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Abstract

The particle swarm is an algorithm for finding optimal regions of complex search
spaces through interaction of individuals in a population of particles . Some results of
the particle swarm optimizer, implementing modifications derived from the analysis,
suggest methods for altering the original algorithm in ways that eliminate problems and
increase the optimization power of the particle swarm.

In order to prevent particle swarm optimization from being trapped in local optima, a
new vector called the weighted individual best position of the other particles is
introduced. On the one hand, the behavior of each particle is not only influenced by its
own best position and the global best position but also by the individual best positions of
the others in the swarm. On the other hand, fitness value is used, i.e., each particle weighs
the contributions of the others according to their fitness values. So the modified algorithm
strengthens cooperation and competition among the particles by making each particle
share more useful information of the others. Six benchmark functions are tested and |

results show that the modified algorithm is more effective than basic particle swarm

optimization.
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Chapter 1

+ s

Introduction

Numerical optimization has Been widely used in engineering to solve a variety of NP-
complete problems in areas such as structural optimization, neural network training,
control system analysis and design, and layout and scheduling problems. In these and
other engineering disciplines, two major obstacles limiting the solution efficiency are
frequently encountered. First, even medium-scale problems can be computationally
demanding due to costly fitiness evaluations. Second, engineering optimization problems
are often plagued by multiple local optima, requiring the use of global search methods
such as population-based algorithms to deliver reliable results.

Fortunately, recent advances in microprocessor technology and network technology have
led to increased availability of low cost computational power through clusters of low to

medium performance.

1.1: Particle Swarm Optimization

Particle swarm optimization (PSO) is a population-based stochastic approach for
solving continuous and discrete optimization problems. In particle swarm optimization,
simple software agents, called particles, move in the search space of an optimization
problem. The position of a particle represents a candidate solution to the optimization
problem at hand. Each patticle searches for better positions in the search space by
changing its velocity according to rules originally inspired by behavioral models of bird

flocking.

Particle swarm optimization belongs to the class of swarm intelligence techniques
that are used to solve optimization- problems. ' Particle swarm optimization was introduced
by Kennedy and Eberhart (1995). It has roots in the simulation of social behaviors using

tools and ideas taken from computer graphics and social psychology research.

Within the field of computer graphics, the first antecedents of particle swarm
optimization can be traced back to the work of Reeves (1983), who proposed particle

systems to model objects that are dynamic and cannot be casily tepresented by polygons




or surfaces. Examples of such objects are fire, smoke, water and clouds. In these systems,

particles are independent of each other and their movements are governed by a set of

rules. Some years later, Reynolds (1987) used a particle system to simulate the collective
behavior of a flock of birds. In a similar kind of simulation, Heppner and Grenander
: (1990) included a roost that was attractive to the simulated birds. Both models inspired

the set of rules that were later used in the original particle swarm optimization algorithm.

Social psychology research, in particular the dynamic theory of social impact
(Nowak, Szamrej & Latané, 1990), was another source of inspiration in the development
of the first particle swarm optimization algorithm (Kennedy, 2006). The rules that govern
the movement of the particles in a problem's search space can also be seen as a model of
human social behavior in which individuals adjust their beliefs and attitudes to conform

with those of their peers (Kennedy & Eberhart 1995).

Figure 1.1: Bird Swarm
1.2 Aim and Objective:

[5] The project is aimed at implementing the particle swarm optimization and study
: the covergence behaviour.
[21 The project also includes the study about the main causes of premature
t convergence and the various methods of tackling premature convergence
[2] 1.3 Tools and Technologies The implementation of Particle Swarm optimization
has been done using turbo ¢. There is no as such hardware specification required

in this project.




Chapter2

Particle Swarm Optimization

Particle swarm optimization (PSO) is a population based stochastic optimization technique
developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social behavior of bir

flocking or fish schooling.

PSO shares many similarities with evolutionary computation techniques such as Genetic
Algorithms (GA). The system is initialized with a population of random solutions and
searches for optima by updating generations. However, unlike GA, PSO has no evolution
operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly
through the problem space by following the current optimum particles. The detailed

information will be given in following sections.

2.1 Background: Artificial life

The term "Artificial Life" (ALife) is used to describe research into human-made systems
that possess some of the essential properties of life. ALife includes two-folded research
topic:

1. ALife studies how computational techniques can help when studying biological
phenomena

2. ALife studies how biological techniques can help out with computational problems
The focus of this report is on the second topic. Actually, there are already lots of
computational techniques inspired by biological systems. For example, artificial neural
network is a simplified model of human brain; genetic algorithm is inspired by the human

evolution,
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Here we discuss another type of biological system - social system, more specifically, the
collective behaviors of simple individuals interacting with their environment and each
other. Someone called it as swarm intelligence. All of the simulations utilized local
processes, such as those modeled by cellular automata, and might underlie the
unpredictable group dynamics of social behavior.

Some popular examples are floys and boids. Both of the simulations were created to
interpret the movement of organisms in a bird flock or fish school. These simulations are
normally used in computer animation or computer aided design.

There are two popular swarm inspired methods in computational intelligence areas; Ant
colony optimization (ACO) and particle swarm optimization (PSO). ACO was inspired
by the behaviors of ants and has many successful applications in discrete optimization
problems.

The particle swarm concept originated as a simulation of simplified social system. The
original intent was to graphically simulate the choreography of bird of a bird block or fish

school. However, it was found that particle swarm model can be used as an optimizer.
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2.2 Standard PSO alsorithm

The algorithm

The PSO algorithm starts by generating random positions for the particles, within an

initialization region &c ©  Velocities are usually initialized within e but they can also
be initialized to zero or to small random values to prevent particles from leaving the
search space during the first iterations. During the main loop of the algorithm, the
velocities and positions of the the particles are iteratively updated until a stopping

criterion is met.

