Schematic view of full subtractor
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 72

—

a(31:0)
b(31:0)
cin

AT

ARITHMETIC LOGIC UNIT USING VHDL

_ xorO0o00)

HAr0QOO)

|.zu.
HOIOOOO(3)

cin

QOO0

win

LLROIOOOOCE)

et

LLXOTOQOO)

>
_Raro0O0(r)

cin

A DOOOR)

e

=earGOO(0)

1 _XEIOOOOCI0)

e

XErEOOCn)

P
e OOOO(12)
e

_ruioono(1)

<y

RO A)

ROTOUHIC T

_ReT000L 168y

ey

RGO 7)

cn
_XOTOOGOC 1)

iy

e OOO(10D)
win

_REGIOOOO#O)

i
L EOTOOO0R 1Y
eiry

L ABIOOOORR)

cin

_RGIDOOO(ZD)

e

aar QOOOFA)

win

KO OUOO)

ey

ErOGOO(2e)

iy

eary
_ROIDOOOZ0)Y
<

LR OO00(28)

ein

e OOOL0)

el

FarUOoon)

wiry

coy

w1y

“=)y

©{D)

n(d)}

()

ey

ey

sy

Fres i
e ‘

1)

1oy

-:14)]

ey

PIRLLY

G417y

e

€Ay

PETSY

r.cv--sl

wqH)

ez }

ez

e i

By

Figure 16.17: Schematic view of And Nand

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

e

c(31 :(I))..

73

ARITHMETIC LOGIC UNIT USING VHDL

cin D —\ :>

AND2B1 OR? #2)
x0r0000(3)
—)
AND2B1
Figure 16.18: Single unit of And Nand.
cin

\ =) c(3)
Bl ANDRBS OR)

=g
AND2B1

Figure 16.19: Schematic view of Or Nor

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 74

ARITHMETIC LOGIC UNIT USING VHDL

KOEOOOO(0) gy

Tein) R S ot e
b(31:0) e
e ' B ¢(31:0)

e

LS IR

00001) w1
[
_ROroooo) ey
win
e e
ain
L XOrOO00(4) Ay
cin
XOrOooOn)
; cin
_XOroonos) age) |-
wiry
e = P2
win
I ROrOOOOAY Gy
e
: A BBOOED) (0
cin
_RGrODOOC10) c(10)
cin
_ROIO0OOC1 1) e
2
XOrOOLOC) YR
cin
=1 OOOO(13) a1y
cin
XOIOOO0C14) w14y
L ROCOO00C 1 5) w(rny
i
_xerQOouC1G) i)
Gier
XrOOGOC 7Y 1
cin
>earOOO0E 1YY cor1m
cin
L XOIO0OOC16) wcimy
cin
fl _xerooooqoy e2oy
=
©21)
i
X OOOOF) e
cin
Cxorooon(@n) | aeza
cin
: HErOODO(2A4Y oAy
e
- _aur(_luuu(uh" Pre1%y
cin
RGrOOO0LRG) (2
ain
XATOUBOE7) 2y
cin
xero0eaEn) ©(z0)y
ein
L ROCODOO(R D) w20y
i
RGO 0) a0y
airn
OrOOOO(31) | €4at)
cin

Figure 16.20: Schematic view of Or Nor

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 15

ARITHMETIC LOGIC UNIT USING VHDL

CONCLUSION

The results of the simulation matched the required criteria, and, in fact, the output of the
“ARITHMETIC LOGIC UNIT USIG VHDL”. Project was consistent with the
expected output; in other words, “ARITHMETIC LOGIC UNIT USIG VHDL” project
worked properly. All of the possible input and output combinations were simulated and
tested, and no error was encountered; therefore the “ARITHMETIC LOGIC UNIT
USIG VHDL” project is ready for a further implementation.

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 76

e ——

ARITHMETIC LOGIC UNIT USING VHDL

BIBLIOGRAPHY

¢ A VHDL Primer — J. Bhasker

o Digital Systems Design Using VHDL — Charles H Roth, Jr.

o Digital Logic and Computer Design — M. Morris Mano

e Digital Fundamentals — Floyd

e Principles of Digital Systems Design Using VHDL — Roth , John
o VHDL-2008 Just The New Stuff — Peter J. Ashenden , Jim Lewis
e VHDL Tutorial — William D. Bishop

° www.gogetpapers.com

e www.ieee.org

e www.wikipedia.com

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 77

—

