of INFORL,

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. NumSPO,0q ¢ Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

& The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

“ Learning Resource Centre-JUIT

NAVRPATIRIAI

SPO 6095

I‘;
E
5
I
|

[

TO IMPLEMENT CLUSTERING IN MOBILE AD-
HOC NETWORKS

Project Report submitted in partial fulfillment of the requirement for the
degree of

Bachelor of Technology
in
Information Technology
By

Pranshu Gupta (061439)
Nishant Shekhar(061461)

under the supervision of

Mr. Amol Vasudeva

JAYPEE UNIVERBITY OF
WNFORMATION TECHNOLOGY

Jaypee University of Information Technology

Waknaghat, Solan - 173215, Himachal Pradesh

et h‘

Certificate

This is to certify that the project entitled *“To implement clustering in Mobile ad-hoc
networks”, submitted by Pranshu Gupta(061439) and Nishant Shekhar(061461) in
partial fulfillment for the award of degree of Bachelor of Technology in Information
Technology to Jaypee University of Information Technology, Waknaghat, Solan has

been carried out under my supervision.

¥ i

Date: 13 May 2010 (Amol Vasudeva)

Lecturer(CSE Deptt.)

Certified that this work has not been submitted partially or fully to any other

University or Institute for the award of this or any other degree or diploma.

Q{;z SG,

1. Pranshu Gupta
(061439)
pidhont Shakbo”
2. Nishant Shekhar

(061461)

(i]

lz

y

Acknowledgement

Apart from the efforts by us, the success of this project depends largely on
encouragement and guidelines of many others. We take this opportunity to express
our gratitude to the people who have been instrumental in the successful completion

of this project.

We would like to show our greatest appreciation to our supervisor Mr. Amol
Vasudeva, Lecturer, Deptt. Of Computer Science and Technology, Jaypee University
of Information Technology. We feel motivated and encouraged every time we get his
encouragement. For his coherent guidance throughout the tenure of the project, we
feel fortunate to be taught by him, who gave us his unwavering support. Besides being
our mentor, he has taught us that there’s no substitute for hard work. Being a dynamic

personality himself, he has a practical approach towards a profession.

Finally, thanks to all our family members who supported us in our every grim phase.
Our work will remain unaccomplished if we don’t pay our gratitude to our parents for
their constant encouragement and support. We thank them for the sacrifices they
made so that we could grow up in a learning environment. They have always stood by
us in everything fruitful we have done, providing constant support, encouragement

and love.

13/05/2010

Pranshu Gupta-061439

Nishant Shekhar-061461

(ii]

1 S [w‘

o
&
5

ABSTRACT

Mobile ad hoc network (MANET) is an autonomous system of mobile nodes
connected by wireless links. Each node operates not only as an end system, but also as
a router to forward packets. The nodes are free to move about and organize
themselves into a network. Due to mobility and other constraints such as restricted
power and processing capacity, nodes cannot run heavy applications to detect
intrusions. If every node starts monitoring intrusions separately, processing overhead
at each node will consume a large portion of their battery and power. The clustering
approach can be taken as an additional advantage in these processing constrained
networks to collaboratively detect intrusions with less power usage and minimal
overhead. If the clusters are regularly changed due to routes, the intrusion detection

will not prove to be effective.

As far as the simulation of a network is concerned ns-2 is one of the best
discrete event simulators available. It covers a very large number of applications,
protocols, network types, network elements and traffic models. NS is based on two
languages: an object oriented simulator, written in C++, and a OTcl(an object oriented

extension of Tcl) interpreter, used to execute user’s command scripts.

In this work an attempt has been made to learn the working of different
features present in ns-2, to study mobile ad-hoc networks, clustering in mobile ad-hoc
networks, Sybil attack and to compare the performance of some prominent routing
protocols for MANETS in ns-2 and to implement cluster based routing protocol under

different scenarios.

[iii]

e 1
!