Applying
fine-tuning operator
and 1, evaluate its fiwwss
N For partiele i
gyvaluate its filness

Set phest = p,
=it
No i< m‘m

()

Update position and velocity | St ghest» p,

N ” 2 ﬁh = ﬁtﬂm

‘\ﬂ@

F maximum generation < Set ghest = p,
- ' Ll
Stop generation and
output the optimal result

Figl.3

The update rules are:
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where Wis a parameter called inertia weight, ¥land %2are two parameters called

31 1t

acceleration coefficients, ~*and ~?are two ™ * ™diagonal matrices in which the

entries in the main diagonal are random numbers uniformly distributed in the interval

Tt
i

[0,1) . At each iteration, these matrices are regenerated. Usually, vector * , referred to as

the neighborhood best, is the best position ever found by any particle in the neighborhood
FE) < 7(8)) Vs €N,

of particle Pi, that is, . If the values of ¥, ¥land ¥2are
properly chosen, it is guaranteed that the particles' velocities do not grow to infinity

(Clerc and Kennedy 2002),

The three terms in the velocity-update rule above characterize the local behaviors that
particles follow. The first term, called the inertia or momentum serves as a memory of the
previous flight direction, preventing the particle from drastically changing direction. The
second term, called the cogritive component models the tendency of particles to return to
previously found best positions. The third term, called the social component quantifies

the performance of a particle relative to its neighbors. It represents a group norm or

standard that should be attained.




Create and initalize an n,-dimensional swarm, §; repeat

foreachparticle =1, 5., do
Jiset the personal best position
if 18.) <f(S.y) then
S3=8%
end
Hsehthe global best postion i {S.y1) <{(8.§)then
Sy=3%
end
end
for each paticle 1=1,... S do
update the velocity using Ey. (2)
update the position using B, (2a);
end
it stopping condition s tue;

Fig. 2: ghestalgorithm

The main algorithm :-

Create and initalize an n,-dimensional swarm, §;
repeat
for each particle 1 =1,.., S n.do
Iset the personal best position
iff18.x) <f(S.y) then
Sy=8%
end
Iiset the neighborhood best position
iffiy) <fly) then
Sy=5j;
end
end
for each particle i=L,... S.n, do
updae the velocity using equation (20);
update the posiion using equation (2a);
end
Until stopping condition s true

Fig. 3: Toest algorithm

Inputs Objective function fi8@—-R , the initialization domain & C @,

the number of particles [Pl =k , the parameters ¥, %1 and %2, and the stoppin
ppmg

o

criterion

:Output Best solution found
// Initialization

Sett: =0

fori:=1tokdo

Initialize N to a subset of ¥ according to the desired topology
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Initialize ** randomly within
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Set

end for

// Main loop
S

while *~ is not satisfied do

/1 Velocity and position update loop

fori:=1tokdo

. Tt
p arg min  £(b;)
A Ble® | peNi
Set ‘¢ .= 4EBIn
1t 1t
Generate random matrices * and =~ 2

sot W LW+ UHE! — E) + 0,Uf (0 - 7)
e
| Set i = Ti t Y 4
end for }
// Solution update loop :

fori==1tok do
=t 't
lf -f('ri) < f{bz)

r't —t
Set 5 = T
end if
end for
Sett=t+1
end while

After finding the two best values, the particle updates its velocity and

-

positions with following equation (a) and (b).
v[]=v[] +cl * rand() * (pbest[] - present[]) + ¢2 * rand() * (gbest{] - present[]) (a)

present[] = persent[] + v[] (b)
v[] is the particle velocity, persent[] is the current particle (solution). pbest[] and

gbest[] are defined as stated before. rand () is a random number between (0,1). cl, c2 are

learning factors. usually ¢l =¢2 =2,




2.3 Main PSO variants:-

;
, The original particle swarm optimization algorithm has undergone a number of
i . .
changes since it was first proposed. Most of these changes affect the way the velocity of a
L
particle is updated. In the following subsections, we briefly describe some of the most
important developments. For a more detailed description of many of the existing particle
t swarm optimization variants.
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Discrete PSO

Most particle swarm optimization algorithms are designed to search in continuous
domains. However, there are a number of variants that operate in discrete spaces. The
first variant proposed for discrete domains was the binary particle swarm optimization

algorithm (Kennedy and Eberhart 1997). In this algorithm, a particle's position is discrete
but its velocity is continuous. The I th component of a particle's velocity vector is used to

compute the probability with which the J th component of the particle's position vector
takes a value of 1. Velocities are updated as in the standard PSO algorithm, but positions

are updated using the following rule:

[ 5] 7

It.+1 =
0 otherwise,

if

{1 if r < siglv!H

where i is the J th component of the position vector of particle Pi, Tis a uniformly

distributed random number in the interval [U 2 1) and

1

Stg(l') = m:; .

