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ABSTRACT

Motivation: Transport proteins are difficult to understand by biological experiments due
to the difficulty in obtaining crystals suitable for X-ray diffraction. Therefore, the use of
computational techniques is a powerful approach to annotate the function of proteins.
Thus a faster means of annotation would be to match them with the already annotated
sequences using sequence based similarity search method like BLAST. It is a discrete
method of calculating the similarity between protein sequences simply by measuring the
number of matches and mismatches. However, the function of a protein is not only
depends on its primary sequence but also very much depends on how the protein folds
into 3D structure which in turn also depends on the hydrophobicity and hydrophilicity
properties of the proteins. Therefore it is needed to capture sequence order information,
short term and long term interactions between amino acids in a protein sequence as well
as to capture proportion of hydrophobicity and hydrophilicity properties of the proteins in
order to correctly annotate the raw protein sequence. Therefore, we are motivated to
develop an online prediction server for predicting the transport proteins from sequence
derived features. These methods achieved good prediction accuracies and could nicely
complement experimental approaches for identification of transport proteins. The
prediction methods are unique in the sense that they do not require homologous protein

sequences.

Result: The tool would be consisting of 3 level of Classification. First layer classification
includes whether protein is Transport Protein or a Non Transport Protein. If the protein is
Transport Protein the program enters into the second level of hierarchical classification
system which then groups them into one of the following categories - Channels Pores,
Electrochemical Potential-driven transporters, Primary Active Transporters,Group
Translocators, Transport Electron Carriers, Accessory Factors Involved in Transport and
Incompletely Characterized Transport Systems. In the third and the last level of
classification system it finally classifies into the corresponding sub classes. Sequence

derived features like amino acid composition; sequence based correlation of amino acids

(pseudoamino acid) and physicochemical properties were used for the training, testing




and validation of the tool. Our tool is robust and successfuily classifies the novel protein
sequence into tramspert protein, then into its major class and finally predicts specific
> funckion. The performance accuracy of our toolat 1™ layer is 88.00%, at 2nd layer is
84.21% and at 3™ layer is 82.09%. Using Jackknifing validation technique the
performance accuracy of our tool is 81.44% at 1% layer, 68.46% at 2™ layer and 70.04%
at the 3™ layer.

‘ Availability: The TpPred tool is available for free use to non commercial users and can
be downloaded to be used in-house as a standalone server from following links.

http://www. juit.ac.in/
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CHAPTER 1

INTRODUCTION

Transport proteins are proteins within the membranes ofcells that transport and help in the
movement of substances such as ions, small molecules, or macromolecuks (such as
another protein) across the membrane or within the cell. These transport proteins are
often globular proteins. They are generally tightly packed with polar side groups on the outside
to enhance their solubility in water. They typically have non-polar side groups folded to the
inside to keep water from getting in and unfolding them. Serum albumin is one example. It
transports water-insoluble lipids in the bloodstream. According to function, there are two
different types of transport proteins:
1. Those that carry molecules to "distant" locations (within a cell or an organism),

2. Those that serve as gateways, carrying molecules across otherwise impermeable

membranes.

1.1 About Transport Proteins

Transport protein can refer to:
e Membrane transport protein
e Vesicular transport protein

e Water-soluble carriers of small molecules

Membrane Transport Protein

A membrane transport protein (or simply transporter) is a protein involved in the movement of
jons, small molecules, or macromolecules, such as another protein across a biological
membrane. Transport proteins are integral membrane proteins; that is they exist within and

span the membrane across which they transport substances. The proteins may assist in the

movement of substances by facilitated diffusion or active transport.




T

The mechanism of action
The mechanism of action of these proteins is known as carrier-mediated transport. There are two forms

of carrier- mediated transport, active transport and facilitated diffusion.

Facilitated diffusion

Facilitated diffusion (or facilitated transport) is a process of diffusion, a form of passive
transport facilitated by transport proteins. Facilitated diffusion is the spontancous passage of
molecules or ions across a biological membrane passing through specific transmembrane
transport proteins. The facilitated diffusion may occur either across biological membranes or

through aqueous compartments of an organism (Figure 1).
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Figure I Facilitated diffusion.

Polir molecules and charged ions are dissolved in water but they cannot diffuse frcely across
cell membranes due to the hydrophobic nature of the phospholipids that make up the lipid
bilayers. Only small nonpolar molecules. such as oxygen can diffuse easily across the
membrane  All polar molecules arc transported across membranes by proteins that form
transmembrane channels. These channels are gated so they can open and close, thus regulating
the flow of ions or small polar molecules. Larger molecules are transported by transmembrane
carrier proteins, such as permeases that change their conformation as the molecules are carried
through, for example glucose or amino acids. Non-polar molecuks, such as retinol or fatty
acids are poorly soluble in water. They are transported through aqueous compartments of cclls
or through extracellular space by water-solubke carriers as retinol binding protein. The
metabolites are not changed because no energy is required for facilitated diffusion. Only

periease changes its shape inorder o transpott the metabolites. The form of transport thro ugh

cell membrane which modifies its metabolites is the group translocation transportation




Active transport
Transport proteins are ako used in active transport, which by definition does require an energy
output. Most of the enzymes that perform this type oftransport are transmembrane ATPases. A

primary ATPasc universal to all cellular life is the sodium-potassium pump, which helps

o™

maintain the cell potential. Other sources of energy for Primary active transport arc redox
cnergy and photon energy (light). An example of primary active transport using Redox energy
is the mitochondrial electron transport chain that uses the reduction encrgy of NADH to move
protons across the inner mitochondrial membrane against their concentration gradicnt. An
cxample of primary active transport using light cnergy are the proteins involved in
photosynthesis that use the energy of photons to create a proton gradient across the thylakoid

membrane and also to create reduction power in the form of NADPH(Figure 2).
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Figure 2 Active transport.
Chemiosmotic transport utilizes clectrochemical gradients to drive transport. As the creation
and maintenance of chemiosrnotic gradients require energy input fromthe cell, this is a form of
active transport. Prokaryotes typically use hydrogen ions as the driving force for chemiosmotic
transport, while eukaryotes typically use sodium ions. A symporter coporter transports a

chemical in the same direction as the electrochemical gradient, while an antiporter moves the

target chemical in a direction opposite to the gradient.




Vesicular transport protein

A vesicular transport protein is a membrane protein which use vesicles to move the contents of

the cell(Figure 3). Examples include: Archainand Clathrin,

o

Figure 3 Visicular transport protein.
Water soluble carrier of small molecules
Carrier proteins arc proteins that transport a specific substance or group of substances through
intraccllular compartments or in extracellular fluids (e.g. in the blood) or clse across the cell
membrane. Some of the carriers are water-soluble proteins that may or may not interact with
biological membranes, such as some transporters of small hydrophobic molecules. whereas

others are integral transmembrane proteins.

Carrier proteins transport substances out of or into the cell by facilitated diffusion and active
transport. Each carrier protein is designed to recognize only one substance or one group of very
similar substances.

The molecule or ion to be transported (the substrate) must first bind at a binding site at the
carricr molecule. with a certain binding affinity. Following binding, and while the binding site
is facing, say. outwards. the carrier will capture or occlude (take in and retain) the substrate
within its molecular structure and cause an internal translocation, so that it now faces the other

side of the membrane. The substrate is finally released at that site, according to its binding

affinity there. All steps are reversible (Figure 4).
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Figure 4 carried molecules embedded in phophelipid bilayer, helps in transportation of molecules across the
membrane.

For example:
1. Diffusion of sugars, amino acid, nucleoside.
! Uptake of glucose.

3 Transportation of salts, glucose, and amino acids

1.2 Importance of Transport Proteins i

ri

i

P The transport proteins have an important function of transporting or storing some chemical .1
compounds and ions. In order for vast numbers of multicellular organisms to exist, they must q,:

have a system for delivering oxygen to all their cells, especially those cells that are not in direct
contact with the organism's external environment Some of well known examples include that
of :cytochrome C - electron transport; hemoglobin and myoglobin - oxygen transport; albumin
- fatty acid transport in the blood stream etc.

Hemoglobin is an example of an oxygen-transport protein and is a part of these oxygen
delivery systems. A single human hemoglobin molecule consists of four polypeptide chains.
Each of these chains contains a tightly bound prosthetic group called heme. A prosthetic group
is a small organic molecule (non-amino acid) that is bound tightly to a protein. At the heart of
cach heme group is a tightly bound iron atom, to which oxygen binds. The function of
hemoglobin is to bind oxygen in the oxygen-rich environment of the lungs, then to release that

oxygen to oxygen-poor tissues elsewhere. The polypeptide chains are wrapped around the

heme groups in such a way that the affinity between the iron and oxygen is strong enough for
? hemoglobin to bind oxygen in the lungs, but the resulting bond is weak enough such that

hemoglobin will release the oxygen when it encounters organs or tissues that need oxygen.

5
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Hemoglobin also performs the complementary function of accepting carbon dioxide from the
peripheral tissues and releasing it in the lungs. Cell membranes are impermeable to charged
and polar molecules, meaning that these molecules cannot cross them spontaneously. Some
transport proteins are intrinsic to cell membranes and facilitate the transport of polar molecules
across the membranes. Each cell of the human body needs glucose , a very po lar molecule, and
human beings have five different glucose transport proteins (known as GLUTI through
GLUTS) that all serve a similar function: They carry glucose molecules across membranes and
into cells. Without these transport proteins, the rate of glucose entry into cells would be very
low indeed. Other membrane-linked transport proteins carry other moleculs across

membranes, including amino acids, ions, and vitamins.

1.3 Classification of Transport Proteins

There is a comprehensive classification system fur membrane transport proteins known as the
Transport Classification (TC) system The TC system is analogous to the Enzyme Commission
(EC) system for classification of enzymes, except that it incorporates both functional and
phylogenetic information Descriptions, TC numbers, and examples of over

500 families of transport proteins are provided. Transport systems are classified on the basis of
five criteria, and each of these criteria corresponds to one of the five numbers or letters within
the TC# for a particular type of transporter. Thus TC # normally has five components as
follows: VW.X.Y.Z. V (a number) corresponds to the transporter class (i.e., channel, carrier
(porter), primary active transporter or group translocator); W (a lettter) corresponds to the
transporter subclass which in the case of primary active transporters refers to the energy source
used to drive transport; X (a number) corresponds to the transporter family (sometimes actually
a superfarnily); Y (a number) corresponds to the subfamily in which a transporter is found, and
Z corresponds to the substrate or range of substrates transported. Any two transport systems in
the same subfamily ofa transporter family that transport the same substrate(s) are given the
same TCH#, regardless ofwhether they are orthologues (e.g., arose in distinct organisms by
speciation) or paralogues (e.g., arose within a single organism by gene duplication). Sequenced

horrnlogues of unknown function are not normally assigned a TC# unless they represent a

unique (sub)furnily or are from an unrepresented organismal kingdom. If multipl dissimilar

e
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subunits are present, they are numbered SI, S2, S3 Sn, Classification categories 8 and 9 are
reserved for accessory transport proteins and incompletely characterized (familics of)
transporters, respectively.

According to TCDB we obtained the following classification system at level 1 (Figure 5):

' Transporter |
Protein

i 4( 1.Channels_Pores(aquaporins) J

\{ 2.Electrochemical Potcmial«dﬁven tmhqurters ; ]

S ™
— { - 3.Primary Active Transporters
*—[ - 4.Group Translocators
\( ~ 5.Transport Electron Carriers
—{ 6.Amsbry Factors Involved in Transport
-

v N

i 7.Incompletely Characterized Transport Systems

Figure 5 Classificaton chart,

1. Channel/IPores

Channel-type facilitators. Proteins in this category have transmembrane channels which consist
largely of a-helical or b-strand-type spanners. Transport systems of this type catalyze
facilitated diffusion (by an energy-independent process) by passage through a transmembrane

aqueous pore or channel without evidence for a carrier-mediated mechanism. They do not

cxhibit stercospecificity but may be specific for a particular molecular species or class of

molecules.
[hese include:
l.A. a-Type channels. Transmembrane channel proteins of this class are ubiquitously found in

the membranes ofall types of organisms from bacteria to higher eukaryotes. These tra nsporters

7
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usually catalyze movement of solutes by an cnergy-independent process by passage through a
transmembranc aqueous pore or channel without evidence for a carriermediated mechanism
These channel proteins usually consist largely ofa-helical spanners. although p-strands may be
present and may even contribute to the channel. Outer membrane porin-type channel proteins

arc exc luded from this class and arc instead included in class 1. B.

LB. p-Barrel porins. These proteins form transmembrane pores that usually allow the cnergy
independent passage of solutes across a membrane. The transmembrane portions of these
proteins consist exclusively of p-strands which form a p-b31Tel. These porin-t ype proteins are

found in the outer membranes of Gram-ncgative bacteria, mitochondria and plastids(Figure 6).

Figure 6 ‘B barrel protein.

1.C. Pore-forming toxins. These protcins/peptides are synthesized by one cell and secreted for
insertion into the membrane of another cell where they form transmembrane pores. They may
exert their toxic effects by allowing the free flow of electrolytes and other small molecules
across the membrane, or they may allow entry into the target cell cytoplasm of a toxin protein
that ultimately kills the cell. Both protein (large) and ribosomally synthesized peptide (small)

toxins are included in this category.

1.D. Non-ribosomally synthesized channels. These molecules, often chains of L- and D-
amino acids as well as other small molecular building blocks such as hydroxy acids (ic.,
lactate), form oligomeric transmembrane ion channels. Voltage may induce channel formation

by promoting assembly of the oligomeric transmembrane pore-forming structure.

These depsipeptides are often made by bacteria and fungi as agents of biological warfare.