-
i
TABLE OF CONTENTS
CERTIFICATE.coi ittt vt ia1ee e s s s s saaeeessaaesesssnnaeeees 1
- R N AW EDGEMBNT s saissiisi iressmmassenmmmrrssseamssnasssons ii
) B B ETRA T, 1 soioeiserossibessessbess s esseess st 455t s oSSR oSSRt i
; TABLE OF CONTENTS.......ovntiiiiiineieinssnssssessssismnsssssssssessssssesssssssssees iv
S. No. Chapter Name Page
1 Introduction and Statement of the Problem 1
Lol IHrOdueten, i i e R bt e 1
12 “Statement ofthe Probleli i sussnmisiaiinnnair, 2
1.3 Organization of the Report.........iivimiiimsstonmmiiiiiiimsinn 3
1.4 Abbreviations..........cocoeevicvvnnsncninineieieiiiiiens. 4
2 Background and Literature Review 6
2:]l - “Inttoduction to MANE L eiimminiiiiiaii it 6
2.2 Characteristics of Mobile Ad-hoc Networks.............. 8
2.2.1 Constraints in MANET.........cccccocevivvvinrinennn. 9
2.3 Advantages of Mobile Ad-hoc Networks.................... 12
24 __Disadvailascs 6f MANE Ta/smsmmmmimmsietiamii 15
2.8 Applications of MIANET. i niossnssiiariaiisrii 15
2.6 Concerns related 10 MANEL......cosotin b oessiss 16
3 Introduction to NS-2 19
31 The BasteSu. s aimsmmesiaiirsais pr s i G 19
32 Wiiting TOL SOPIDLS.. s i i st et s knbinis 23
321 ZNOdes Topalogy. ..o imiiierssversmsses 23
3022 7 otles SCERRTIO... vty srbionsirs et ovsysseisins 25
3.5 AGEAPH R e N vt s 28
3.4 "Running Witeless SImmIationsi i i vammm 30
341 Beenario Bilesr i i 30
} 3:4.2 Communication Pattern Bilei i a1l
3.4.3 Router Configuration File...........ocoevevrneuennnn.n.. 32
’ 4 Routing 35

R o T .
‘

| P00 B B 1= i 101 181) s DU PO 35
4.2 Routing in MANET.......c.cooovvviricsiveieineeesesesenees 35
4.3 Problems with routing in MANET................ceeovnnnnnn. 36

| 5 Clustering Approach 39
5.1 CIUSEEIING...iciviiiiiieieiieeiiieeerirr et erreeeeree e 40

5.2 Applications of CIUStering.........cccooeeevverirenieenineennn, 41

5.2.1 LimitationS........covevevvvieieeeeeeniiiinirnreeeee e e eesianinns 41

5.3 Cluster Based Routing Protocol (CBRP).................... 43

5.3.1 Election ProCess.........cccoevvvvvvereivveeriiiinnienssninnns 43

3.3, 1,1 NOUS: SUALUE, s purrossmorsporasmmmpusteniynivivgriy 44

5.3.1.2 Diata BHUCIUIE. . orwiisrriviommvessyyimmmossevaniss 45

2.0l 0 HELLCY VISSEREER., ..o vvocvopeeummmpmursnsy 46

6 Conclusions & Future Work 49

o 78 R 05T =1 121 (o) s PO——————————— A R R 49

6.2 " ‘Suggestions for Futire Work ... s mssemisressims 51
References 118

[v]

i b2 gp.}

CHAPTER 1

INTRODUCTION AND STATEMENT OF THE PROBLEM

1.1 Introduction

Network Security is of paramount interest in active research field of mobile ad
hoc networks. Ad hoc network is a collection of mobile nodes that has no fixed
infrastructure to support communications between them, rather is characterized by
wireless multi-hop communications. The ad hoc network is vulnerable to attack due to
wireless communication link, dynamic change in topology, cooperative nature for ad
hoc routing algorithms, lack of centralized authority and lack of proper line of
defense. Therefore, traditional security schemes cannot protect the nodes from all
types of attacks in mobile ad hoc networks. In many cases, the protocols devised to
defend against the attacks have been either extended or modified, even new protocols

also have been proposed. These security measures of protocols are often referred to as

"~ the network’s first line of defense. Different types of intrusion prevention techniques

used in ad hoc networks, such as encryption and authentication, may reduce intrusion,

but cannot eliminate them completely.

Literatures in the field of network security reveal the fact that whatever may
be intrusion prevention measure adopted, there is some probability of intrusion
exploiting some weak link. Hence, a second line of defense is required to make the

network survived which may be offered by the intrusion detection techniques.

Most of the seculied ad hoc routing protocols assume’that each node represents
unique address and mainly based on threshold security schemes or reputation
schemes, which yield good result in case limited number of attackers in the network.
However, the broadcast nature of this network allows a single node to pretend to be

many nodes simultancously by using different addresses while transmitting. This

attack is known as Sybil attack and most of the existing protocols fail to defend

against this type of attack.