Constriction Coefficient

The constriction coefficient was introduced as an outcome of a theoretical analysis of
swarm dynamics (Clerc and Kennedy 2002). Velocities are constricted, with the

following change in the velocity update:

= - Trip - FEfpt -
”it+1 = Xt ['-’it t Psz' (b-at - ‘I"it ) + @ U ?.t “i - : )], where Xtis an XN diagonal

matrix in which the entries in the main diagonal are calculated as

2K

. .
X35 = " PR t t t
2= ¢ v3i(w3 — 2 with Pii= ¥ Ui + 2l . Convergence is

+ .
P55 2 4vjand RS [D,i]_

guaranteed under the conditions that
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2.4 Comparisons between Genetic Algorithm and PSO
Mdst of evolutionary techniques have the foliowing procedure:
1. Random generation of an initial population
2. Reckoning of a fitness value for each subject. It will directly depend on the distance to
the optimum.
3. Reproduction of the population based on fitness values.
4. If requirements are met, then stop. Otherwise go back to 2,
From the procedure, we can learn that PSO shares many common points with GA. Both
algorithms start with a group of a randomly generated population, both have fitness
values to evaluate the population. Both update the population and search for the optimium
with random techniques. Both systems do not guarantee success.
However, PSO does not have genectic operators like crossover and mutation, Particles
update themselves with the internal velocity. They also have memory, which is important
to the algorithm,

Compared with genetic algorithms (GAs), the information sharing mechanism in
PSO is significantly different. In GAs, chromosomes share information with each other.
So the whole population moves like a one group towards an optimal area. In PSO, only
gBest (or 1Best) gives out the information to others. It is a one -way information sharing
mechanism. The evolution only looks for the best solution. Compared with GA, all the
particles tend to converge to the best solution quickly even in the local version in most
cases.

2.5, PSO parameter control

From the above case, we can learn that there are two key steps when applying PSO to
optimization problems: the representation of the solution and the fitness function. One of
the advantages of PSO is that PSO take real numbers as particles. It is not like GA, which
needs to change to binary encoding, or special genetic operators have to be used. For
example, we try to find the solution for f(x) = x1°2 + x2/2+x3/2, the particle can be set
as (x1, x2, x3), and fitness function is f{(x). Then we can use the standard procedure to
find the optimum. The searching is a repeat process, and the stop criteria are that the
maximum iteration number is reached or the minimum error condition is satisfied.

There are not many parameter need to be tuned in PSO. Here is a list of the parameters

and their typical values.




The number of particles: the typical range is 20 - 40. Actually for most of the problems
10 particles is large enough to get good results. For some difficult or special problems,
one can try 100 or 200 particles as well.

Dimension of particles: It is determined by the problem to be optimized,

Range of particles: It is also determined by the problem to be optimized, you can specify
different ranges for different dimension of particles.

Vmax: it determines the maximum change one particle can take during o.ne iteration.
Usually we set the range of the particle as the Vmax for example, the particle (x1, x2, x3)

X1 belongs [-10, 10], then Vmax = 20

Learning factors: cl and ¢2 usually equal to 2. However, other settings were also used in

different papers. But usually c1 equals to c2 and ranges from [0,4]




[

Figure 3.1 demonstrates the convergent trajectory in phase space of a particle when
a=f=1and =7,

where 9 =4. Both velocity v and y, the difference between the previous best p and the
current position x, converge to 0.0. In Figure 3.2, y increases over time, even when the

parameters are real and not complex.
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Figure 2.5 shows the Type 1 constriction coefficient ¥ as a function of g and x It drops !

below xonly when ¢>4.0. The Type 1’ coefficient is less than 1.0 when ¢ <4.0. These i

coefficients identify the conditions for convergence of the particle system.




Chapter 3

Convergence Behavior

3.1 PREMATURE CONVERGENCE PROBLEM

PSO suffer from premature convergence which occurs when some poor individuals attract

the population- due to a local optimum- preventing further exploration of search space.In

this population converges before reaching the global optimal solution.

3.2 Causes of Premature Convergence

For the gbest PSO, particles converge to a single point,which is on the line
between the global best and personal best positions.this point is not guaranteed to

be even a local optimum.

Another reason for this problem is the fast rate of information flow between
particles, resulting in creation of similar particles(with a loss in diversity) which
increases the probability of being trapped in local optima(Riget and vesterstrom
2002).

Particle swarm optimization (PSO) is a good optimization algorithm, but it always
premature convergence to local optimization, especially in some complex issues
like optimization of high-dimensional function.When the sign of premature
convergence is arise, search each small area which is defined of all particles by
chaotic search, then jump out of local optimization, and avoid premature

convergence,

problem of premature convergence due to the lack of diversity in Estimation of
Distributions Algorithms. This problem is quite important for these kind of
algorithms since, even when using very complex probabilistic models, they can
not solve certain optimization problems such as some deceptive, hierarchical or
multimodal ones. There are several which propose different techniques to deal
with premature convergence. In most cases, they arise as an adaptation of the
techniques used with genetic algorithms, and use randomness to generate
individuals.we study a new scheme which tries to preserve the population

diversity. Instead- of generating individuals randomly,‘\it uses the information




contained in the probability distribution learned from the population. In particular,

a new probability distribution is obtained as a variation of the learned one so as to
generate individuals with less probability to appear on the evolutionary process.

This proposal has been validated experimentally with success with a set of

different test functions.

3.3 Tackling Premature convergence

o Constriction Factor

. Clerc and kennedy(2001) proposed using a constriction factor to ensure

convergence.The modified velocity update equation is defined as follows:
o Vit D=x(Vig(t) +CiR,i(0(Yi5(8)-Xi (D) +CaRy iy
e where y is the constriction factor

Guaranteed Convergence PSO

* A new version of PSO with guaranteed local convergence was introduced by Van
den Bergh(2002),namely GCPSO. In GCPSO, the rate of convergence is faster
then PSO, hence it is more likely to be trapped in local optima.However , it has

guaranteed local convergence whereas the original PSO does not.