Other substances, completely lacking amino acids, are also capable of channel- formation.

1.E. Holins. Holins consist of about forty distinct families of proteins that e xhibit common
structural and functional characteristics but which do not exhibit statistically significant
sequence similarity between members of distinct families. They are encoded within the
genomes of Gram-positive and Gram-negative bacteria as well as those of the baéteriophagc of
these organisms. Their primary function appears to be transport of murein hydrolases across
the cytoplasmic membrane to the cell wall where these enzymes hydrolyze the cell wall
polymer as a prelude to cell lysis. When chromosomally encoded, these enzymes are therefore
autolysins. Holins may also facilitate leakage of electrolytes and nutrients from the

celleytoplasm, thereby promoting cell death.

2. Electrochemical Potential-driven transporters

Sccondary carrier-type facilitators. Transport systems arc included in this category if they
utilize a carrier-mediated process to catalyze uniport (a singk species is transported by
facilitated diffusion in a process not coupled to the utilization ofa primary source of cnergy),
antiport (two or more specics are transported in opposite directions in a tightly coupled process
not directly linked to a form of encrgy other than chemiosmotic encrgy) and or symport (two or
more species are transported together in the same direction in a tightly coupled process not
directly linked to a form ofenergy other than chemiosmotic energy) (Figure 7).

co-transport
Unipont Symport Antiport

Carrier @ “"I ransported

proteins

Coupled transport

Figure 7 Electrochemical Potential-driven transporters.




These include:

2.A Porters (uniporters, sympo rters, antiporters). Transport systems are included in this
subclass if they utilize a carrier-mediated process to catalyze uniport (a single species is
transported either by facilitated diffusion or in a membrane potential-dependent process if the
solute is charged), antiport (two or more species are transported in opposite directions in a
tightly coupled process, not coupled to a direct form of energy other than chemiosmotic
energy) and/or symport {two or more species are transported together in the same direction ina

tightly coupled process, not coupled to a direct form of energy other than chemiosmotic

energy).

2.B Non-ribosomally synthesized porters. These substances, like non-ribosomally
synthesized channels, may be depsipeptides or non-peptide-like substances. They complex a
cation in their hydrophilic interior and facilitate translcation of the complex across the
membrane, exposing their hydrophobic exterior, by moving from one side of'the bilayer to the
other, If the free porter can cross the membrane in the uncomplexed form, the transport process
can be eclectrophoretic, but if only the complex crosses the membrane, transport is

clectroneutral.

2.C lon gradient-driven energizers. Normally, outer membrane porins (1.B) of Gramnegative
bacteria catalyze passive transport of solutes across the membrane, but coupled to energizers,
they may accumulate their substrates in the periplasm against large concentration gradients.
These energizers use the proton motive force (pmf) across the

cytoplasmic membrane, probably by allowing the electrophoretic transport of protons, and
conveying conformational change to the outer membrane receptor/porins. Homologous
energizers drive bacterial flagellar motility. The mechanism is poorly understood, but these
encrgizers undoubtedly couple proton (H+) or sodium (Na+) fluxes through themselves to the

energized process.

10
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3 Primary Active Transporters

The transporters use a primary source of energy to drive active transport ofa solute against a
concentration gradient. A secondary ion gradient is not considered a primary energy source
because it is created by the expenditure of a primary energy source. Primary energy sources

known to be coupled to transport are chemical, electrical and solar. These include:

3.A. P-P-bond hydrolysis-driven transporters. Transport systems are included in this
subclass if they hydrolyze the diphosphate bond of inorganic pyrophosphate, ATP, or another
nucleoside triphosphate, to drive the active uptake and/or extrusion ofa solute or solutes. The
transport protein mayor may not be transiently phosphorylated, but the substrate is not

phosphorylated.

3.B. Decarboxylation-driven transporters. Transport systems that drive solute (e.g., ion)
uptake or extrusion by decarboxylation of a cytoplasmic substrate are included in this

subclass. These transporters are currently thought to be restricted to prokaryotes.

3.C. Methyltransfer-driven transporters. A single characterized multisubunit protein family
currently falls into this subclass, the Na+-transporting
methyltetrahydromethanopterin:coenzyme M methyltransferase. These transporter complexes

arecurrently thought to be restricted to archaea.

3.D. Oxidoreduction-driven transporters. Transport systems that drive transport ofa solute
(e.g., an ion) energized by the exothermic flow of electrons from a reduced substrate to an

oxidized substrate are included in this subclass.

3.E. Light absorption-driven transporters. Transport systems that utilize light energy to

drive transport ofa solute (e.g., an ion) are included in this subclass.

11




"

4 Group Translocators

PEP-dependent, phosphoryl transfer-driven group translocators of the bacterial
phosphoenolpyruvate:sugar phosphotransferase system are the best characterized group
translocators included in TC category 4. The product of the reaction, derived from extracellular
sugar, is a cytoplasmic sugar-phosphate. The enzymatic constituents, cata'lyzing sugar
phosphorylation, are superimposed on the transport process in a tightly coupled process.

The second type of putative group translocators use nicotinamide ribonucleoside uptakeporters
(pnuC; 4.B.I) of bacteria. They are ATP and phosphorylate external nicotinamide

ribonucleoide to give cytoplasmic nicotinamide mono nucleotidle NMN) plus ADP.

The third type of group translocators are the putative acyl-CoA ligase-coupled
transporters.(4.C.], 2 and 3) They use the energy of ATP to thioesterify fatty acids and other
acids such as carnitine in a process believed to be coupled to transport. A role in group
translocation is not fully accepted, and many acyl-CoA ligases clearly do not function directly
in transport.

These include:

4.A Phosphotransfer-driven group translocators.

4.B The Nicotinamide Ribonucleoside Uptake Transporters.

4.C The Acyl CoA Ligase-Coupled Transporters.

S Transport Electron Carriers

Transmembrane elkctron flow systems. Systems that catalyze electron flow across a biological
membrane, from donors localized to one side of the membrane to acceptors localized on the
other side, are grouped into TC category 5. These systems contribute to or subtractfiom the
membrane potential, depending on the direction of electron flow. They are therefore important
to cellular energetic(Figure 8).

These include:

5.A Trans membrane 2-Electron Transfer Carriers

5.B Trans membrane I-Electron Transfer Carriers
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Figure 8 Electron transport chain.

8. Accessory Factors Involved in Transport

Auxiliary transport proteins. Proteins that function with or are complexed to known transport
proteins are included in this category. Anexample would be the membrane fusion proteins that
facilitate transport across the two membranes of the Gram-negative bacterial cell envelope in a
single step driven by the energy source (AJP) utilized by a cytoplasmic membrane transporter.
Energy coupling and regulatory proteins that do not actually participate in transport represent
other possible examples. In some cases auxiliary proteins are considered to be part of the
transport system with which they function, and in such cases nodistinct entry in category 8 is
provided.

These include:

8.A Auxiliary transport proteins. Proteins that in some way facilitate transport across one or
more biological membranes but do not themselves participate directly in transport are included
in this class. These proteins always function in conjunction with one or more established
transport systems. They may provide a function connected with energy coupling transport, play
a structural role in complex formation, serve a biogenic or stability function or function in
regulation.

8.B. Ribosomally synthesized proteinpeptide toxins that target channels and carriers.

13
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9 Incompletelv Characterized Trans port Systems

Transporters of unknown classification. Transport protein families of unknown classification
are grouped under TC category 9. Permeases within families maintained in the 9A class are of
unknown mode of transport or energy-coupling mechanism, but at least one member of each of
these families has clearly been shown to function as a transporter. These fafni]ies will be
classified elsewhere when the transport process and energy-coupling mechanism are
characterized. Putative transport protein families are grouped under TC number 9B if they are
putative transporters in which no family member is an established transporter. The family will
either be classified elsewhere when the transport function of a member becomes established or
will be eliminated from the TC classification system if the proposed transport function is
disproven. These families include a member or members fur which a transport function has
been suggested, but evidence for such a function is not yet compelling. Functionally
characterized transporters for which sequences and/or family association are not available are
grouped in class 9C.

These include:

9.A Transporters of unknown biochemical mechanism. Transport protein families of
unknown classification are grouped in this subclass and will be classified elsewhere when the
transport mode and/or energy coupling mechanism are characterized. These families include at
least one member fur which a transport function has been established, but either the mode of

transport or the energy coupling mechanism is not known.

9.B Putative uncharacterized transport proteins. Putative transport protein families are
grouped in this subclass and will either be classified elsewhere when the transport function ofa
member becomes established, or will be eliminated from the TC classification system if the

proposed transport function is disproven.

9.C Functionally characterized transport proteins with unidentified sequences.
Transporters of particular physiological significance will be included in this category even

though a family assignment cannot be made. When their sequences are identified, they will be
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assigned to an established family. This is the only protein subclass which includes individual

proteins rather than protein families.

1.4 Need of Prediction and classification of Transport proteins

Membrane proteins perform a diverse variety of functions, including the transport of ions and
molecules across the membrane, bind to small molecules at the extra cellular space, recognize
the immune system and energy transducers. The functional annotation of membrane proteins in
genomic sequences is an important problem in bioinformatics and computational biology.
Membrane transporters are a large group of proteins that span the cell membrane and form an

intricate system of pumps and channels through which they deliver essential nutrients, eject

waste products and assist the cell to sense environmental conditions. They play indispensable

roles in the fundamental cellular processes of all organisms.

Using the protein engineering techniques, new transport proteins are been created. The large
international genome sequence projects are gaining a great amount of pub lie attention and
huge sequence data bases are created. It becomes more and more obvious that we are very
limited in our ability to access functional data for the gene products - the proteins. It seems
quite improbable to experimentally determine function and structure of each candidate protein.
So a revolutionary method is needed to solve this computation catastrophe. Primary sequence
of these proteins are readily available, therefore a method using the sequence derived features
will prove a much valuable and a cost effective process of determining and classifying these
proteins into broader transporter/non-transporter and specifically into? major classes as defined

by Transport Classification (TC) system.
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CHAPTER 2
NEURAL NETWORKS FOR PROTEIN CLASSIFICATION

Molecular biology is a field that has experienced dramatic developments in recent years. A
large number of data are constantly being generated thanks to several genomes —sequencing
projects throughout the world. However, littk information can readily extracted from these
data and, therefore, data analysis has becomes a central issue in molecular biology. The
analysis includes methods and algorithms fur preprocessing visualization, knowledge
discovery and data- mining of genomic and proteomic data. A vertiginous increase in the rate
at which new protein structures are discovered has taken place as a by-product of ongoing

sequencing projects. The functiona! annotation of membrane proteins in genomic sequences is

an important problem in bioinformatics and computational biology.

2.1 What is an artificial neural network?

7

ANN is a mathematical model or computational model based on biological neural networks. It

consists of an interconnected group of artificial neurons and processes information using a

connectionist approach to computation. Why would be necessary the implementation of
artificial neural networks? Although computing these days is truly advanced, there are certain
tasks that a program made for a common microprocessor is unable to perform; even so a
software implementation of a neural network can be made with their advantages and

disadvantages.

Advantages:
¢ A neural network can perform tasks that a linear program cannot.
+  When an element of the neural network fails, it can continue without any problem by
their parallel nature.
« A neural network learns and does not need to be reprogrammed.
> « Itcanbe implemented inany application.

« Itcanbe implemented without any problem.
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Disadvantages:

o The neural network needs training to operate.

o The architecture of a neural network is different from the architecture of

microprocessors therefore needs to be emulated.

* Requires high processing time for large neural networks.
Another aspect of the artificial neural networks is that there are different architectures, which
consequently requires different types of algorithms, but despite to be an apparently complex
system, a neural network is relatively simple.
Artificial neural networks (ANN) are among the newest signal-processing technologies in the
engineer's toolbox. The field is highly interdisciplinary, but our approach will restrict the view
to the engineering perspective. In engineering, neural networks serve two important functions:
as pattern classifiers and as nonlinear adaptive filters. We will provide a brief overview of the
theory, learning rules, and applications of the most important neural network models.
Definitions and Style of Computation an Artificial Neural Network is an adaptive, most often
nonlinear system that learns to perform a function (an input/output map) from data. Adaptive
means that the system parameters are changed during operation, normally called the training
phase. After the training phase the Artificial Neural Network parameters are fixed and the
system is deployed to solve the problem at hand (the testing phase). The Artificial Neural
Network is built with a systematic step-by-step procedure to optimize a performance criterion
or to follow some implicit internal constraint, which is commonly referred to as the learning
rule. The input/output training data are fundamental in neural network technology, because
they convey the necessary information to "discover" the optimal operating point. The nonlinear
nature of the neural network processing elements (PEs) provides the system with lots of
flexibility to achieve practically any desired input/output map, ie., some Artificial Neural
Networks are universal mappers. There is a style in neural computation that is worth
describing.
In most cases an ANN is an adaptive system that changes its structure based on external or

internal information that flows through the network during the learning phase (Figure 9).
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Figure 9 Architecture of Neural Network.