According to Douceur, the Sybil attack is an attack by which a single entity
can conirol a fraction of the system by presenting multiple identities. Through Sybil
attack a malicious node may present one or more fake identities to other nodes in the
network and undermine the operation of collaborative tasks on peer-to-peer systems

and other distributed systems.

1.2 Statement of the Problem

This report presents techniques adopted to defend against Sybil Attack in
Mobile Ad Hoc Networks and implementing Cluster Based Routing Protocol(CBRP).
Mobility is often a problem for providing security services in ad hoc networks. In this
scheme, we have used mobility as a feature to enhance security. In the mobile
environment a single entity impersonating multiple identities has an important
constraint that can be detected. Because all identities are part of the same physical
device, they must move in unison, while independent nodes are free to move at will.
As nodes move geographically, all the Sybil identities will appear or disappear

simultaneously as the attacker moves in and out of range.

Due to mobility and other constraints such as restricted power and processing
capacity, nodes cannot run heavy applications to detect intrusions. If every node starts
monitoring intrusions separately, processing overhead at each node will consume a
large portion of their battery and power. Therefore, a scalable and fault tolerant IDS is
required to govern these on-secure wireless ad-hoc networks against attacks. The
efficient solution is to defend against intrusion co-operatively, rather than each mobile
node performing full analysis of traffic passing through it. In order to cooperate, the
fodes must trust on each other so-that they should not audit all the data, and hence,
they can save a lot more processing and memory overhead.

The clustering approach can be taken as an additional advantage in these

processing constrained networks to collaboratively detect intrusions with less power

usage and minimal overhead. Existing clustering protocols are not suitable for

1 detection purposes because they are linked with the routes. The route

intrusio

establishment and route renewal affects the clusters and as a consequence, the
processing and traffic overhead increases due to instability of clusters. The ad-hoc
networks are battery and power constraint, and therefore a trusted monitoring node
should be available to detect and respond against intrusions in time. This can be
achieved only if the clusters are stable for a long period of time. If the clusters are
regularly changed due to routes, the intrusion detection will not prove to be effective.
Therefore, a generalized clustering algorithm has been proposed that can run on top of
any routing protocol and can monitor the intrusions constantly irrespective of the
routes. However, this clustered approach can be applied to any type of Intrusion, but
we have given emphasis only on the detection of Sybil attack, with higher accuracy

and low memory and processing overheads.
1.3 Organization of the Report

The report is divided into six chapters including this introductory chapter. The

rest of this thesis is organized as follows:

Chapter 2 gives an overview of the Mobile Ad hoc networks, its
characteristics, advantages and disadvantages, applications, design issues and
constraints and concerns.

Chapter 3 describes the software platform or the Simulator used, i.e., The
Network Simulator also known as NS-2. It describes the basics of NS-2, how to write
simple wired TCL scripts and how to simulate them and view the output in
NAM(Network Animator). It also gives overview about the graph plotting tool
present in NS-2, the XGRAPH, needed to plot different types of graphs to analyze
different scenarios and then finally running wireless simulations.

Chapter 4 It describes Routing, its definition, various scenarios, what exactly
is routing and what are the complicacies related to routing. Then routing in mobile ad-
ohoc networks is discussed and how it is different from general routing or routing in

other networks. Finally problems realated to routing in mobile ad-hoc networks.

(3]

Chapter 5 gives the overview of Clustering, Clustered Approach in the

1 detection of intrusions in an ad-hoc network and cluster based routing protocol.

Chapter 6 concludes the dissertation and gives some suggestions for the future

i -

work.

1.4 Abbreviations Used

AODV Ad-hoc On-Demand Distance Vector
CA Certificate Authority

CAT Cluster Adjacency Table

CBRP Cluster Based Routing Protocol

DoS Denial of Service

DSDV Destination Sequenced Distance Vector

DSR Dynamic Source Routing

ED Election Done

EH Election Head

ES Election Start

EV Election Vote

GPS Global Positioning System
GW Gateway Node

HD Head Node

ID Identification

IDS Intrusion Detection System
IP Internet Protocol

LANs Local Area Networks
MAC Medium Access Channel
MANET Mobile Ad hoc Network
MB Member Node
MT Member Table
PAN Personal Area Network

£ PDA Personal Digital Assistant

PKI Public Key Infrastructure

(4]

PRB
RREQ

i
|
|
g

TCP
UD
WLAN

Probabilistic Routing Protocol
Route Request

Quality of Service
Transmission Control Protocol
Undecided Node

Wireless Local Area Network

|

i
i
|

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Introduction to Mobile Ad-hoc Networks (MANET)

Wireless cellular systems have been in use since 1980s. We have seen their
evolutions to first, second and third generation's wireless systems. These systems
work with the support of a centralized supporting structure such as an access point.
The wireless users can be connected with the wireless system by the help of these

access points, when they roam from one place to the other.