Multi-start PSO(MPSO)

* Itis an extension to GCPSO in order to make it a global search algorithm.It works

as follows:-
¢ Randomly initialize all the particles in the swarm.

e Apply the GCPSO until convergence to a local optimum.Save the position of this

local optimum.

* Repeat steps 1 and 2 until some stopping criteria are satisfied.

Craziness operator
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» To avoid premature convergence, Kennedy and Eberhart(1995) introduced the use
of a craziness operator with PSO.In each iteration ,a few particles far from the

center of the swarm are selected.

¢ According to Venter(2002), the proposed craziness operator does not seem to

have a big influence on the performance of PSO.

Self-Oraganized Critically(SOCPSO)

* In order to increase the population diversity to avoid premature convergence,
Loveberg and Krink(2002) extended PSO with Self Organised Critically(SOC).A

measure, called critically, of how close particles are to each other is used to

relocate the particles and thus increase the diversity of the swarm.




Chapter 4

Implementation

4.1 Applications of PSO and Current Trends :

The first practical application of PSO was in the field of neural network training and was
reported together with the algorithm itself (Kennedy and Eberhart 1995). Many more
areas of application have been explored ever since, including telecommunications,
control, data mining, design, combinatorial optimization, power systems, signal
processing, and many others. To date, there are hundreds of publications reporting
applications of particle swarm optimization algorithms. For a review, see (Poli 2008).
Although PSO has been used mainly to solve unconstrained, single-objective
optimization problems, PSO algorithms have been developed to solve constrained
problems, multi-objective optimization problems, problems with dynamically changing

landscapes, and to find multiple solutions. For a review, see (Engelbrecht 2005).
A number of research directions are currently purs'ued, including:

o Theoretical aspects

¢ Matching algorithms (or algorithmic components) to problems

o Application to more and/or different class of problems (e.g., multiobjective)
¢ Parameter selection

¢ Comparisons between PSO variants and other algorithms

o New variants

Particle swarm optimization can be and has been used across a wide range of
applications.
Areas where PSOs have shown particular promise include multimodal problems and

problems for which there is no specialized method available or all specialized methods

give unsatisfactory results.
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CHAPTER 5

Conclusion

In summary, the parallel Particie Swarm Optimization algorithm presented in this study
exhibits excellent parallel performance as long as individual fitness evaluations require
the same amount of time. For optimization problems where the time required for each
fittness evaluation varies substantially,

an asynchronous implementation may be needed to reduce wasted CPU ¢ycles and
maintain high parallel efficiency. When large numbers of processors are available, use of
larger population sizes may result in improved convergence rates to the global solution.
An adaptive PSO algorithm that increases population size incrementally may also

improve algorithm convergence characteristics




Appendix

#define function 700 /* extraction */
#define popsize 100 /* set number of particles in the population */
#define maxgen 100 /* set maximum number of generations */

#define optimization 1 /* set optimization type, 0 for min, 1 for max */

#define archive size 500 /* set capacity of archive */
#define maxfun 1 /* set maximum number of objective functions
#define maxvar 4 /* set maximum number of variables */
#define verbose 1 /* verbosity level 0,1 */

#define printevery 1 /* how frequently should output be generated */
double PI;

void initialize rand(void);

void initialize pop(void);

void initialize vel(void);

void evaluate(void);

double kita fl(unsigned int);

double kita f2(unsigned int);
double kursawe fl(unsigned int); 4
double kursawe f2(unsigned int); i

double deb_f1(unsigned int);




double deb_f2(unsigned int});
void store_pbests(void);
void insert_nondom(void); i
void delete_particle(unsigned int); | {
unsigned int compare_particles(unsigned int, unsigned int);
unsigned int check_constraints(double *);

void crowding(void);

void gsortFitness(unsigned int, unsigned int, unsigned int);

void gsortCrowd(unsigned int, unsigned int);

void compute_distance(unsigned int);

void mutate(unsigned int);
void get_ranges(double *, double *);

void maintain_particles(void);

void compute_velocity(void); ‘
void update_archive(void);

unsigned int check_nondom(unsigned int);

void update_pbests(void);

void save results(char *);

double DTL.Z6_fl(unsigned int);

double DTLZ6_f2(unsigned int);




double DTLZ6_f3(unsigned int);
double ecm_fl(unsigned int);
double ecm_f2(unsigned int);

double extraction(unsigned int);

double archiveVar[archive_size][maxvar]; /* variable values of particles in the archive */

double archiveFit[archive_size][maxfun]; /* fitness values of particles in the archive */

double popVar[popsize][maxvar]; /* variable values of particles in the population
*/
double popFit[popsizel[maxfun]; /* fitness values of particles in the

population */

BNt o, . T SN N

double pbestsVar[popsize][maxvar]; /* personal bests of particles in the opulation */
p

double pbestsFit[popsize][maxfun]; /* personal bests of particles in the population */
P bop

double velocity[popsize][maxvar];  /* velocity of particles in the population */
double crowdDist[archive_size]; /* crowding distance values of particles in
archive */

double pMut=0.5; /* probability of mutation */
unsigned int nondomCtr = Q; /* number of nondominated solutions in archive
*/

unsigned int t; !