An input is presented to the neural network and a corresponding desired or target response set
at the output (when this is the case the training is called supervised). An error is composed
from the difference between the desired response and the system output. This error information
is fed back to the system and adjusts the system parameters in a systematic fashion (the
learning rule). The process is repeated until the performance is acceptable. It is clear from this
description that the performance hinges heavily on the data. If one does not have data that
cover a significant portion of the operating conditions or if they are noisy, then neural network
technology is probably not the right solution. On the other hand, if there is plenty of data and
the problem is poorly understood to derive an approximate model, then neural network
technology is a good choice. This operating procedure shoukd be contrasted with the traditional
engineering design, made of exhaustive subsystem specifications and intercommunication
protocols. In artificial neural networks, the designer chooses the network topology, the
performance function, the learning rulke, and the criterion to stop the training phase, but the

system automatically adjusts the parameters. So, it is difficult to bring a priori information into
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the design, and when the system does not work properly it is also hard to incrementally refine
the solution. But ANN-based solutions are extremely efficient in terms of development time
and resources, and in many difficult problems artificial neural networks provide performance
that is difficult to match with other technologies. Denker 10 years ago said that "artificial
neural networks are the second best way to implkement a solution" motivated by the simplicity
of their design and because of their universality, only shadowed by the traditional design
obtained by studying the physics of the problem. At present, artificial neural networks are
emerging as the technology of choice for many applications, such as pattern recognition,

prediction, system identification, and control

2.2 The Biological Model

Artificial neural networks emerged after the introduction of simplified neurons by McCulloch
and Pitts in 1943 (McCulloch & Pitts, 1943). These neurons were presented as models of
biological neurons and as conceptual components for circuits that could perform computational
tasks. The basic model of the neuron is founded upon the functionality of a biological neuron.
"Neurons are the basic signaling units of the nervous system™ and "each neuron is a discrete

cell whose several processes arise from its cell body".

Figure 10 Biological neuron.

The neuron has four main regions to its structure. The cell body, or soma, has two offshoots
from it, the dendrites, and the axon, which end in presynaptic terminals (Figure 10). The cell
body is the heart of the cell, containing the nucleus and maintaining protein synthesis. A
neuron may have many dendrites, which branch out in a treelike structure, and receive signals

from other neurons. A neuron usually only has one axon which grows out from a part of the
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cell body called the axon hillock. The axon conducts electric signals generated at the axon
hillock down its length. These electric signals are called action potentials. The other end of the
axon may split into several branches, which end in a presynaptic terminal. Action potentials are
the electric signals that neurons use to convey information to the brain. All these signals are
identical. Therefore, the brain determines what type of information is being recéived based on
the path that the signal took. The brain analyzes the patterns of signals being sent and from that
information it can interpret the type of information being received. Myelin is the fatty tissue
that surrounds and insulates the axon, Often short axons do not need this insulation. There are
uninsulated parts of the axon. These areas are called Nodes of Ranvier. At these nodes, the
signal traveling down the axon is regenerated. This ensures that the signal traveling down the
axon travels fast and remains constant (i.e. very short propagation delay and no weakening of
the signal). The synapse is the area of contact between two neurons. The neurons do not
actually physically touch. They are separated by the synaptic cleft, and electric signals are sent
through chemical 13 interaction. The neuron sending the signal is called the presynaptic cell
and the neuron receiving the signal is called the postsynaptic cell. The signals are generated by
the membrane potential, which is based on the differences in concentration of sodium and

potassium ions inside and outside the cell membrane.

2.3 The Mathematical Model

When creating a functional model ofthe biological neuron, there are three basic components of
importance. First, the synapses of the neuron are modeled as weights. The strength of the
connection between an input and a neuron is noted by the value of the weight. Negative weight
values reflect inhibitory connections, while positive values designate excitatory connections

(Figure 11).
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Figure 11 Mathematical description of Neural Network.

The next two components model the actual activity within the neuron cell. An adder sums up
all the inputs modified by their respective weights. This activity is referred to as linear

combination. Finally, an activation function controls the amplitude of the output of the neuron.

Anacceptable range of output is usually between 0 and 1, or -1 and 1. yp
{ From this model the interval activity of the neuron can be shown to be:
7~ : I
i i
PR ] ~ fir
J=1

The output of the neuron, vy, would therefore be the outcome of some activation function on

the value of .

2.4 Activation functions

As mentioned previously, the activation function acts as a squashing function, such that the

output of a neuron in a neural network is between certain values (usually 0 and 1, or -1 and 1) ‘
(Figure 12). In general, there are three types of activation functions, denoted by @(.) . First, |

there is the Threshold Function which takes on a value of 0 if the summed input is less than a

certain threshold value (v), and the value 1 if the summed input is greater than or equal to the |

threshold value,
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Secondly, there is the Piecewise-Linear function. This function again can take on the values of

0 or 1, but can also take on values between that depending on the amplification factor in a

certain region of linear operation.
i ;> 1
1 V2 5
plv)=r ~i>v>l
. ]
0 s -5

Thirdly, there is the sigmoid function, This function can range between 0 and 1, but it is also

sometimes useful to use the -1 to | range. An example of the sigmoid function i the
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Figure 12 Common nonlinear function used for synaptic inhibiton. Soft non-
linearity - (a) Sigmoid (b) tanh function. Hard non-linearity - {¢) Signum (d)
Step function,

The artificial neural networks which we describe are all variations on the parallel distributed

processing (PDP) idea. The architecture of each neural network is based on very similar
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building blocks which perform the processing, In this chapter we first discuss these processing

units and discuss different neural network topologies.

2.5 The Multilayer Perceptron Neural Network Model

This network has an input layer (on the left) with three neurons, one hidden layer (in the
middle) with three neurons and an output layer (on the right) with three neuwrons(Figure 13),
There is one neuron in the input layer fur each predictor variable. In the case of categorical
variables-/ neurons are used fo represent the N categories of the variabk. The following

diagram illustrates a perceptron network with three layers:
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Figure 13 Multilayer perceptron neural network model

Input Layer- A vector of predictor variable values {¥. ...xp} is presented to the input layer. The
input layer (or processing before the input layer) standardizes these values so that the range of
each variable is -1 to 1. The input layer distributes the values to each of the neurons in the
hidden layer. In addition to the predictor variables, there is a constant input of 1.0, called the
bias that is fed to each of the hidden layers; the bias is multiplied by a weight and added to the

sum going into the neuron.
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Hidden Layer — The arriving at a neuron in the hidden layer, the value from each input newron
is multiplied by a weight (W), and the resulting weighted values are added together producing
a combined value #; The weighted sum (1) is fed into a transfer function, o, which outputs a

value 4. The outputs from the hidden layer are distributed to the output layer.

Output Layer- Arriving at a newon in the output layer, the value from each hidden layer
neuron is multiplied by a weight (W), and the resulting we ighted values are added together
producing a combined value vi The weighted sum (v) is fed into a transfer function, o , which
outputs a value Y. The y values are the outputs ofthe network.

If a regression analysis is being performed with a continuous target variabk, then there is a

single neuron in the output layer, and it generates a single y value.

2.6 Multilayer Perceptron Architecture

The network diagram shown above is a full-connected; three layer, feed-forward, perceptron
neural network. "Fully connected" means that the output from each input and hidden neuron is
distributed to all of the neurons in the following layer. "Feed forward” means that the values
only move from input to hidden to output layers; no values are fed back to earlier layers (a
Recurrent Network allows values to be fed backward). All neural networks have an input layer
and an output layer, but the number of hidden liyers may vary. When there is more than one
hidden layer, the output from one hidden layer is fed into the next hidden layer and separate

weights are applied to the sum going into each layer.

2.7 Training Multilayer Perceptron Networks

The goal of the training process is to find the set of weight values that will cause the output
from the neural network to match the actual target values as closely as possible. There are
several issues involved in designing and training a multi layer perceptron network ;

* Selecting how many hidden layers to use in the network.

* Deciding how many neurons to use in each hidden layer.

* Finding a globally optimal solution that avoids local minima.

* Converging to an optimal solution in a reasonable period of time.

* Validating the neural network to test for over fitting,
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2.8 Selecting the Number of Hidden Lavers

For nearly all problems, one hidden layer is sufficient. Two hidden layers are required for

modeling data with discontinuities such as a saw tooth wave pattern. Using two hidden layers
rarcly improves the model, and it may introduce a greater risk of converging to a local minima.
There is no theoretical reason for using more than two hidden layers. SANN Statistica can
build models with one or two hidden layers. Three layer models with one hidden layer are

recommended,

2.9 Deciding how many neurons to use in the hidden layers

One of the most important characteristics of a perceptron network is the number of neurons in
the hidden layer(s). Ifan inadequate number of neurons are used, the network will be unable to
model complex data, and the resulting fit will be poor.

SANN Statistica includes an automated feature to find the optimal number of neurons in the
hidden layer.You specify the minimum and maximum number of neurons you want it to fest,
and it will build models using varying numbers of neurons and measure the quality using either
cross validation or hold-out data not used for training. This is a highly effective method for
finding the optimal number of neurons, but it is computationally expensive, because many
models must be built, and each model has to be validated. If you have a multiprocessor
computer, you can configure SANN Statistica to use multipke CPU's during the process.

The automated search for the optimal number of neurons only searches the first hidden layer, If
you select a model with two hidden layers, you must manually specify the number of neurons

in the second hidden layer.

2.10 Finding a globally optimal solution

A typical neural network might have a couple of hundred weighs whose values must be found
to produce an optimal solution If neural networks were linear modelks like linear regression, it
would be a breeze to find the optimal set of weights. But the output of'a neural network as a

function of the inputs is often highly nonlinear; this makes the optimization process complex,
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2.11 Converging to the Optimal Solution — BFGS

Given a set of randomly-sekcted starting weight values, SANN Statistica uses the BFGS
algorithm to optimize the weight values. Most training algorithms follow this cyck to refine
the weight values: (1) run a set of predictor variable values through the network using a
tentative set of weights, (2) compute the difference between the predicted target value and the
actual target value for this case, (3) average the error information over the entire set of training
cases, (4) propagate the error back ward through the network and compute the gradient (vector
of derivatives) of the change in error with respect to changes in weight values, (5) make

adjustments to the weights to reduce the error. Bach cycle is called an epoch,

OBJECTIVE;
With the explosion of protein sequences entering into databanks, it is highly desirable

to explore the feasibility of selectively classifying newly found protein sequences into their
respective transport protein classes by means ofan automated method. This i indeed important
because knowing which protein belongs to which particular class may help to deduce its
catalytic mechanism and specificity, giving clues to the relevant bio bgical function. With the
availaibility of huge amount of genome sequencing data generated each day ard for their
functional annotation, sequence derived features are useful approaches.
Here in this study an attempt has been taken for distinguishing protein sequences into transport
protein classes using ANN for annotation of protein sequence with following objectives:
1. To extract sequence derived features and selection of important features fiom protein
sequence to be used for prediction and classification of transport proteins,
2. To develop and optimize the 1** layer for classifying the user input protein sequence
into transport and non-transport based on sequence derived features,
3. To dewelop and optimized the 2™ layer for chssifying the predicted transport protein
into seven major classes based on sequence derived features.
4. To develop a 3™ layer for classifying the predicted class of transport protein into their
corresponding sub-classes and thus their specific functions.
In the study along with usage of machine learning approach like ANN automated as wells as

customized, we have also used three types of parameters like amino acid composition, pseudo
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amino acid composition and physicochemical properties. Using this combination of we have
seven newral network models- ANN aa comp, ANNpscaa and ANN pepgat, as the individual ANNs
and rest all are their combinations. For building up the neural network models we have used
STATISTICA v.9.1 by Statsoft. SANN is STATISTICA Enterprise-Wide Data Mining System
(Data Miner) that offers a comprehensive selection of Neural Network solutions. By joining

these models we have developed 7 neural network clusters. These neural networks cluster takes

the sequences one by one for the prediction.
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Chapter 3
Materials and Methods

Overview of the work

In this study we have developed a cluster of neural networks consisting of three layers
with usage of machine learning approach-ANN. The sequence derived features that were used
are amino acid composition, pseudo amino acid composition and physicochemical properties.
Using these parameters and their combination we have developed in total seven neural network
clusters-ANNaacwomp, ANNpgeas, ANNpgea, ANNaaipsean, ANNAApepstats  ANNpea Atpepstats

ANNAA+pseAA+pepsat- The overall protocol used in this study is described below (Figure 14).

Data collection and classification

Data preparation(removal of data redundancy) for descriptor
calculation
pod
Descriptor calculation or calculation of numerical parameters and
selection of good parameters

Neural network model building i.e. Training-creation of 13,279 and 31
hidden layer

Development of a user friendly online web server. _

Figure 14 Protocol used in this study.
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3.1 Data sources

The data is taken from Transport Classification Database (TCDB) in which the proteins are

classified on the basis of functions (Table 1).

Table 1 Initial Dataset.

Class

Total no. of sequence

1.Channels_Pores Transport protein
2.Electrochemical Potential-driven transporters
3.Electrochemical Potential-driven transporters
4.Group Translocators

5. Transport Electron Carriers

6.Accessory Factors Involved in Transport
T.Incompletely Characterized Transport Systems

1139
1456
2045
107
106
129
377

Non-Trans port Dataset Preparation:

Similarly we have also taken a negative dataset (non-Transport Proteins) consisting of 2907

proteins from the PDB database.

3.2. Data cleaning

I.  Removal of redundant proteins — To achieve clear classification division we removed

the proteins present in more than one class.

II.  Sequences Removed (seq. length <20) - The chains having length less than 20 amino
acids are not believed to go under protein folding process and thus, would not form a

proper domain and may not function properly. We therefore, removed such protein

chains from each class.

III.  Removed Incorrect Sequences (B, U, Z, X, *) — Removal of all protein chains

containing non-standard amino acids, nucleotide sequences (sequences containing only

A,T,G,C) and un-annotated amino acids (X or *).
IV.  Data Scaling —

* Similar sequences removed (using blastclust with similarity <30%).
* Those sub-classes having no. of sequences <10(or very less as compared other

sub-classes of the same class) are not considered for layer3 while the same are

considered for layer2.
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* To remove the biasness in layer 2, the data set(at class level) is further

reduced(sequences are removed randomly as similarity among the sequences
I was very less) (Tabk 2,3).