The adaptability of wireless systems is limited by the presence of a fixed
supporting coordinate. It means that the technology cannot work efficiently in that
places where there is no permanent infrastructure. Easy and fast deployment of
wireless networks will be expected by the future generation wireless systems. This
fast network deployment is not possible with the existing structure of present wireless

systems

Recent advancements such as Bluetooth introduced a fresh type of wireless
systems which is frequently known as mobile ad-hoc networks. Mobile ad-hoc
networks or "short live" networks control in the nonexistence of permanent
infrastructure. Mobile ad hoc network offers quick and horizontal network
deployment in conditions where it is not possible otherwise. Ad-hoc is a Latin word,
which means "for this or for this only." Mobile ad hoc network is an autonomous
system of mobile nodes connected by wireless links; ecach node operates as an end

system and a router for all other nodes in the network.

A wireless network is a growing new technology that will allow users to
access services and information electronically, irrespective of their geographic
position. Wireless networks can be classified in two types: - infrastructured network

and infrastructure less (ad hoc) networks. Infrastructured network consists of a

B0 S VS e FOAE B

network with fixed and wired gateways. A mobile host interacts with a bridge in the
network (called base station) within its communication radius. The mobile unit can
move geographically while it is communicating. When it goes out of range of one
base station, it connects with new base station and starts communicating through it.

This is called handoff. In this approach the base stations are fixed.

A Mobile ad hoc network is a group of wireless mobile computers (or nodes);
in which nodes collaborate by forwarding packets for each other to allow them to
communicate outside range of direct wireless transmission. Ad hoc networks require
no centralized administration or fixed network infrastructure such as base stations or

access points, and can be quickly and inexpensively set up as needed

A MANET is an autonomous group of mobile users that communicate over

reasonably slow wireless links. The network topology may vary rapidly and -

unpredictably over time, because the nodes are mobile. The network is decentralized,
where all network activity, including discovering the topology and delivering
messages must be executed by the nodes themselves. Hence routing functionality will

have to be incorporated into the mobile nodes.

MANET is a kind of wireless ad-hoc network and it is a self-configuring
network of mobile routers (and associated hosts) connected by wireless links — the
union of which forms an arbitrary topology. The routers, the participating nodes act as
router, are free to move randomly and manage themselves arbitrarily; thus, the
network's wireless topology may change rapidly and unpredictably. Such a network

may operate in a standalone fashion, or may be connected to the larger Internet.

(7]

s e T R e e e

b
i
S

Figure 2.1 Example of a simple ad-hoc network with three participating nodes

Mobile ad hoc network is a collection of independent mobile nodes that can
communicate to each other via radio waves. The mobile nodes can directly
communicate to those nodes that are in radio range of each other, whereas others
nodes need the help of intermediate nodes to route their packets. These networks are
fully distributed, and can work at any place without the aid of any infrastructure. This

property makes these networks highly robust.

2.2 Characteristics of Ad hoc networks

Mobile ad hoc network nodes are furnished with wireless transmitters and
receivers using antennas, which may be highly directional (point-to-point),
omnidirectional (broadcast), probably steerable, or some combination thereof. At a
given point in time, depending on positions of nodes, their transmitter and receiver
coverage patterns, communication power levels and co-channel interference levels, a
wireless connectivity in the form of a random, multi-hop graph or "ad hoc" network
exists among the nodes. This ad hoc topology may modify with time as the nodes

move or adjust their transmission and reception parameters.

MANETSs inherit common characteristics found in wireless networks in
general, and add characteristics specific to ad hoc networking:
» Wireless: Nodes communicate wirelessly and share the same media (radio,

infrared, etc.).

(8]

5 Ad-hoc-based: A mobile ad hoc network is a temporary network formed
dynamically in an arbitrary manner by a collection of nodes as need arises.
5> Autonomous and infrastructure less: MANET does not depend on any

established infrastructure or centralized administration. Each node operates in

e it b in il

L e — AL 5

distributed peer-to-peer mode, acts as an independent router, and generates

Ssuis

independent data.