#include <stdlib.h> ]

#include <stdio.h> \




#include <string.h>
#include <math.h>
#include <time.h>
#define FALSE 0
#define TRUE 1
doubie u[97],¢,cd,cm;
int 197,j97,
int test = FALSE;
void RandomInitialise(int ij,int ki)
{

double s,t;

int ii,i,j,k,1.jj,m;

/¥
Handle the seed range errors
First random number seed must be between 0 and 31328
Second seed must have a value between 0 and 30081
*/

i <0 1j>31328 || kl <0 ki >30081) {

ij = 1802;




kl=9373;

i=(i/177) % 177 +2;
=0 %177 +2;
k=(kl/169) % 178 + 1;

1= (kl % 169);

for (ii=0; ii<97; ii++) {

s =0.0;
\\
t=0.75; ;ﬁ
for (jj=0; jj<24; jj++) { ‘
.
F

m = (((i * j) % 179) * k) % 179;

i=j;

1=(53*1+1)% 169;
if (1 * m % 64)) >= 32)
s+=1;

t *=0.5;

ufii] =s;




¢ =362436.0/16777216.0;

cd =7654321.0/16777216.0;

cm =16777213.0/16777216.0;

i97 =97,
j97 =33,
test = TRUE;
} ‘
5
double RandomUniform(void) if
{ ?'
;
.

double uni;

/* Make sure the initialisation routine has been called */

if (ltest)

Randominitialise(1802,9373);

uni =u[i97-1] - u[j97-1};

if (uni <= 0.0)

unitt;

ufi97-1] = uni;

i97--;

if (197 ==0)

s




197 =97,

j97-+;

if (j97 == 0)

97 =97;

¢ -=cd;

if (¢ < 0.0) -
¢ +=¢m;

uni -= ¢;

if (uni < 0.0)

e

uni+;

LN

return(uni);

double RandomGaussian(double mean,double stddev)
{
double q,u,v,x,y;
/*
Generate P = (u,v) uniform in rect. enclosing acceptance region
Make sure that any random numbers <= @ are rejected, since
gaussian() requires uniforms > 0, but RandomUniform() delivers >= 0.

*/

e




do {

u = RandomUniform();

v = RandomUniform();

if(u<=0.0||v<=0.0) { |
u=1.0;

v=1.0;

v=17156 * (v-0.5);

/* Evaluate the quadratic form */

x=u-0.449871;

y = fabs(v) + 0.386595;

gq=x*x+y*(0.19600 * y - 0.25472 * x);

/* Accept P if inside inner ellipse */

if (q <0.27597)

break;

/* Reject P if outside outer ellipse, or outside acceptance region */
+ while ((q> 0.27846) || (v * v > -4.0 * log(u) * u * u));
/* Return ratio of P's coordinates as the normal deviate */

return (mean + stddev * v / u); '




* )
Return random integer within a range, lower -> upper INCLUSIVE %
*/

int RandomInt(int lower, int upper)

retum((int)(RandomUniform() * (upper - lower -+ 1)) + lower);

/*

Return random float within a range, lower -> upper

*/

double RandomDouble(double lower, double upper)

return((upper - lower) * RandomUniform() + lower); i

}
¢
int flip(double pf){ i
if(RandomDouble(0.0,1 0)<=pfreturn L;else return 0;

} | i

1

sk Objective functions for test problems ***¥**/

double kita_fi(unsigned int i) ! ‘

{ return ( -(popVar[i]{0] * popVar[i]{0]) + popVarl[i][1] );

.;I :




double kita f2(unsigned int i)

{ return ( (popVarfi][0]/ 2.0} + popVar[i]{1] + 1 };

double kursawe_fl(unsigned int i)
{ double r = 0.0; |
unsigned int j;
for(j =0;j <2;j++)

r += -100 * exp(-02 *
sqrt(pow(popVar[i][j1, 2) + pow(popVar[il[j + 11, 2)) );

return r,

double kursawe_f2(unsigned int i)
{ double r = 0.0;
unsigned int j;

for(j=0;j <3;j++)

r+= pow(fabs(popVar[i][j]), 0.78.) + 5.0 * sin(pow(popVar{i][j], 3));

’ return r;

double deb_fl(unsigned int 1)




return (popVar[i]{0]); : ﬁ %
} :

double deb_f2(unsigned int i double g = 2.0 - exp(-pow({(popVar[i][1]-0.2)/0.004),2)) - i
0.8 * exp(-pow(((popVar[i}{1]-0.6)/0.4),2)); -

return ((double)g / popVar[i][0]); |

double DTLZ6_ fl(unsigned int 1)

{

return (popVar[il[0]):

double DTLZ6_f2(unsigned int i)

return (popVarli][1]); : !‘

double DTLZ6_f3(unsigned int i) ,ii‘
unsigned intj =0,

t

) unsigned int n = maxvar, ]

unsigned int k = n - maxfun + 1; 1
\

double g, h, s, t;




s =0;
\ for (j = 2; j < maxvar; j++){
s +=popVar[i](i] }

g=1+(9/20) *s;

t=0;
for (j = 0; j < maxfun-1; j++){

t += (popVar[i][i] * (1 + sin(3 * P1 * popVar[i][j])) / (1 + 2);

3 y
h=3-t
}
return ( (1 + g) * h);
}
double ecm_fl1(unsigned int i)
ri
{ i
double Ra; ‘
i
Ra = 83.8335 - 0.29382*popVar[i][0] - 0.940990*popVarfil[1] - 6.85188*popVarfi]{2] - 1
18.8134*popVar[i][3] + 0.000439621*popVar(i][0]*popVar[i][0] + |
i
0.00802176*popVar[il[1*popVar[i][1]  + 0.290848*popVar[i][2]*popVar[i](2] - I
|
3.41518*popVar(i] [3)*popVarlil[3] + 0.000273438*popVar[i][0]*popVar[i][1] + :
- 0.00690625*popVar{i][0]*popVar(i] [21 + 0.0459375*popVarli] [0]*popVaili][3] + |
0.043281 3*popVar[i][1]*p0pVar[i][2] +  0.254688*popVar{i][1]*popVarli] 3] - 1
) 0.0687500*popVarli)[21*popVar[il[3}; !