Table 2 Data set used for training , testing and validation of 2nd layer of ANN,

Class T;’;legﬁ;:gf Training set Testset Validation set

1.Channels_Pores Transport protein 1139 545 157 164

2.Electrochemical Potential-driven transporters 1456 358 148 73

3.Electrochemical Potential-driven transporters 2045 896 210 134

4.Group Translocators 107 90 17 20

5.Transport Electron Carriers 106 81 25 21

6.Accessory Factors Involved in Transport 129 109 20 26 ,
T.Incompletely Characterized Transport Systems 377 268 75 49 ]

Table 3 Data set used for training , testing and validation of 3rd layer of ANN. 1, 2, ... represent sub-classes and are

described in Appendix 1 i

{
Class & Subclass  Totalno. of sequence Training set Testset Validation set M
5 1 IEEJ
4 LA 481 386 95 50 71,;'
1.B 269 212 57 52 ‘Ifff
1.C 309 246 63 57 rj
1L.E 38 34 4 5 !
3
3A 612 1280 332 67
3.B 2 20 2 3
3D 370 301 69 61
3.E 27 24 3 3 |
4 |
4.A 91 73 18 17 :
4.C 12 10 2 3
5
5.A 61 50 1 1
5B 45 35 10 10
8
8A _ 94 78 16 17
8.8 35 26 9 9
\ 9
’*— 9.A 211 168 43 26
9.B 164 132 32 23
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3.3 Descriptor Calculation

Molecular descriptors ply a fundamental rok in chemistry, pharmaceutical sciences,

environmental protection policy, and health researches, as well as in quality control, being the

way molecules, thought of as real bodies, are transformed into numbers, allowing some

mathematical treatment of the chemical information contained in the molecule. This was

defined by Todeschini and Consonni as:

"The molecular descriptor is the final result of a logic and mathematical procedure which

transforms chemical information encoded within a symbolic representation of a molecule into

a useful number or the resull of some standardized experiment."

The descriptors used are:

1.

Amino Acid composition: This descriptor consist of 20 factors each representing
composition of 20 standard amino acids in the protein sequences that include
ACD.EF,GHLKLMPQRSTV,WXandY. The formula to cakulate this
composition is:

Freq.of AA(Q)
Y, Freq.of AA in seq.

AA comp(i) =

Physicochemical Properties: This descriptor consists of 12 properties calculated using

EMBOSS (EBI) package. The parameters include Molecular weight, Average residue
weight, Charge, Isoelectric point.,, A280 Molar Extinction Coefficient, A280 Extinction
Coefficient 1mg/ml, Mole percentages of Tiny, Small, Aliphatic, Aromatic, Non-polar,
Polar, Charged, Acidic, Basic amino acids . The different categories include different sets
of amino acids like Tiny (A+C+G+S+T), Small (A+B+C+DHGHN+P+SHTHY),
Aliphatic (I+L+V), Aromatic (F+H+W+Y), Non-polar
(AFCHFAGHHLAMAPHVHWY),  Polar  (D+E+H+K+N+Q+R+S+T+Z), Charged
(B+DAE+H+K+R+7), Basic (H+K+R) and Acidic (B+D+E+Z).
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3. Pseudo AA composition: This descriptor is a collection of 37 factors, 20 of which are
simple amino acid compositions and rest 17 are correlation factors cakulated among
amino acids of the given sequences. It was introduced by Kuo-Chen Chou in 2001 to
represent protein samples for statistical prediction,

The simplest discrete model is using the AA composition to represent proteiri samples, as

formulated as follows. Given a protein sequence P with L amino acid resides, ic.,
P = R]_R.QR,3R435R5R.7 T RL (1)

where Ry represents the Ist residue of the protein P, Ry the 2nd residue, and so forth,
according to the AA composition model, the protein P of Eq.1 can be expressed by

P=[fi fo - fu] (2

where Ju (’u =1,2,--- ;Qo)are the normalized occurrence frequencies of the 20
native amino acids in P, and T the transposing operator. The additional factors are a
series of rank-different correlation factors along a protein chain, but they can also be any
combinations of other factors so long as they can reflect some sorts of sequence-order
effects one way or the other. The algorithm for this is as follows:

According to the PseAA composition model, the protein P of Eq.1 can be formulated as

T
P=[p1,p2, ===, Poo, Py, -+ poona] , (A< L) (3)

where 20 + A the components are given by

'8 i
= fu — (1 <u<20)
Yeic i F WY T

WTy—20
20 A
\ Zi:l ( + w z&:i T

(4)

Pu

(2041 <u <204+ )
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Where w is the weight factor, and 14 the k-th tier correlation factor that reflects the

sequence order correlation between all the £-th most contiguous residues as formulated

1) by

| Lot
=T g 2 Jidgrr, (k<L) (5)
with

1 a 2 "
Jijrt = 1 ;l [®g (Risr) ~ P¢ (Ri)] (6)

Where @x(Ry) is the &-th function of the amino acid R, and I' the total number of the
functions considered. @;(R), D(R) and D3(R) are respectively the hydrophobicity
value, hydrophilicity value, and side chain mass of amino acid R(Tabk 4); while
Dr(Riv), Do(Riy) and &R the corresponding values for the amino acid R

Therefore, the total number of functions considered there is '=3.

5'* Table 4 Scales used in PseAA (a)The hydrophobicity values are from JACS, 1962, 84: 4240-4246. (C. g‘
Tanford),(b)The hydrophilicity values are from PNAS, 1981, 78:3824-3828 (T.P.Hopp & K.R Woods) ‘
and(c)The side-chain mass for each of t.he 20 amino adds. __ . . .‘”
Amino acid Hydrophobicity Hydrophilicity Side chain mass -
a b c +

A 0.62 -0.5 15

C 0.29 -1 47

D -0.9 3 59

E -0.74 3 73

F 119 -2.5 91

G 0.48 0 1

H -0.4 -0.5 82

I 1.38 -1.8 57

K -1.5 3 73

L 1.06 -1.8 57
M 0.64 -1.3 75 ‘
N -0.78 0.2 58 3
P 0.12 0 42 |
Q - -0.85 0.2 72 ‘

R -2.53 3 101

\ S -0.18 0.3 31
i T -0.05 0.4 45 |
\' 1.08 -1.5 43 |
W 0.81 -3.4 130 :

Y 0.26 2.3 107
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It can be seen from Eq.3 that the first 20 components, ie. #1, P2, =- -, Paoare
~§‘, _ associated with the conventional AA composition of protein , while the remaining
components P20+1: *~; P20+ Aare the correlation factors that reflect the 1st tier, 2nd
tier, ..., and the A-th tier sequence order correlation patterns. It is through these ‘

additional Afactors that some important sequence-order effects are incorporated

3.4 Binary classification of proteins

In this classiﬁéation level for a sequence cakulation of composition of 20 amino acids is given
as input to the binary level and on the basis of this we predict whether it is Transport protein or
a non-Transport protein. If it is transport then it is further send to second level of classification
system. Similarly we can classify the sequence on the basis of physicochemical properties,

pseudo amino acid composition, or any combination ofthe three.

i
|
|
:
3.5 Classifications of transport protein into major classes mi
In this classification level for a sequence calculation of composition of 20 amino acids is given 4
as input to the level and on the basis of this composition we prediction whether the particular v
sequence belong to Channcls_Pores, Electrochemical Potential-driven transporters, Primary :
Active Transporters, Group Translocators, Transport Electron Carriers, Accessory Factors ‘
Iinvolved in Transport and Incompletely Characterized Transport Systems . Belonging to any '
class it will further be sent to third level of classification system. Similarly we can classify the
sequence on the basis of physicochemical properties, pseudo amino acid composition, or any

combination of the three.

3.6 Classification of transport protein into subclasses

Taking the input parameters as the composition of 20 amino acids calculated from a sequence
and then going for sub c-:]ass'classiﬁcation. In this particular layer the transport protein is
‘\ classified into its respective sub-classes. If we classify sequence as Channels_Pores in the
second layer then it can be classified as 1.A. a~Type channels or 1.B. B-Barrel porins or 1.C.
Pore-forming toxins (proteins and peptides) or 1.E. Holins. If in layer 2 it was classified

Elkctrochemical Potential-driven transporters then in this layer it will be clssified P-P-bond-
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hydrolysis-driven transporters or Decarboxylation-driven transporters or Oxidoreduction-
driven transporters or Light absorption-driven transporters. If in hyer 2 it was clssified Group
Translocators , then in this layer it will be chssified Phosphotransfer-driven group
translocators or Acyl CoA ligase-coupled transporters. If in layer 2 it was classified Transport
( Electron Carriers, then in this layer it will be classified Transmembrane 2-electron transfer
carriers or Transmembrane 1-electron transfer carriers. If in layer 2 it was clssified Accessory
Factors Involved in Transport, then in this layer it will be classified Auxiliary transport
proteins or Ribosomally synthesized proteinpeptide toxins that target channels and carriers and
if previously it was categorized as Incompletely Characterized Transport Systems then it will
further be classified Recognized transporters of unknown biochemical mechanism or Putative

transport proteins (Figure 15).

Layer Layer Layer
1 2 3 m

. Classifies the Classifies the
. Transport Protein transport protein protein into

intoits 7 classes respective subclases
Protein Sequence :
Non Transport
Protein

Figure 15 Classification heirarchy of TpPred.
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3.7 Validation of hierarchical classification model

The validation is the way to confirm the validity of data, information, processes or a model.

We have used three different approaches to validate our toolas follows.

Validation based on self consistency

The performance of our online tool TpPred was validated using self consistency method. In
this approach the data set of transport proteins were given as input to the tool and the predicted
result was observed. The predicted accuracy at each kvel of classification was calculated based
on the predicted output. We took 3182 protein sequences in Transport protein category and

2891 protein sequences in Non-Transport protein category.

Validation based on Jack-knifing

The dataset was also subject to the jackknife test that is deemed to be one of the most rigorous
and objective methods for cross-validation in statistics. We took 3182 profein sequences in
Transport protein category and 2891 protein sequences in Non-Transport protein category.
Both the data set were merged together and classified into two category: transport proteins
(3182 sequences) and non-transport protein (2891) by taking sequences randomly. This
randomization process was repeated for 100 times and the average performance accuracy was

measured.

External validation
Validation of our tool was also has been done using the dataset that was not used for training or
testing. We took 487 protein sequences in Transport protein category and 100 protein

sequences in Non-Transport protein category as independent data set.

3.8 Standalone and Server development of TpPred
A standalone as well as online version of our tool (TpPred) has been developed and uploaded
into our University web server. The following steps have been used for the development of the
server:

o Deployed and modified the C codes for each Neural Network model generated.

o Converted the C codes to C library references as Header files.
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Generated a main parser code, which can take in the descriptors from a file and can send
them to the particular network models in their corresponding header files and retrieves
the output of the model. Based on output, it takes the decision to go which way in the
hierarchy or to which particular model to feed the descriptor and retrieve the output. This
step is repeated until a case gets predicted to the terminal node in the hierarchy ie.
reaching to a particular sub-class if it is predicted as a Transport protein.

Generated Perl parsers to link the webpage with the prediction cluster codes, in case of
online tool and to link prediction clusters directly in case of standalone. These perl codes
can retrieve the sequence and the choice of sequence based feature from user and then
can convert the protein sequence to features and present them to prediction clusters for
prediction.

We have generated a Perlparser which can take the constraints of the descriptor from the
user and take in the sequences from the file, then it can pipe in the sequences to the other
codes for cakulation of the desired descriptor and thereby the prediction cluster is fired,
which has been developed in the previous case and this retrieve the output and presents it

to the user,

Figure 16 illustrates the front end of the online version with sequence to be submitted as query
and options for the sequence derived features to be used and its output for an exampk

sequence.
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Figure 16 The frontend of the online version of TpPred
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Chapter 4

Results and Discussion

I Layer of Neural Network

The 1™ layer of our TpPred tool classified the input protein sequence into either transport

protein or non-transport protein. The neural network model was trained and tested using

training and a test data set based on different types of sequence derived features. The

network achieved an overall accuracy of 93.27% and 93.20% respectively for the either

transport protein and non-transport protein for the fraining set data. Similarly the

performance accuracy was 84.92% and 84.24% for the test set data. The details of the

performance accuracy based on each sequence derived feature have been represented in

Table 5.
Table 5 The summary of the performance accuracy of 1™ layer of TpPred based on different sequence derived features.
Parameters Training set Test set
Total Correct % of Total Correct % of

Proteins predictions accuracy Proteins predictions accuracy
{a)Amino acid composition
Transport 2510 2310 92.03 672 570 84.82
Non- 2339 2147 91.79 552 453 82.07
transport
{b)Pseudo amino acid composition
Transport 2510 2346 93.47 672 584 86.90
Non- 2339 2174 92.95 552 468 84.78
transport
(¢) Physicoche mical Properties
Transport 2510 2228 88.76 672 564 83,92
Nox- 2339 2050 87.64 552 448 81.16
transport
{d) Amino acid+ Pseudo amino acid
Transport 2510 2405 55.81 672 571 84.97
Non- 2339 2230 95.34 552 464 84.06
transport
(e) Amino acid+ PhysicoChemical Properties
Transport 2510 2380 94.82 672 554 82.44
Non- 2339 2187 93.50 552 457 82.79
transport
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(f) Pseudo amino acid + PhysicoChemical Properties

Transport 2510 2255 89.84 672 576 35.71
Non-
transport 2339 2219 9487 552 490 88.77

{g) Amino acid+ Pseudo amino acid+PhysicoChemical Properties

Transport 2510 2465 98.20 672 576 85.71
Non- 2339 2254 96.37 552 475 86.05
transport

Awverage

Transpott 93.27 8492
Naon-

Fransport 93.20 84.24

The performance accuracy was further validated using seif consistency test and jackknife test.
The overall accuracy of the 1% layer of TpPred is 77.73% and 89.18% for the transport and
non-transport protein classes based on self consistency test. Similarly using Jackknife test the
accuracy was found to be 71.54% and 81.01% for the transport protein and non-transport
protein classes (Table 6). Moreover the results were robust and hence the TpPred could
successfully predict the novel protein sequence into cither of transport protein and non-

transport protein as evident from the independent data set used for validation Table 6.