Multi-hop routing: No dedicated routers are necessary; every node acts as a

Y

router and forwards each other’s packet to enable information sharing between

mobile hosts.

Y

Mobility: Each node is free to move about while communicating with other
nodes. The topology of such an ad hoc network is dynamic in nature due to
constant movement of the participating nodes, causing the intercommunication

i patterns among nodes to change continuously.

2.2.1 Constraints in Mobile Ad-hoc Networks

As described in the previous section, the ad hoc architecture has many
benefits, such as self-reconfiguration, ease of deployment, and so on. However, this
flexibility and convenience come at a price. Ad hoc wireless networks inherit the

traditional problems of wireless communications, such as bandwidth optimization,

power control, and transmission quality enhancement, while, in addition, their
mobility, multi-hop nature, and the lack of fixed infrastructure create a number of
complexities and design constraints that are new to mobile ad hoc networks, as

discussed in the following subsections:

> They are infrastructure less: Mobile ad hoc networks areca multi-hop

infrastructure less wireless networks. This lack of fixed infrastructure in

i 1 addition to being wireless, generate new design issues compared with fixed
networks. Also, lack of a centralized entity means network management has to

be distributed across different nodes, which brings added difficulty in fault

detection and management.

e R aS R

=

Eidll [T

» Dynamically Changing Network Topologies: In mobile ad hoc networks,

>

since nodes can move arbitrarily, the network topology, which is typically
multi-hop, can change frequently and unpredictably, resulting in route

changes, frequent network partitions, and possibly, packet losses.

Physical Layer Limitation: The radio interface at each node uses
broadcasting for transmitting traffic and usually has limited wireless
transmission range, resulting in specific mobile ad hoc network problems like
hidden terminal problems, exposed terminal problem, and so on. Collisions are
inherent to the medium, and there is a higher probability of packet losses due

to transmission errors compared to wired networks.

Limited Link Bandwidth and Quality: Since mobile nodes communicate
with each other via bandwidth-constrained, variable capacity, error-prone, and
insecure wireless channels, wireless links will continue to have significantly

lower capacity than wired links and, hence, congestion is more problematic.

Variation in Link and Node Capabilities: Each node may be equipped with
one or more radio interfaces that have varying transmission/receiving
capabilities and operate across different frequency bands. This heterogeneity
in node radio capabilities can result in possible asymmetric links. In addition,
cach mobile node might have different software/hardware configuration,
resulting in variability in processing capabilities. Designing network protocols
and algorithms for this heterogencous network can be complex, requiring
dynamic adaptation to the changing power and channel conditions, traffic
load/distribution variations, load balancing, congestion, and service

environments.

Energy Constréined Operation: Because batteries carried by each mobile
node have limited power, processing power is limited, which in turn limits
services and applications that can be supported by each node. This becomes a
bigger issue in mobile ad hoc networks because as cach node is acting as both
an end system and a router at the same time, additional energy is required to

forward packets from other nodes.

(10]

!
E
E

A\ 74

Network Robustness and Reliability: In MANET, network connectivity is
obtained by routing and forwarding among nodes. Although this replaces the
constraints of fixed infrastructure connectivity, it also brings design
challenges. Due to various conditions like overload, acting selfishly, or having
broken links, a node may fail to forward the packet. Misbehaving nodes and
unreliable links can have a severe impact on overall network performance.
Lack of centralized monitoring and management points means these types of
misbehaviors cannot be detected and isolated quickly and easily, adding

significant complexity to protocol design.

Network Scalability: Current popular network management algorithms were
mostly designed to work on fixed or relatively small wireless networks. Many
mobile ad hoc network applications involve large networks with tens of
thousands of nodes, as found, for example, in sensor networks and tactical
networks. Scalability is critical to the successful deployment of such networks.
The evolution toward a large network consisting of nodes with limited
resources is not straightforward and presents many challenges that are still to
be solved in areas such as addressing, routing, location management,
configuration management, interoperability, security, high-capacity wireless

technologies, and so on.

Quality of Service: A quality of service (QoS) guarantee is essential for
successful delivery of multimedia network traffic. QoS requirements typically
refer to a wide set of metrics including throughput, packet loss, delay, jitter,
error rate, and so on. Wireless and mobile ad hoc specific network
characteristics and constraints described above, such as dynamically changing
network topologies, limited link bandwidth and quality, variation in link and
node capabilities, pose extra difficulty in achieving the required QoS

guarantee in a mobile ad hoc network.