I
1
return (Ra); i! ‘




¢ double ecm f2(unsig)

{

double MRR;

MRR = -2.45705 + 0.0178595*popVar[i][0] + 0.0130625*popVar[i][1] +
0.0929583*popVar[i][2] + 0.38381*popVar[i][3] -
0.000037953*popVar[i][0]*popVar[i][0] - 0.000245722*popVar[i][1] *popVar[i][1] -
0.00543155*popVar[i][2]*popVar[i][2] - 0.793155*popVarli][3] *popVar[i][3] +
0.000017187*popVar[i][0]*popVar[i][1] +  0.00005*popVar[i][0] *popVarli][2] -
0.0005625*popVar[i][0]*popVar[i][3] - 0.0003125*popVarfi][1] *popVar[i][2] +

0.0034375*popVar[i][1]*popVar[i][3] +0.01*popVar[i][2]*popVari][3];

return (MRR);

double extraction{unsigned int 1)

double la;

la = -842.551 + 31.6692*popVar[i][0] + 103.673*popVar[i][1] + 75.2450*popVar[i][2] +

41.1417*popVarli][3] - 0.508562*popVarli][0]*popVar[i}][0] -
35.9412*popVar[i][1]*popVar[i][ 1] - 13.0713*popVar[i][2]*popVar[i][2] -
6.66031*popVar[i][3]*popVar(i][3] - 0.38125*popVar[i][0]*popVar[i][1] +
1.10875*popVar[i][0]*pop Var[i][2] - 0.156125*popVar[i][0]*popVar[i][3] +
0.6875*popVar[i][1]*popVar[i][2]  +  2.93375*popVar[i]{1]*popVarfi][3] +

4.61875*popVar[i][2]*popVar[i][3];

return la;

int main(int arge, char *argv(]

m

-

-

SER
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N, g

char archiveName[20];

unsigned int i, j;

clock t startTime, endTime;

double duration, clocktime;

FILE *outfile,*plotfile;

PI = 4.0*atan(1.0);
sprintf(archiveName,“archive.out");
outfile = fopen("output.out”,"w");
plotfile = fopen("plot.out","w");

/* Initialize random number generator */
initialize rand();

startTime = clock();

/* Initialize generation counter */

t=0;

/* Initialize population with random values */
initialize_pop();

/* Initialize velocity */

initialize vel();

/* Evaluate particles in population *




evaluate();

/* Store initial personal bests (both variable and fitness values) of particles */
store_pbests();

/* Insert nondominated particles in population into the archive */
insert_nondom();

while(t <= maxgen)

o
clocktime = (clock() - startTime)/(double) CLOCKS_PER_SEC; . N

f if(verbose > 0 && t%printevery==0 || t == maxgen) {

Wy, T L

fprintf(stdout,"Generation %d Time: %.2f sec\n",t,clocktime);

fflush(stdout);

if(t%printevery==0 || t = maxgen) {

tprintf{outfile,"Generation %d Time: %.2f sec\n" t,clocktime);

for(i=0; 1 <= archive size; it++){

crowdDistfi] = i*rand();

crowdDist[i]/=10;




——

/* Compute crowding distance of each particle in the archive */
/* Only when there are at least 3 particles in the archive */
if(nondomCitr > 2)

crowding();

/* Compute new velocity of each particle in the population */
compute_velocity();

/* Maintain particles in the population within the search space */
maintain_particles();

/* Mutate particles i1I1 the population */

if(t < maxgen * pMut)

mutate(t);

/* Evaluate particles in the population */

evaluate();

/* Insert new nondominated particles in pop into archive */
update_archive();

/* Update personal bests of particles in the population */
update_pbests();

/* Print Best So Far */

if(t%printevery==0 || t == maxgen) {

fprintf(outfile, "Size of Parcto Set: %d\n", nondomCitr);




M “

for(i = 0; i < nondomCtr; i++) {
fprintfloutfile, "Function Values: ");
for(j = 0; j < maxfun; j++)
fprintfioutfile, "%.6f ", archiveFit[1][j]);
fprintf(outfile, "\n");
for(j = 0; j < maxvar; j++)
fprintf{outfile, "%.6f ", archiveVar[i][j])

forintfoutfile, "\n");

3
} )
forintfoutfile, "\n\n"); J
/
/
fflush(outfile);
}

if(t == maxgen) {
fprintf(plotfile, "# GNU Plot\n");
for(i = 0; i <nondomCitr; i++) {
for(j = 0; j < maxfun; j++)
fprintf(plotfile, "%.4f ", archiveFit[i][j]);

fprintf(plotﬁ]e, “\nn);

fflush(plotfile);

:




/* Increment generation counter */
t++; }
/* Write results to file */
save_results(archiveName);
/* Compute time duration */

endTime = clock(};

duration = ( endTime - startTime ) / (double)CLOCKS_PER_SEC;

fprintf(stdout, "%lf sec\n", duration); _ Et
felose(outfile); j

/
felose(plotfile);

return EXIT SUCCESS;

void initialize_rand() /* Initialize random number generator from randomlib.h */
{ unsigned int i, j;
srand({unsigned int)time((time _t *)NULL));

i = (unsigned int) (31329.0 * rand() / (RAND MAX + 1.0));