Table 6 The performance accuracy of the 1% layer of TpPred based on validatien technigues (self consistency fest,
Jackknife and independentset validation).

Total Self Jackknife

Parameters Proteins  Consistency Validation

Independent set
Total Correct%

(a)Amino acid composition

Transport 3182 75.78 71.97 487 59.75
Non-transport 2891 88.79 81.27 100 9%
(b)Pseudo amino acid composition

Transport 3182 78.89 71.39 487 60.36
Non-transport 2891 90.76 85.29 100 9
(c) PhysicoChemical Properties

Transport ) 3182 68.57 62.96 4387 50.10
Non-transport 2891 85.02 78.19 100 97
(d) Amino acid+ Pseudo amino acid

Transport 3182 81.45 75.28 487 62.21
Non-transport 2891 90.73 81.17 100 98

(e} Amino acid+ PhysicoChemical Properties
Transport 3182 75.69 66.92 487 59.34




Non-transport 2891 8391 78.25 100 99
(f) Pseudo amino acid+PhysicoChemical Properties
A Transport 3182 82.16 76.38 487 66.11
#“_;, Non-transport 2891 90.71 82.95 100 100
y
{g) Amino acid+ Pseudo amino acid+PhysicoChemical Properties ]
Transport 3182 81.61 7593 487 70.43
Non-transport 2391 94.39 86.95 100 100
Awerage
Transport 71.73 71.54 61.18
Non-Transport 89.18 81.01 98

By comparing the performance accuracy of the 1% layer of TpPred for the individual sequence
derived feature; it has been observed that the accuracy was better by fusing amino acid, pseudo

amino acid and physicochemial propertics.

2" Layer of Neural Network

The 2nd lyer of our TpPred tool clssified the input protein sequence into either
s Channels_Pores, Electrochemical Potential-driven transporters, Primary Active
Transporters, Group Translocators, Transport Electron Carriers, Accessory Factors
Involved in Transport and Incompletely Characterized Transport Systems. The neural
network model was trained and tested using training and a test data set based on different
types of sequence derived features. The network achieved an overall accuracy of 90.29%,
87.60%, 90.31%, 95.39%, 93.82%, 88.85% and 90.29% respectively for the

Channels Pores, Electrochemical Potential-driven transporters, and Primary Active
Transporters, Group Translocators, Transport Elkctron Carfiers, Accessory Factors
Involved in Transport and Incompletely Characterized Transport Systems proteins for the
training set data. Similarly the performance accuracy was 70.60%, 72.68%, 72.92%,
79.82%, 70.85%, 71.42% and 83.99% for the test set data. The details of the
performance accuracy based on each sequence derived feature have been represented in
Table 7.
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Table 7 The summary of the performance accuracy of 2™ layer of TpPred based on different sequence derived features.

Parameters Training set Testset
Total Correct % of Total Correct % of
Proteins predictions accuracy Proteins predictions accuracy
(a)Amino acid composition
1 545 457 83.85 157 118 75.15
2 558 460 8243 148 111 73
3 896 755 84.26 210 134 63.80
4 90 85 94.44 i7 14 82.35
5 81 70 86.41 25 19 76
8 109 81 74.31 20 15 75
9 268 240 89.55 75 60 80
{b)Pseudo amino acid composition
1 545 493 90.45 137 112 71.33
2 558 503 90.14 148 110 74.32
3 896 830 92.63 210 152 7238
4 90 90 100 17 12 70.58
5 81 31 100 25 16 64
8 108 109 100 20 16 80
9 268 268 100 75 62 82.66
(¢} PhysicoChemical Properties
1 545 468 85.87 157 109 69.42
2 558 457 81.89 148 113 76.35
3 896 780 87.05 210 172 81.90
4 90 80 88.88 17 13 76.47
5 81 68 83.95 25 19 76
8 109 80 73.39 20 11 55
9 268 232 86.56 75 63 84
{d) Amino acid+ Pseudo amino acid
1 545 530 97.24 157 111 70.70
2 558 497 89.06 148 110 7432
3 896 830 92.63 210 154 73.33
4 S0 90 100 17 15 88.23
5 81 81 100 25 16 64
H 109 109 100 20 15 75
9 268 268 100 75 64 85.33
(e) Amino acid+ PhysicoChemical Properties
1 545 470 86.23 157 105 66.87
2 558 480 86.02 148 104 70.27
3 896 772 86.16 210 157 74.76
4 S0 80 88.88 17 15 88.23
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81 72 88.88 25 18 72
109 84 77.06 20 13 65
268 255 95.14 75 64 8533
(f) Pseudo amino acid+PhysicoChemical Properties
1 545 505 92.66 157 116 73.88
2 558 501 89.78 148 96 64.86
3 896 864 96.42 210 154 73.33
4 90 86 95.55 17 13 76.47
5 81 79 97.53 25 19 76
8 109 106 97.24 20 13 65
9 268 266 99.25 75 65 86.66
(8) Amino acid+ Pseudo amino acid+PhysicoChemical Properties
1 545 522 95.77 157 105 66.87
2 558 524 93.90 148 109 73.64
3 896 834 93.08 210 149 70.95
4 90 90 100 17 13 76.47
5 81 81 100 25 17 68
8 109 109 100 20 17 85
9 268 268 100 75 63 84
Average
1 90.29 70.60
2 87.60 72.68
3 90.31 72.92
4 95.39 79.82
5 93.82 70.85
8 88.85 71.42
9 90.29 83.99

(i —

The performance accuracy was further validated using self consistency test and jackknife
test. The overall accuracy of the 2" layer of TpPred is 60.91%, 75.96%, 51.93%,
78.14%, 87.95%, 84.23% and 77.16% respectively for the Channels_Pores,
Electrochemical Potential-driven transporters, and Primary Active Transporters, Group
Translocators, Transport Electron Carriers, Accessory Factors Involved in Transport and
Incompletely Characterized Transport Systems classes based on self consistency test.
Similarly, using jackknife test, the accuracy was found to be 49.99%, 62.57%, 39.69%,
65.90%, 73.41%, 70.24% and 63.33% respectively for the Channels_Pores,

Ekectrochemical Potential-driven transporters, and Primary Active Transporters, Group
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Translocators, Transport Electron Carriers, Accessory Factors Involved in Transport and
Incompletely Characterized Transport Systems proteins classes (Tablk 8). Moreover, the
results were robust and hence, the TpPred could successfully predict the novel protein
sequence info either of Channels Pores, Electrochemical Potential-driven transporters,
and Primary Active Transporters, Group Translocators, Transport Electron Carriers,
Accessory Factors Involved in Transport or Incompletely Characterized Transport

Systems proteins class as evident from the independent data set used for validation Table

8.

Table 8 The performance accuracy of the 2*' layer of TpPred based on validation technigues (self consistency test,

jackknife test and independent set validation).

e | 2

Parameters  Total Proteins  Self Consistency Jackknife validation Independent set
Total Correct%
(a)Amino acid composition
1 702 64.58 51.27 164 61.58
2 706 81.08 63.86 73 78.08
3 1106 46.53 34.94 134 42,53
4 107 84 71.57 20 80
5 106 85.95 69.58 21 80.95
8 129 79.07 65.27 26 73.07
9 343 52.97 4195 49 48.97
{b)Psendo amino acid composition
1 702 61.31 51.74 164 5731
2 706 75.60 61.76 73 72.60
3 1106 43.05 39.34 134 38.05
4 107 77 63.97 20 75
5 106 94.47 75.35 21 90.47
8 129 90.46 74.99 26 8§8.46
9 343 85.59 71.94 49 79.59
(c) PhysicoChemical Properties
1 702 45.463 39.18 164 41.463
2 706 72.49 58.37 73 63.49
3 1106 47.04 33.74 134 41.04
4 107 55 41.83 20 50
5 106 68.90 59.63 21 61.90
8 129 60.69 48.69 26 57.69
9 343 69.34 45.49 49 67.34
(d) Amino acid+ Pseudo amino acid
1 702 61.53 46.78 164 58.53
2 706 84.82 71.58 73 80.82
3 1106 49.02 34.28 134 44,02
4 107 75 61.84 20 70
5 106 94.47 79.98 21 90.47
8 129 86.76 71.25 26 80.76
9 343 77.42 68.37 49 71.42

(e) Amino acidt PhysicoChemical Propertics




i 702 63.75 59.64 164 39.75
2 706 55.68 48.94 73 50.68
3 1106 54.50 4135 134 48.50

' 4 107 74 61.97 20 70
> 5 106 79.19 69.38 21 76.19
8 129 86.76 75.59 26 80.76
9 343 82.55 69.49 49 77.55

(f} Pseudo amino acid+PhysicoChemical Properties

1 702 69.85 55.38 164 65.85
2 706 72.12 61.92 73 67.12
3 1106 55.25 41.48 134 49.25
4 107 86 78.25 20 80
5 106 95.47 81.37 21 90.47
8 129 96.30 82.64 26 92.30
9 343 83.63 70.99 49 81.63
(g) Amino acid+ Pseudo amino acid+PhysicoChe mical Properties
1 702 59.92 4598 164 57.92
2 706 89.93 71.58 73 84.93
3 1106 68.17 52,74 134 64.17
4 107 9% 81.93 20 9
5 106 97.23 78.64 21 95.23
8 129 89.61 73.28 26 84.61
9 343 88.63 75.09 49 81.63
‘:« Average
1 60.91 49.99 57.48
2 75.96 62.57 7181
3 51.93 39.69 46.79
4 78.14 65.90 73.57
5 87.95 73.41 83.66
8 84.23 70.24 79.66
9 77.16 63.33 72.59

By comparing the performance accuracy of the 2™ layer of TpPred between the individual
sequence derived features; it has been observed that the accuracy was better by combining

amino acid, pseudo amino acid and physiochemical properties.

3 Layer of Neural Network Jor Channels_Pores class
The 31d layer of our TpPred tool developed for Channels_Pores class classified the input

protein sequence to be either a-Type channels, B-Barrel porins, Pore-forming toxins

(=g

(proteins and peptides) or Holins. The neural network model was trained and tested using
training and a test data set based on different types of sequence derived features. The

network achieved an overall accuracy of 96.44%, 91.97%, 89.21% and 89.49%
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respectively for the a-Type channels, B-Barrel porins, Pore-forming toxins (proteins and
peptides) and Holins proteins for the training set data. Similarly the performance
accuracy was 83.30%, 82.70%, 82.98% and 75.00% for the test set data, The details of
the performance accuracy based on each sequence derived feature have been represented
in Table 9. |

Table 9 The summary of the performance acen racy of 3™ Layer of TpPred developed for Channels_Pores class based on
differentsequence derived features.

Parameters Training set Testset
Total Correct % of Total Correct % of
Proteins predictions accutacy Proteins predictions accuracy

{a)Amino acid composition
1

LA 386 368 95.33 95 78 82.10
1.B 212 88 88.67 57 46 80.70
1.C 246 193 78.45 63 52 82.53
LE 34 25 73.52 4 3 75

(WPseudo amino acid composition
1

LA 386 373 96.63 95 82 86.31
1.B 212 191 90.09 57 49 8596
1.C 246 229 93.08 63 54 85.71
1.E 34 30 8823 4 3 75

(¢} PhysicoChemical Properties
1

LA 386 349 90.41 93 4 71.89
1.B 212 169 79.71 57 44 77.19
1.C 264 201 76.13 63 49 11,77
1.E 34 28 82.35 4 3 75

(d) Amino acid+ Pseudo amino acid
1

LA 386 378 97.92 95 80 8421
I.B 212 206 97.16 57 48 84.21
1.C 246 234 95.12 63 53 84.12
LE 34 34 100 4 3 75

(e) Amino acidt PhysicoChemical Properties
1

LA 386 372 96.37 95 79 83.15
1.B 212 195 91.981 57 47 82.45
1.C 246 218 88.61 63 52 8253
LE 34 32 94.11 4 3 75
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(f) Pseudo amino acid+PhysicoChemical Proper ties

1

1A 386 385 99.74 95 79 83.15
I.B 212 212 100 57 47 82.45
1.C 246 243 98.78 63 52 82.53
1.LE 34 34 100 4 3 75
() Amine acid+ Pseudo amino acid+PhysicoChemical Properties
1
LA 386 381 98.70 95 82 86.31
1.B 212 204 96.22 57 49 85.96
1.C 246 232 94.30 63 54 85.71
LE 34 30 88.23 4 3 75
Awverage
LA 96.44 83.30
1.B 91.97 82.70
T 89.21 82.98
LE 89.49 75

The performance accuracy was further validated using self consistency test and jackknife test.
The overall accuracy of the 3¢ layer of TpPred for Channels_Pores class is 41.95%, 79.43%,

64.10% and 72.36% respectively for the a-Type channels, B-Barrel porins, Pore-forming

toxins (proteins and peptides) and Holins classes based on self consistency test. Similarly, -

using jackknife test, the accuracy was found to be 33.71%, 65.37%, 54.26% and 61.15%

respectively for the a-Type channels, B-Barrel porins, Pore-forming toxins (proteins and

peptides) and Holins classes (Table 10). Moreover, the results were robust and hence, the

TpPred could successfully predict the novel protein sequence into either of a-Type channels, B-