J = (unsigned int) (30082.0 * rand() / (RAND_MAX + 1.0));

Randomlnitialise(i,j);

I ——
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void initialize pop() /* Initialize population variables */

unsigned int i, j;
switch(function){
case 100: /* Kita test function*/
for(i=0; i < popsize; i++)
for(j =0; j < maxvar; j++)

popVar[i][j] = RandomDouble(0.0, 7.0);

el

break;

case 200: /* Kursawe test function */

Ny,

for(i=0; i < popsize; i++)
for(j =0; j < maxvar; j++)
popVar[i][j] = RandomDouble(-5.0, 5.0);
break;
case 300: /* Deb test function */
for(i=0; i < popsize; i++)
for(j =0; j < maxvar; j++)
popVar[i]fj] = RandomDouble(0.1, 1.0);//0.8191);
break;

case 500: /* DTLZ6 test function */

_




|
|
for(i=0; 1 < popsize; i++) l
for(j =0; j < maxvar; j++} !
popVar[i][j] = RandomDouble(0.0, 1.0};
break;
case 900: /*ECM */
for(i=0; i < popsize; it+)

for(j =0; j < maxvar; j++)

if(j==0)

popVar[i][j] = RandomDouble(2(0.0, 280.0);

N —

if(j==1)

popVar{i][j] = RandomDouble(20.0, 36.0);
if(j==2)

popVar[i][j] = RandomDouble(5.0, 9.0);
if(j5==3)

popVar[i][j] = RandomDouble(0.1, 0.5);
if(j==4)

popVar[i][j] = RandomD




ouble(10.0, 20.0);

case 700: /*extraction */ |

for(i=0; i < popsize; i++)

for(j =0; j < maxvar; j++)

if(j=0)

gt

.

popVar[i][j] = RandomDouble(25.0, 45.0);

“
e o

o

if(;==1)
popVar[i][j] = RandomDouble(0.5, 2.5);
if(==2)
popVar[i][j] = RandomDouble(4.5, 6.5);
if==3)
popVarfi][j] = RandomDouble(3.0, 7.0);
if(j==4)

popVar[i][j] = RandomDouble(10.0, 20.0);

break;

/* Insert particle in pop if it is feasible and nondominated */

I




if(insertFlag == 1){
/* If memory is not yet full, insert particle */
if (nondomCir < archive_size) {
for(j = 0; j < maxvar; j++)
archiveVar[nondomCitr][j] = popVarl[i][j];
for(j = 0; j < maxfun; j++)
archiveFit[nondomCtr][j] = popFit[i][j];
nondomCtr +=1;

}else{ /* If memory is full, select particle to replace */

/* Compute crowding distance values of particles in archive*/

crowding();
bottom = (unsigned int)((nondomCtr-1) * 0.90);
/* Randomly select which particle from the most areas to replace */
k = RandomInt(bottom, nondomCitr-1};

/* Insert new particle into archive */

for(j = 0; j < maxvar; j++)

archiveVar[k][j] = pepVar[i][jl;

for(j = 0; j < maxfun; j++)

archiveFit[k][j] = popFit[i][j];

N




} /* Finished comparing particles in pop with particles in archive */ |

void delete_particle(unsigned int k) /* Delete particle in archive */

[ada]

unsigned int j;

if( (nondomCtr == 1) || (k == (nondomCitr-1}) } {
nondomCtr -= 1;

}else {

-
— R

for(j = 0; j < maxvar; j-++)

archiveVar[k][j] = archiveVar[nondomCtr-1][j];

for(j = 0; j < maxfun; j++)
archiveFit[k][j]} = archiveFit[nondomCitr-1][j];

nondomCitr -=1;

}
}
unsigned int check_constraints(double *consVar) /* Check for constraint to determine
feasibility */
{
. unsigned int violations = (;
switch(function){

else if{sum == 0){/* If particle in archive is dominated, delete it */

,




for(j = 0; j < maxvar; j++)
archiveVar[h][j] = archiveVar[nondomCitr-1][j];

for(j = 0; j < maxfun; j++)

archiveFit[h][j] = archiveFit[nondomCtr-1][j];

nondomCitr -= 1;

case 700: /*Extraction®/

for(i = 0; i <maxvar; i++)

if(i==0)

minvalue[i] = 25.0;

.

‘maxvalue[i] = 45.0;

if(i==1)

minvalue[i] = 0.5;

maxvalue[i] = 2.5;

o



if(i==2)

minvalue[i] = 4.5;

maxvalue[i] = 6.5; j

if(i=3)

minvalue[i] = 3.0;

maxvalue[i] = 7.0;

void maintain_particles() /* Maintain particles in the population within the search space
*/

unsigned int 1, j;
“ double minvalue[maxvar], maxvalue[maxvar];

return; /* This statement checks the stability of the swarm by allowing particles to fly

past their boundaries */




/* Stable swarms do not explode even without boundary constraints. */

/* Comment this out if you are not happy with this type of checking */

switch (function}{
case 100: /* Kita test function */ g
for(i = 0; i <maxvar; i++)}{
minvalue[i] = 0.0;

maxvalue[i] = 7.0;

break;-

case 200: /* Kursawe test function */ ‘
for(i = 0; i < maxvar; i++) {
minvalue[i] =-5.0;

maxvalue[i] = 5.0;

break;

case 300: /* Deb test function */

for(i = 0; i < maxvar; i++){ :
minvalue[i] = 0.1;

maxvalue[i] = 1.0;//0.8191;