Barrel porins, Pore-forming toxins (proteins and peptides) or Holins class as evident from the
independent data set used for validation Table 10.
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Table 10 The performance accuracy of the 3™ layer of TpPred de veloped for Channels_Pores based on validation
techniques (self consistency test, jackknife test and independent set validation).
Parameters Totg] S.elf Jac'kkn.ief Independent Set
Proteins Consistency validation
-_ri.} Total Correct%
{a)Amino acid composition
1
LA 481 83.54 61.22 50 82
I.B 269 77.92 60.34 52 76.92
1.C 309 39.08 39.55 57 35.08
LE 38 45.87 34.53 5 40
(b)Pseudo amino acid composition
1
1A 481 41 35.19 50 36
1.B 269 75.16 60.35 52 71.153
1.C 309 68.43 51.37 57 61.40
1.LE 38 82.85 69.17 ) 80
(c} PhysicoChemical Properties
1
LA 481 42,85 31.87 50 38 N"“_
i.B 269 52,73 45.16 52 50 n
5 1.C 309 40.49 31.97 57 36.84 I,j
) LE 38 44.85 33.08 5 40 y
(d) Amino acid+ Pseudo amino acid ;f;
1
LA 481 21.67 18.97 50 14
1L.B 269 98.79 75.13 52 94.23
1.C 309 65.17 56.98 57 63.15
LE 38 82 75.19 5 80
(e) Amino acidt PhysicoChemical Properties
]
LA 481 43.76 31.28 50 40
1.B 269 75.25 61.96 52 6923
1.C 309 71.72 57.84 57 66.66
I.LE 38 83 66.94 5 80
{f) Pseudo amino acid-FPhysicoChemical Properties
1
LA 481 37 36.18 50 32
1.B 269 _ 86.27 77.84 ‘ 52 80.76
1.C 309 82.49 69.85 57 80.70
‘ ILE 38 83 71.25 ‘ 5 80
\ (2) Amino acid+ Pseudo amino acid+PhysicoChemical Properties
1
1A 481 23.87 21.28 50 10
1.B 269 89.92 76.86 52 82.69
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1.C 309 81.36 72.26 57 75.43
LE 38 85 77.89 5 80
Average

LA 41.95 33.71 36
1.B 79.43 65.37 - 74.99
1.C 64.10 54.26 59.85
LE 72.36 61.15 68.57

By comparing the performance accuracy of the 3™ layer of TpPred for Channels Pores class

between the individual sequence derived features; it has been observed that the accuracy was

better by combining amino acid, pseudo amino acid and physiochemical properties.

3 Layer of Nearal Network for Electrochemical Potential-driven transporters class

The 3rd layer of our TpPred tool developed for Electrochemical Potential-driven
transporters class classified the input protein sequence to be either P-P-bond-hydrolysis-
driven  transporters, Decarboxylation-driven transporters, Oxidoreduction-driven
transporters or Light absorption-driven transporters. The neural network model was
trained and tested using fraining and a test data set based on different types of sequence
derived features. The network achicved an overall accuracy of 98.32%, 73.57%, 85.94%
and  76.18% respectively for the P-P-bond-hydrolysis-driven transporters,
Decarboxylation-driven transporters, Oxidoreduction-driven transporters and Light
absorption-driven transporters proteins for the fraining set data. Similarly the
performance accuracy was 89.71 %, 100%, 89.43% and 80.94% for the test set data. The
details of the performance accuracy based on each sequence derived feature have been

represented in Table 11.
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Table 11 The summary of the performance acceraey of 3™ layer of TpPred developed for Flectrochemical Potential-

driven transporters class based on different sequence derived features,

Parameters Training set Testset
Total Correct % of Total Correct % of
Proteins predictions accuracy Proteins predictions accuracy

(a)Amino acid composition

3

JA 1280 12353 97.89 332 295 88.85

3B 20 6 30 2 2 100

3D 301 216 71.76 69 61 88.40

3.E 24 13 54.16 3 2 66.66
(b)Pseudo amino acid composition

3

3A 1280 1260 98.43 332 297 89.45

B 20 18 90 2 2 100

3D 301 270 82.70 69 62 89.85

3.E 24 20 83.33 3 2 66.66
(¢) PhysicoChemical Properties

3

3A 1280 1230 96.09 332 298 85.75

3B 20 10 50 2 2 100

3D 301 230 76.41 69 62 89.85

3E 24 15 62.5 3 2 66.66
{d) Amino acid+ Pseudo amino acid

3

JA 1280 1273 99.45 332 302 90.96

3B 20 18 90 2 2 100

3.D 301 280 93.02 69 63 91.30

3.E 24 4] 95.83 3 2 66.66
(¢} Amino acid+ PhysicoChemical Properties

3

3A 1280 1257 98.20 332 299 90.06

3B 20 18 90 2 2 100

3.D 301 255 8.7 69 61 88.40

3E 24 15 62.5 3 3 100
(D Pseudo amino acid+PhysicoChemical Properties

3

A 1280 1264 938.75 332 295 88.85

3B 20 . B 75 2 2 100

3D 301 274 91.02 69 61 88.40

3.1 24 19 79.16 3 3 100
(g) Amino acid+ Pseudo amino acid+PhysicoChe mical Properties

3

JA 1280 1273 9945 332 299 90.06

3.B 20 18 90 2 2 100
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3.D 301 286 95.01 69 62 89.85
3E 24 23 95.83 3 3 100
Average

A 98.32 89.71
3.B 73.57 100
3.D 85.94 89.43
3.E 76.18 80.94

ey, gl

The performance accuracy was further validated using self consistency test and jackknife test.

The overall accuracy of the 3" layer of TpPred for Electrochemical Potential-driven
transporters class is 52.29%, 57.37%, 50.84% and 78.98% respectively for the a P-P-bond-

hydrolysis-driven transporters, Decarboxylation-driven transporters, Oxidoreduction-driven

transporters and Light absorption-driven transporters classes based on self consistency test.

Similarly, using jackknife test, the accuracy was found to be 41.14%, 45.86%, 38.71% and

63.52% respectively for the P-P-bond-hydrolysis-driven transporters, Decarboxylation-driven

transporters, Oxidoreduction-driven transporters and Light absorption-driven transporters

classes (Table 12). Moreover, the results were robust and hence, the TpPred could successfully

predict the novel protein sequence into either of P-P-bond-hydrolysis-driven transporters,

Decarboxylation-driven transporters, Oxidoreduction-driven transporters or Light absorption-

driven transporters class as evident from the independent data set used for validation Table 12.

Table 12 The performance accuracy of the 3* layer of TpPred developed for Electrochemical Potential-driven
transporters based on validation techniques (self consistency test, jackknife test and independent set validation).

Parameters P;I(‘)?;?rlls Conf izltfency iifil:il:tligi Independent Set
Total Correct%

{a)Amino acid composition

3

JA 1612 50.06 3532 67 47.76

3B 22 39.38 29.75 3 33.33

3D 370 41.05 33.33 61 37.70

1E 27 - 38.31 31.74 3 33.33
{b)Pseudo amino acid composition

3

3A 1612 4727 35.15 67 4029

3B 22 37.48 32.94 3 33.33

3.D 370 3946 29.19 61 34.42

1E 27 70.65 58.14 3 66.66

51




(B~

(¢) PhysicoChemical Proper ties
3

3.A 1612 43.86 35.96 67 38.80

3.B 22 34.43 27.06 3 33.33

3.D 370 46.67 31.94 61 42.62

3.E 27 100 80.29 3 100
(d) Amino acid+ Pseudo amino acid

3

3A 1612 46.73 33.87 67 41.79

3.B 22 69.99 58.97 3 66.66

3.D 370 48.21 35.14 61 44.26

3.E 27 71.63 53.97 3 66.66
(¢) Amino acidt+ PhysicoChemical Properties

3

JA 1612 57.74 43.75 67 47.76

3.B 22 71.71 59.38 3 66.66

3.D 370 52.49 39.28 61 47.54

3.E 27 72.29 59.19 3 66.66
(f) Pseudo amino acid+PhysicoChemical Properties

3

3A 1612 49.48 36.97 67 36.97

3B 22 72.39 51.28 3 51.28

3.D 370 57.92 4225 6l 4225

3.E 27 100 75.79 3 75.79
(g) Amino acid+ Pseudo amino acid+PhysicoChemical Properties

3

JA 1612 70.92 66.96 67 64.17

3B 22 76.21 61.69 3 66.66

3.D 370 70.14 59.86 6l 62.29

3.E 27 100 85.58 3 100

Average

JA 52.29 41.14 45.36

3.B 57.37 45.86 50.17

3.D 50.84 38.71 44.44

3.E 78.98 63.52 72.72

By comparing the performance accuracy of the 3™ layer of TpPred for Electrochemical
Potentiak-driven transporters class between the individual sequence derived features; it has

been observed that the accuracy was better by combining amino acid, pseudo amino acid and

physiochemical properties.
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3 Layer of Neural Network for Group Translocators class
The 3rd layer of our TpPred tool developed for Group Translocators class classified the
input protein sequence to be either Phosphotransfer-driven group translocators or Acyl
CoA ligase-coupled transporters. The neural network model was trained and tested using
training and a test data set based on different types of sequence derived features. The
network achieved an overall accuracy of 100% and 98.57% respectively for the
Phosphotransfer-driven group translocators and Acy! CoA ligase-coupled transporters
proteins for the training set data. Similarly the performance accuracy was 99.20% and
100% for the test set data. The details of the performance accuracy based on each

sequence derived feature have been represented in Table 13.

Table 13 The summary of the performanee accuracy of 3" layer of TpPred developed for Group Translocators ¢lass
based on different sequence derived features.

Parameters Training set Testset
Total Correct % of Total Correct % of
Proteins predictions accuracy Proteins predictions accuracy

(a)Amino acid composition

4

4.A 73 73 100 18 17 94.44

4.C 10 9 90 2 2 100
{W)Pseudo amino acid composition

4

4A 73 73 100 18 18 100

4.C 10 10 100 2 2 100
(¢) PhysicoChemical Properties

4

4.A 73 73 100 18 18 1060

4.C 10 10 100 2 2 100
{d) Amino acid+ Pseudo amino acid

4

4A 73 73 100 18 18 100

4.C 10 10 100 2 2 100
(¢) Amino acid+ PhysicoChemical Properties

4 .

4.A 73 B 100 18 18 100

4.C 10 10 100 2 2 100
(f) Pseudo amino acid+PhysicoChemical Properties

4

4.A 73 73 100 18 18 100

4.C 10 10 100 2 2 100

(8) Amino acid+ Pseudo amino acid+PhysicoChemical Properties
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4.A 73 73 100 18 18 100

4.C 10 10 100 2 2 100
Average

4,A 100 ' 99.20

4.C 98.57 100

The performance accuracy was further validated using self consistency test and Jjackknife test.
The overall accuracy of the 3™ layer of TpPred for Group Translocators class is 85.77% and
43.91% respectively for the Phosphotransfer-driven group translocators and Acyl CoA ligase-
coupled transporters classes based on self consistency test. Similarly, using Jjackknife test, the
accuracy was found to be 70.71% and 32.50% respectively for the Phosphotransfer-driven
group translocators and Acyl CoA ligase-coupled transporters classes (Table 14). Moreover,
the results were robust and hence, the TpPred could successfully predict the novel protein
sequence into either of Phosphotransfer-driven group translocators or Acyl CoA ligase-coupled

transporters class as evident from the independent data set used for validation Table 14.

Table 14 The performance aceuracy of the 3™ layer of ‘TpPred developed for Group T ranslocators based on validation
techniques (self consistency test, jackknife test and inde pendent set validation).

ife
Parameters PITO(E;?I'IIS ConsS iesltt;ancy iz(lzil;l:tlion Independent Sot
Total Correct%

(aA)Aming acid composition

4

4.A 91 90.03 69.37 17 88.23

4.C 12 43.38 31.09 3 33.33
{b)Pseudo amino acid composition

4

4.A N 85.57 75.03 17 82.35

4.C 12 40.37 27.36 3 33.33
(c) PhysicoChemical Properties

4

4.A 91 62.39 51.01 17 58.82

4.C 12 35.30 25.99 3 33.33
(d) Amino acid+ Pseudo amino acid

4

4.A 91 : §4.32 70.98 17 82.35

4.C 12 35.30 26.98 3 33.33
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(¢) Amino acid+ PhysicoChemical Properties
4

4.A 91 88.39 77.78 17 82.35

4.C 12 37 27.35 3 33.33
(f) Pseudo amino acid+PhysicoChemical Properties

4

4.A 91 92.46 71.39 17 88.23

4.C 12 39.78 2227 3 33.33
(8) Amino acid+ Pseudo amino acid+PhysicoChemical Properties

4

4.A 91 97.28 79.47 17 94.11

4.C 12 76.25 66.52 3 66.66

Average

4.A 85.77 70.71 82.34

4.C 43,91 32.50 38.09

By comparing the performance accuracy of the 3™ layer of TpPred for Group Translocators

class between the individual sequence derived features; it has been observed that the accuracy

was better by combining amino acid, pseudo amino acid and physiochemical properties.

3" Layer of Neural Network for Transport Electron Carriers class

The 3rd layer of our TpPred tool developed for Transport Electron Carriers class

classified the input protein sequence to be either Transmembrane 2-electron transfer

carriers or Transmembrane 1-clectron transfer carriers. The neural network model was

trained and tested using training and a test data set based on different types of sequence

derived features. The network achieved an overall accuracy of 100% and 100%

respectively for the Transmembrane 2-electron transfer carriers and Transmembrane |-

electron transfer carriers proteins for the training set data. Similarly the performance

accuracy was 98.70% and 98.57% for the test set data. The details of the performance

accuracy based on each sequence derived feature have been represented in Table 15.