IS




break;

case 500: /* DTLZ6 test function */

for(i = 0; i < maxvar; i++){

minvalue[i] = 0.0; i

maxvalue[i] = 1.0;

break;
case 900: /*ECM*/
for(i = 0; i < maxvar; i++){ ‘/
|

if(i=0)

minvalue[i] = 200.0;

maxvalue[i] = 280.0;

if(i==1)

minvalue[i] = 20.0; ]

maxvalue{i] = 36.0;

N




e

if(i==2)

minvalue[i] = 5.0;

maxvalue[i] = 9.0;

}
if(i==3)
{
minvalue[i] = 0.1;
maxvalue[i] = 0.5;
}
}

case 700: /*Extraction®/

for(i = 0; i < maxvar; i++)

if(i==0)

minvalue[i] = 25.0;

maxvalue[i] = 45.0,

if(i==1)




minvalue[i] = 0.5;

maxvaluefi] = 2.5;

if(i==2)

minvalue[i] = 4.5;

maxvalue[i] = 6.5;

} \
if(i=3) U
{

minvalue[i] = 3.0;

maxvalue[i] = 7.0;

break;

/*% Add boundary constraints here! **/

for(i = 0; 1 < popsize; i++) {

for(j = 0; j <maxvar; j++) {

=




/* If particle goes beyond minimum range value */
if(popVar[i]{j] < minvalue[j]){
/* Set it to minimum range value */
popVar[i}{j] = minvalue[j];
/* Change to opposite direction */

velocity[i][j] = -velocity[i][j];

/* If particle goes beyond maximum range value */
if(popVar[i]fj] > maxvalue[j]){
/* Set it to maximum range value */
popVar[i][j] = maxvalue[j];
/* Change to opposite direction */

velocity[i][j] = -velocitylil[j];

}

void update pbests() /* Update personal bests of particles in the population */

unsigned int i, j, sum, better;

e

e,



for(i = 0; 1 < popsize; i++) {

sum = {;

for(j = 0; j < maxfun; j++){
if( ((popFit[i]{j] < pbestsFit[i][j]} && (optimization == 0))
| ((popFit[i][j] > pbestsFit[i][j]) && (optimization == 1))}

sum +=1;

if (sum = maxfun) {

better = 0; _ N

a } else { j
if (sum == 0}

' better = 1; i

|

clse ;

better = RandomInt(0, 1);

if (better == 0){

for(j = 0; j < maxfun; j++)

pbestsFit[i][j] = popFit[i]{j];
! for(j = 0; j < maxvar; j++)

pbestsVar[i][j] = popVar[i][j];




void save results(char *archiveName) /* Write results to file */

unsigned int i, j;
FILE *fp;
/* Open file for writing */
fp = fopen(archiveName, "w");
for(i = 0; i < nondomCltr; i++) {
for(j = 0; j < maxfun; j-++)
forintf(fp, "%.6f ", archiveFit[i][j]);

fprintf{fp, "\n");

felose(fp);
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high level of abstraction was there to hide the function
definitions and only the functionality was exposed.

s Represented School at state level in Basketball.
e Won many Debates and Extempore Competitions.

e Outstanding academic performance and for being among the top 0.1% of successful
candidates and getting a “SCHOLAR BLAZER ** in class 10",

e 7 scholar badges consecutively for 7 years in school.

e  Was in anti-ragging squad in college .

e Was in organizing committee in our college fest .for 3 years .




¢ Hanging out with friends.
¢ Travelling

¢ Swimming

¢ Playing basketball

e Playing with my pets

¢ Dancing

¢ Sketching

Father’s Name DR.V.S.Singh
Mother’s Name Mrs. Vandana Singh
Date of Birth 13" January 1989

Permanent Address C-1 Damodar colony , Meerut, U.P
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KANIKA CHOUDHARY '

Department of Information Technology,
Jaypee University of Information Technology,
waknaghat, Solan (H.P). - 173215

Cell: +91-8894329294

E-mail: kaniks_choudhary@yahoo.com

an organization and myse

To work hard towards achieving common goals for > 0Y

applying all the knowledge that [ have, and at same time imbibing anything new and good
that comes my way.

Pursuing B.Tech. in Computer Science, TV year, Jaypee University of Information
Technology, Waknaghat (Solan).

Standard College/School Year CGPA/Percentage
B.Tech JAYPI];EF%VE%S&%Y OF 2011  64M%
(CSE) TECHNOLOGY, SOLAN. (Up till 7th sem)

th O.P. JINDAL MODERN 2007

12"(CBSE) | gcHOOL,HISAR,HARYANA 80.4

| O.P. INDAL MODERN

SCHOOL HISAR HARYANA | 209 | 87.8

10"(C.B.S.E)

1. Currently working on our final year project “Particlé Swarm Optimization and
Study the Convergence Behavior ”,

2. Developed website for Online Registration System.

3. Developed a website for Childcare system.

Organization: DU PONT
Place . Gurgaon
Duration : 01.06.2010 TO 14.07.2010

Programming languages: C, C++
Software Packages: Macromedia flash player 8.0, Matlab,Turbo ¢++.
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Computer Networks

Software testing

Data mining and information retrieval
Project Management

Participated in round square international conference at BCS(2004)
Participated in state level debate competition and won 2™ prize(2003)
Active participation in literary works in school and won several awards.
Was the sports captain of my house (2006-07)

Awarded certificate of good conduct for academic year 2002-03

VY VVYY

¢ Swimming
» (Cooking
e Travelling

Date of Birth : 22 december, 1988
Father’s Name : Mr. Ishwar singh
Mother’s Name : Mrs. Darshna