Table 15 The summary of the performance accuracy of 3™ layer of TpPred developed for Transport Electron Carriers

class based on different sequence derived features.

Parameters Training set Testset
Total Correct % of % of
Proteins predictions accuracy Proteins predictions accuracy

(a)Amino acid composition
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5

5.A 50 50 100 11 11 100

5.B 35 35 100 10 10 100
(b)Pseudo amino acid composition

5

5.A 50 50 100 11 11 100

5.B 35 35 100 10 10 100
(c) PhysicoChemical Properties

5

5.A 50 50 100 11 10 90.90

5.B 35 35 100 10 9 90
(d) Amino acid+ Pseudo amino acid

5

S.A 50 50 100 11 11 100

5.B 35 35 100 10 10 100
(e) Amino acid+ PhysicoChemical Properties

5

5.A 50 50 100 11 11 100

5.B 35 35 100 10 10 100
(f) Pseudo amino acid+PhysicoChemical Properties

5

5.A 50 50 100 11 11 100

5.B 35 35 100 10 10 100
(g) Amino acid+ Pscudo amino acid+PhysicoChemical Properties

5

5.A 50 50 100 11 11 100

5.B 35 35 100 10 10 100
Aver age

5.A 100 98.7

5.B 100 98.57

The performance accuracy was further validated using self consistency test and jackknife test.
The overall accuracy of the 3™ layer of TpPred for Transport Electron Carriers class is 79.91% and
93.27% respectively for the Transmembrane 2-electron transfer carriers and Transmembrane 1-
electron transfer carriers classes based on self consistency test. Similarly, using jackknife test,
the accuracy was found to be 64.35% and 77.70% respectively for the Transmembrane 2-
electron transfer carriers and Transmembrane 1-electron transfer carriers classes (Table 16).
Moreover, the results were robust and hence, the TpPred could successfully predict the novel

protein sequence into either of Transmembrane 2-electron transfer carriers or Transmembrane
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l-electron transfer carriers class as evident form the independent data set used for validation

Tabke 16.

Table 16 The performance accuracy of the 3rd layer of TpPred developed for Transport Electron Carners based on

validation techniques (self consistency test, jackknife test and independent set validation),

Parameters Tm&.‘] S_e I Jac_kkn_nef Independent Set
Proteins Consistency validation
Total Correct%

{a)Amino acid composition

5

5.A 61 82.91 64.75 11 81.81

3.B 43 81 71.98 10 80
(W)Pseudo amino acid composition

5

JA 61 35.89 76.09 1 81.81

5B 45 100 8130 10 100
(¢} PhysicoChemical Proper ties

5

5.A 61 49.91 38.19 11 45.45

5B 45 83 61.29 10 80
(d) Amino acid+ Pseudo amino acid

5

5.A 61 84.17 63.26 1 81.81

5.B 45 100 81.26 10 100
(e} Amino acid+ PhysicoChemical Properties

5

S.A 61 69.92 51.26 11 63.63

5B 45 94 79.92 10 90
{f) Pseudo amino aci d+PhysicoChemical Properties

5

5.A 61 93 80.58 11 90.90

5B 45 94.93 79.25 10 90
(g) Amino acid+ Pseudo amino acid+PhysicoChemical Properties

5

5.A 61 93.59 76.38 11 90.90

5B 45 100 88.96 10 100

Average

5A 79.91 64.35 76.61

5B 93.27 77.70 91.42

By comparing the performance accuracy of the 3™ layer of TpPred for Transport Electron

Carriers class between the individual sequence derived features; it has been observed that the
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accuracy was better by combining amino acid, pseudo amino acid and physiochemical

properties.

3 Layer of Neural Network Jor Accessory Factors Involved in Transport class
The 3rd lyer of our TpPred tool developed for Accessory Factors Invo Ivéd in Transport
class classified the input protein sequence to be either Auxiliary transport proteins or
Ribosomally synthesized proteinpeptide toxins that target channels and carriers. The
neural network model was trained and tested using training and a test data set based on
different types of sequence derived features. The network achieved an overall accuracy
0f 99.63% and 98.35% respectively for the Auxiliary transport proteins and Ribosomally
synthesized proteinpeptide toxins that target channels and carriers proteins for the
training set data. Similarly the performance accuracy was 100% and 100% for the test set
data. The details of the performance accuracy based on each sequence derived feature

have been represented in Table 17.

Table 17 The summary of the performance accuracy of 3 layer of TpPred developed for Accessory Factors Involved
in Transpori class based on different sequence derived features.

Parameters Training set Testset
Total Correct % of Total Correct % of
Proteins predictions accuracy Proteins predictions accuracy

(a)Amino acid composition

8

8.A 78 78 100 16 16 100

8.B 26 26 100 9 9 100
(b)Pseudo amino acid composition

8

8.A 78 78 100 16 16 100

8.B 26 26 100 9 9 100
(¢) PhysicoChemical Properties

8 .

8.A 78 78 100 16 16 100

8.B 26 26 100 9 9 100
(d) Amino acid+ Pseudo amino acid

8 .

8.A 78 78 100 16 16 100

8.B 26 26 100 9 9 100
(e) Amino aci+ PhysicoChemical Properties

8

8.A 78 77 98.71 16 16 100

8.B 26 24 92.30 9 9 100
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(f) Pseudo amino acid+PhysicoChemical Properties

8

8A 78 78 100 16 16 100

8.B 26 26 100 9 9 100
(8) Amino acid+ Pseudo amino acid+PhysicoChemical Properties

8 E

8.A 78 77 98.71 16 16 100

8.B 26 25 96.15 9 9 100
Average

8.A 99.63 100

8.B 98.35 100

The performance accuracy was further validated using self consistency test and jackknife test.
The overall accuracy of the 3rd layer of TpPred for Accessory Factors Involved in Transport
class is 79.77% and 87.83% respectively for the Auxiliary transport proteins and Ribosomally
synthesized proteinpeptide toxins that target channels and carriers classes based on self
consistency test. Similarly, using jackknife test, the accuracy was found to be 67.91% and
73.37% respectively for the Auxiliary transport proteins and Ribosomally synthesized
proteinpeptide toxins that target channels and carriers classes (Table 18). Moreover, the results
were robust and hence, the TpPred could successfully predict the novel protein sequence into
either of Auxiliary transport proteins or Ribosomally synthesized proteinpeptide toxins that
target channels and carriers class as evident from the independent data set used for validation

Table 18.

Table 18 The performance accuracy of the 3rd Iayer of TpPred developed for Accessory Factors Involved in Transport
based on validation techniques (self consistency test, jackknife test and independent set validation).

Parameters T(m-il S'e if Jaqkkn_ife Independent Set
Proteins Consistency validation
Total Correct%

(a)Amino acid composition

8

8.A 94 78.42 69.53 17 76.47

8.B 35 69.96 51.86 9 66.66
(b)Pseudo amino acid composition

8 :

8.A 94 95.21 82.07 17 94.11

8.8 35 78.87 63.19 9 71.77
(c) PhysicoChemical Properties

8

8.A 94 46.12 36.79 17 41.17

8.B 35 92.83 71.39 9 88.88
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(d) Amino acid+ Pseudo amino acid

8

8.A 94 79.42 72.12 17 76.47

8B 35 90.98 81.47 9 88.88
(e) Amino acid+ PhysicoChemical Properties

8

8.A 94 76.72 61.27 17 70.58

8.B 35 100 86.52 9 100
(f) Pseudo amino acid+PhysicoChemical Proper ties

8

8.A 9 91.37 78.29 17 88.23

8.B 35 100 81.94 9 100
(g) Amino acid+ Pseudo amino acid+PhysicoChemical Properties

8

8.A 94 91.17 75.34 17 88.23

8.B 35 82.18 77.24 9 71.717

Average

8.A 79.77 67.91 76.46

8B 87.83 73.37 85.70

By comparing the performance accuracy of the 3" layer of TpPred for Accessory Factors

Involved in Transport class between the individual sequence derived features; it has been

observed that the accuracy was better by combining amino acid, pseudo amino acid and

physiochemical properties.

3" Layer of Neural Network for Incompletely Characterized Transport Systems class

The 3rd layer of our TpPred tool developed for Incompletely Characterized Transport

Systems class classified the input protein sequence to be either Recognized transporters

of unknown biochemical mechanism or Putative transport proteins. The neural network

model was trained and tested using training and a test data set based on different types of

sequence derived features. The network achieved an overall accuracy of 98.29% and

97.50% respectively for the Recognized transporters of unknown biochemical

mechanism-and Putative transport proteins proteins for the training set data. Similarly the

performance accuracy was 76.07% and 76.78% for the test set data. The details of the

performance accuracy based on each sequence derived feature have been represented in

Table 19

&



Table 19 The summary of the performance accuracy of 3" layer of TpPred developed for Incompletely Characterized
Transport Systems class based on different sequence derived features.

Parameters Training set Testset
Total Correct % of Total Correct % of
Proteins predictions accuracy Proteins predictions accuracy
(a)Amino acid composition
9 E
9.A 168 162 96.42 43 33 76.74
9.B 132 124 93.93 32 24 75
(b)Pseudo amino acid composition
9
9.A 168 168 100 43 33 76.74
9.B 132 132 100 32 25 78.12
(c) PhysicoChemical Properties
9
9.A 168 154 91.66 43 30 69.76
9.B 132 117 88.63 32 22 68.75
(d) Amino acid+ Pseudo amino acid
9
9.A 168 168 100 43 34 79.06
9.B 132 132 100 32 26 81.25
(e) Amino acid+ PhysicoChemical Properties
9
9.A 168 168 100 43 33 76.74
9.B 132 132 100 32 25 78.12
(f) Pseudo amino acid+PhysicoChemical Properties
9
9.A 168 168 100 43 33 76.74
9.B 132 132 100 32 25 78.12
(2) Amino acid+ Pseudo amino acid+PhysicoChemical Properties
9
9.A 168 168 100 43 33 76.74
9.B 132 132 100 32 25 78.12
Average
9.A 98.29 76.07
9.B 97.508 76.78

The performance accuracy was further validated using self consistency test and jackknife test.
The overall accuracy of the 3rd layer of TpPred for Incompletely Characterized Transport
Systems class is 76.19% and 77.26% respectively for the Recognized transporters of unknown
biochemical mechanism and Putative transport proteins classes based on self consistency test.
Similarly, using jackknife test, the accuracy was found to be 63.88% and 60.63% respectively

for the Recognized transporters of unknown biochemical mechanism and Putative transport
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proteins classes (Table 20). Moreover, the results were robust and hence, the TpPred could
successfully predict the novel protein sequence into either of Recognized transporters of

unknown biochemical mechanism or Putative transport proteins class as evident from the

independent data set used for validation Table 20.

Table 20 The performance accuracy of the 3rd layer of TpPred developed for Incom pletely Characfe rized Transport

Systems based on validation techniques (sclf consistency test, jackknife test and independent set validation),

Parametrs Protens  Consitoney  vahdadon Independent e
Total Correct%

(a)Amino acid composition

9

9.A 211 40.43 31.87 26 38.46

9.B 164 66.81 50.12 23 60.86
(b)Pseudo amino acid composition

9

9A 211 75,78 60.69 26 73.07

9.B 164 90.91 71.64 23 86.95
(c) PhysicoChemical Properties

9

%A 211 73.25 65.97 26 69.23

9.B 164 68.68 531.13 23 65.21
{d) Amino acid+ Pseudo amino acid

9

9.A 211 80.14 69.06 26 76.92

9.B 164 69.25 58.92 23 65.21
(e) Amino acid+ PhysicoChemical Properties

9

9.A 211 83.92 71.38 26 80.76

9.B 164 78.57 62.14 23 7391
(f) Pseudo amino acid+PhysicoChemical Properties

9

9.A 211 89.42 75.38 26 8461

9.B 164 8148 68.84 23 78.26
(2) Amino acid+ Pseudo amino acid+PhysicoChemical Properties

9

9.A 211 90.39 72.85 26 84.61

9.B o4 85.17 61.64 23 78.26

Average

9.A 76.19 63.88 72.52

9.B 77.26 60.63 72.66
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layer of TpPred for Incompletely

By comparing the performance accuracy of the 3™
Characterized Transport Systems class between the individual sequence derjved features; it has
S
W

been observed that the accuracy was better by combining amino acid, pseudo amino acid and

physiochemical properties.

"
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Chapter 5
CONCLUSION

From a practical point of view, the most important aspect of a prediction model is its ability to make
correct predictions. Till date most of the available methods use the 3-D structure of the protein to
predict and classify transport protein. This is a very tedious job and requires much costlier endeavors.
The sequence of a protein is an important determinant for the detailed molecular function of proteins,
and would consequently also be useful for prediction of transport protein and classes. Additionally
much encouraging results have been predicted using the sequence derived parameters technique.
Therefore, a much accurate and reliable method is that predicts the transport proteins and transport

protein classes based on both strategies.

This thesis contains detailed work on transport protein prediction and classification. We achieved an
accuracy of ~ 78% for the prediction of the Transport proteins and its classification into major class
and sub-classes using three layer artificial neural networks. The first level of network imitates the
binary mode], the second level of network classify the predicted transport protein into 7 major classes
and the third level of network uses the predicted results of the former to provide a much detailed and
useful classification. The neural network architecture used for the prediction was optimized for
maximum accuracy. This was achieved by gradually testing networks with variable hidden nodes and
retaining the one with highest true predictions. This is the only best prediction tool available tilt date,
but to the contrary, uses a much simpler and efficient prediction method based on sequence features.
This application not only gives optimal results with the dataset used but also predicts transport proteins

from complex genomes to a very high satisfactory level. A much elaborate analysis has been done,

which is evident from the extracted data, figures and tables compiled.
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Appendix I

Abbreviations used in tables

Classes

Abbreviations

I.Channels_Pores

a-Type channels

B-Barrel porins

Pore-forming toxins (proteins and peptides)
Holins

3.Hlectrochemical Potential-driven transporters
P-P-bond-hydrolysis-driven transporters
Decarboxylation-driven transporiers
Oxidoreduction-driven transporters

Light absorption-driven transporters
4.Group Translocators
Phosphotransfer-driven group translocators
Acyl CoA ligase-coupled transporters
S.Trans port Flectron Carriers
Transmembrane 2-glectron transfer carriers
Transmembrane 1-electron transfer carriers
8.Accessory Factors Involved in Trans port
Auxiliary transport proteins

Ribosomally synthesized proteinpeptide toxins that target

channels and carriers

9.Incompletely Characterized Trans port Systems
Recognized transporters of unknown biochemical
mechanis m

Putative transport proteins

1
LA
1.B
1.C
LE

3
3A
3.B
3D
3.E

4
4.A
4.C

5
5.A
5.B

8
8.A

8B
9

9A

9.8
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Appendix IT

Cluster c code:

An example c parser code of ANN,.. cluster.

ffinclude<stdio.h>
#include<math.h>
#include<stdlib. k>
#include<conio.h>
#include<string. h>
#include "L!.h"
#include "L2.h"
#include "L3A.K"
#include "L3AE.h"
#include "L3T.h"
#include "LATG1.h"
#include "LATG2.h"
ffinclude "LATG3.h"

int main()

{

//making QOutfile

FILE *OUT;
OUT=fopen("metallopred_out.txt","w");
felose(OUT);

/Inputting Descriptors
FILE *PAR;
PAR=fopen("par.xIs","r");
double desc[37];
charr;
int i;
if(PAR ==NULL)

{

printf{ "cannot open-file");

for(F0;i<37;it+)

fscanflPAR,"%lg", &desc[i]);

}
fclose(PAR);




/fsending to Layer 1
1=L1::pseaal.1 (desc);

4‘\J‘, : if(=="M")

}

{
/fsending to Layer 2

r=L2::pseaal 2 (desc);
ifr=="A")
{
/isending to Layer 3 Alkali
r=L3A:pseaalL3A(desc);
}

else ifir—="E")
{
/fsending to Layer 3 Alkali Earth
=L3AE::pscaalL3AE(desc);
if{=="C")
{

}
else if(=="M")
{

}

}
eke if(r=="T)
{
/fsending to Layer 3 Transition
r=L3T::pseaal.3T(desc);
if(r=="1")
{

=LATGI ::pseaal4ATG1(desc); -

else if(ri='2')
{FIATGZ::pseaaLATGZ(deSC);
else if(ri='3')
Ethl TG3::pseaal ATG3(desc);

}
}

return 0;
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Appendix I

\J Parser perl code:

2 Perl parser which links frontend with the descriptor calculation codes and prediction

clusters

#1"C /xampp/perl/bin/perl.exe"
#1'"C/xampp/perl/lib"

#prediction starter and output web page compiler

print "Content-type: text/html; charset=iso-8859-1\n\n";
print "<htm[>",
use CGI qw(standard);
$pred=new CGl;
use FileHandle;
#taking in the sequence from the htm! page
$sequence=$pred->param("sequence");
#taking choice of parameters form html page
! $pseaa=$pred->param("pseaa™);
b $aa=$pred->param("aa");
$pep=S$pred->param("pepstat");
#checking for errors
#error type - no parameter
if{($pseaa ne "y") && ($aa ne "y") && ($pep ne "y")
{
print "Error!!<br>No Parameter type selected... Go Back Again";
goto end;
}
} #error type - no sequence
‘ if(!$sequence)
{
print "Error!!<br>Sequence ficld empty... Go Back Again";
: goto end;
| }
#fpreparing input sequence file
print "<br>Input Sequence:<br>",
open(INP,™>par.txt");
@seq=split(/[\n)/,$sequence);
$sequence="";
#removing Fasta comment line
if($seq[0] =~ /()
{
print splice(@seq,0,1);
}

o
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#formatting sequence to be ina single line
$sequence=join(”",@seq);
$sequence =~ tr/a-z/A-Z/;
@seq=();
@seq=split(//,$sequence);
$sequence="",
#removing any other exception (errors/non-standard aa) in the sequence
foreach $y(@seq)
{

if($y =~ /[ACDEF GHIK LMNPQRSTVWY]/)
{

$sequence=$seq uence.$y;
} }
print INP ">Query|PDBID|CHAIN|S EQUENCE\n$sequence™,
print "<br>$sequence<br>";
close(INP);
#STARTING PREDICTION based onthe choice of parameters(user given)

#firing predictor executers accordingly
ifi($pseaa eq "y") && ($aa ne "y") && ($pep ne "y™)
{

system "modified pseaa de sc_calc.exe™
system "I_PSEAA_ANN.exe";

}
ekif(($pseaa ne "y") && ($aa eq "y") && ($pep ne "y")
{

2_AA aa co mp_desc_cak.pl';
system "2_AA_ANN.exe";

}

elsif(($pseaa ne "y") && ($aa ne "y") && ($pep eq "y")
{
‘pepstats_calc.pl';
"3_PEP_pep_parser.pl’;
system "3_PEP_ANN.exe";
}

elsif(($pseaa eq "y") && (Baaeq "y && ($pep ne "y")
{
system "modified _pseaa_desc_calc.exe™
‘4_PSEAA_AA_aaﬁcomp_desc_calc.pl‘;
system "4_PSEAA AA_ANN.cxe™
}

elsif{($pseaa eq "y") && ($aa ne "y") && ($pep eq "y")
{
system "modified _pseaa_desc_calc.exe",

‘pepstats_calc.pl';
'5_PSEAA_PEP_pep  _parser.pl’;
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system "5 PSEAA_PEP_ANN.exe"

}
elsif{($pscaa ne "y") && ($aa eq "y") && ($pep eq "y")
{

"6_AA_PEP_aa_comp_desc calc.pl;
‘pepstats_calc.pl’;

"6_AA _PEP_pep_parser.pl';

system "6_AA_PEP ANN.exc";

}
ekif{(3pseaa eq "y") && ($aa eq "y") && ($pep eq "y")
{

system "modified pseaa_desc calc.exe™

"7 PSEAA_AA PEP aa comp d esc_calc.pl’;

‘pepstats_cale.pl';

"7_PSEAA_AA PEP _pep_parser.pl’;

system "7_PSEAA_AA_PEP_ANN.cxe™

}
#printing the output
open(OUT, "metallopred_out.txt"); 1.
@output=<QUT>; '
close(OUT); ?
“delpar.xls’; i
“del par.txt';
if{glob("pepstat.xls")) { del pepstat.xls';}
“del metallopred out.txt';
print "<p align=\"centen\"><h3>0 utput of MetalloPred</h3></p><bi>";
foreach $y(@output)

{
print "$y<bi>";

}
end:
print "</html>",
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Appendix IV

Pseudo amino acid ¢ code:

C code for calculation of sequence derived features which preserves sequence order

information

/* Pseudo Amino Acid Composition */

#include<stdio.h>
#include<string.h>
#include<stdlib. b>
#include<conio.h>
#include<fstream.h>
#include<iostream. h>
#include<math. h>

int pcount=0;

void getseq();

int aacheck (char);

float H1(int);

float H2(int);

float M(int);

float SD(float A[20]);

float avg(float A[20]);

float J(int,int);

void main()

{
clrser(};
getseq();
cout<<'No of proteins in the file :"<<pcount;
geteh();

}

void getseq()
{

char ch.file[15],file1[15]={0} ;
cout<<"Enter the file containing the sequenecs :";
cin>>file; ]
ifstream infile(file);
int v=0;
while(file)
{
filel [vl=file[v];
if(file[v]==""
{
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filel[v+1]="x;
filel [v+2]='F;
filel [v+3]='s";

3 break;
}
vt
}
ofstream outfile(file | );
while(infile)
infile.get(ch);
if(ch==">")
{
char pname[15]={0};
int plength=0;
int =0;
while(ch)
{
infile. get(ch);
if(ch=="\n")
{
break;
}
iflch==1")
-t
int j=0;
while(F=0)
{
infile. get(ch);
! pname[jJ=ch;
it
iflch=="")
H-+;
3
i
cout<<pmame<<"\n";
char seq[1800];
int n=0;
while(infile)
{
J infile.get(ch);
y ifflch=="\n")
3 {
infile. get(ch),
if(ch=="\n")

break;
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i \h—_h_;____

}
seq[n]=ch;
)

}

plength=n;

int count[21]= {0},§
fbr(i=0;i<plength;i—l-+)

Faacheck(seq[i]);
count[fl=count[f}+1;

float arr[20],P[37);
for(int j=0;j<20;j++)
{

arr[j1=(floaf)co unt[jl/plength;

float T[17];

for(int r=1;r<| 8;r++)

{
float k=0.0;
for(F0;i<plength-r; H+)

inte,f: A
c=aacheck(seq[i]);
Faacheck(seqfitr));
ifle!=20 && f1=20)
k=k+J(e,1);
}
Tr-1 I=(k/Aplength-r));

float t=0.0;
for(i=0;i<17;i++)
=TT,

float g=0.0;
for(i=0;<20; H+)
{

g gtari];

float tmp=0.0;
tmp=g+(0.5%1);
for(F0;i<20;i+)
{

Plil=(arr[i]* 100)/tmp;

for(i=0;i<17;i++)
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{
P[20+i]=(0.5* T[i]* 100)/tmp;

}
7\ J for(i=0;i<37;i+)

{
outfile<<P[i];
outfile<<\t
}
outfile<<\n';
pcount++;
}
}
j
int aacheck(char h)
) {

inta;
if(h=="'A")
a=0);
else if(h=='C")
a=l;
f else if(h=="D")
L a=2;
i else if(h=—"'E)
a=3;
¢lse if(h=="F")
a=4;
| else if(h=="'G")
| a=5;
‘ else if(h=="H")
a=6;
else if(h=="T")
a=T,
else if(h=='K")
a=§;
: else if(h—="L")
i a=9;
else if(h=="M")
a=10;
else if{(h=='N")
a=11;
else if{h=="P")
a=12;
else if{h=='Q")
a=13;
else if(h=="R")
a=14;

P
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‘ else if(h=="8")
| a=15;
| else if(h=="T")
A\ a=16;
' else if(h=="V")
a=17,
else if(h=="W")
a=18;
else if(h=="Y")
a=19;
else

a=20;
returna;
}
float J(int x1,int x2)
{
float j,k;
k=(pow((HI1(x2)-H1(x1 )2)+pow((H2(x2)-H2(x1)),2)+pow((M (x2)-M(x1)),2));
J=k3;
. return j; !
! }
float H1(int s)
float Hl[20]:{0.62,0.29,—0.90,-0.74,1.19,0.48,-0.40,1.38,—1.50,1.06,0.64,~0.78,0.12,-
0.85,-2.53,-0.18,-0.05,1.08,0.81 ,0.26};

float H;
H=(H1[s]-avg(H 1))/SD(H1);
return H;

}

float H2(int s)

{

float H2[20]:{-O.5,-I.0,3.0,3.0,—2.5,0.0,-0.5,-l.8,3.0,-1.8,-1.3,0.2,0.0,0.2,3.0,0.3,—0.4,—
1.5,-3.4,-2.3};

float H;
=(H2 [s]-avg(HZ))/SD(H2);
return H;
}
float M(int s)
float

M[20]={15.0,47.0,59.0,73.0,91.0.1 .0,82.0,57.0,73.0,57.0,75.0,58.0,42.0,72.0, 101.0,31.0,45.0,4
J 3.0,130.0,]07.0};
float m;
m=(M[s]-avg(M))/SD(M);
return m;
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float SD(float A[207)
{

i float sd,a,s=0.0;
k . a=avg(A);
for(int £0;i<20; i++)
\ s=stpow((A[i]-a),2);
sd=sqrt(s/20);
return sd;
}
float avg(float Al20])
{

float avg,a=0.0;
for(int #0;i<20;i++)
a=atAl[i];
avg=a/2(0;
returnavg;
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Appendix V

Amino acid perl code:

Perl code for calculation of sequence derived features based on amino acid composition

#Amino Acid Compostion Based Descriptors
#inputting file
print "\nInput filename (.txt):\t";
$filename=<>;
open (file,$filename)

or print "cannot open sequence file";

#ireading file into array

$=0;
while(<file>)
{
(/)
{
$it+;
$name[$i]=$ ;
}
else
{
chomp($ );
$seq[$il=$seq[$i].$ ;
}
}

#iReference array
$ref=(ACDEFG HIKLMNPQRSTVWY);
@ref=split(",$ref);

#output file open

print "\nenter output filename: "
Sout=<;

open (desc, "+>$out");

#opening sequence and calculating fiequency ofamino acids
Pr =13 i<S#name+1;$i++)
{
@pro=(); :
@pro=split(",$seq[$i]);
for($y=0;$y<$#refr1:;$y++)
{
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$treq[$y}=0;
}

foreach $aa(@pro)
f{br($j=0;$j<$#ref+l sBit+)
i{f ($aa eq $ref$j])
%ﬂeq[$j]+: L

}
}
$Sproname=(split / [11/.$name[$1)[0];
print "protein; $proname\t@ freq\n";
print desc "Sproname\t™;
or($k=0;$k <$#re fr1 ;$k++)
{

$probab=$fieq [3k)/($#pro+1);
if($freq[$k] eq 0)
{
$probab=0:;
}
print desc "$probab\¢";
}

print desc "n";

}