Network Security: Mobile wireless networks are generally more vulnerable
to information and physical security threats than fixed-wire line networks. The
use of open and shared broadcast wireless channels means nodes with

inadequate physical protection are prone to security threats. In addition,

e e i i s s R e

s

PR e

e

o

because a mobile ad hoc network is a distributed infrastructure less network, it
mainly relies on individual security solutions from each mobile node, as
centralized security control is hard to implement. Some key security
requirements in ad hoc networking include:

Confidentiality: preventing passive eavesdropping.

Access control: protecting access 10 wireless network infrastructure.

Data integrity: preventing tampering with traffic (i.e., accessing, modifying or

injecting traffic).

2.3 Advantages of MANET

Ad-hoc networks have several advantages compared to traditional cellular

systems. The advantages include:

% On demand setup: These networks can be setup at any time and at any place.
> Unconstrained connectivity: They provide access to information and services

regardless of geographic positions.

A wireless ad-hoc network is a collection of mobile/semi-mobile nodes with
no pre-established infrastructure forming a temporary network. Each of the nodes has
a wireless interface and communicates with each other over either radio or infrared.
Laptop computers and personal digital assistants that communicate directly with each
other are some examples of nodes in an ad-hoc network. Nodes in the ad-hoc network
are often mobile, but can also consist of stationary nodes, such as access points to the
Internet. Semi mobile nodes can be used to deploy relay points in areas where relay

points might be needed temporarily.

In general, mobile ad hoc networks are formed dynamically by an autonomous
system of mobile nodes that are connected via wireless links without using an existing
network infrastructure or centralized administration. The nodes are free to move
randomly and organize themselves arbitrarily; thus, the network’s wireless topology
may change rapidly and unpredictably. Such a network may operate in a standalone

fashion, or may be connected to the larger Internet. Mobile ad hoc networks are

(12]

s e e e

e e

s b

s ey e i

infrastructure less networks since they do not require any fixed infrastructure such as
a base station for their operation. In general, routes between nodes in an ad hoc
network may include multiple hops and, hence, it is appropriate to call such networks

“multi-hop wireless ad hoc networks”.

L] L]
Tugguuns®

Figure 2.2: Mobile Ad-hoc network

As shown in Figure 2.2, an ad hoc network might consist of several home-computing
devices, including notebooks, handheld PCs, and so on. Each node will be able to
communicate directly with other nodes that reside within its transmission range. For
communicating with nodes that reside beyond this range, the node needs to use
intermediate nodes to rely messages hop by hop. For example the following Figure
2.3 shows a simple ad-hoc network with three nodes. The outermost nodes are not
within transmission range of each other. However the middle node can be used to
forward packets between the outermost nodes. The middle node is acting as a router

and the three nodes have formed an ad-hoc network.

Figure: 2. 3 Example of simple ad-hoc network with three participating nodes

(13]

!
g

e

e e R

An ad-hoc network uses no centralized administration. This is to be sure that the
network won’t collapse just because one of the mobile nodes moves out of transmitter
range of the other. Nodes should be able to enter/leave the network as they with.
Because of the limited transmitter range of the nodes, multiple hops may be needed to
reach other nodes. Every node wishing to participate in an ad-hoc network must be
willing to forward packets for other nodes. Thus every node acts as a host and as a
router. A node can be viewed as an abstract entity consisting of a router and a setoff
affiliated mobile hosts (Figure 2.4). A router is an entity, which, among other things
runs a routing protocol. A mobile host is simply an IP-addressable host/entity in the

traditional sense.

Host

Host Router

Host

Figure2.4; Block diagram of mobile node acting both as host and as router

Ad-hoc networks are also capable of handling topology changes and
malfunctions in nodes. It is fixed through network reconfiguration. For instance, if a
node leaves the network and causes link breakages, affected nodes can easily request

new routes and the problem will be solved. This will slightly increase the delay, but

the network will still be operational.

Wireless ad-hoc networks take advantage of the nature of the wireless
communication medium. In other words, in a wired network the physical cabling is
done priori restricting the connection topology of the nodes. This restriction is not
present in the wireless domain and, provided that two nodes are within transmitter

range of cach other, an instantaneous link between them may form.

s b e LR |

2.4 Disadvantages of MANET

Some of the disadvantages of MANETSs arc as follows:
% Limited resources and physical security.
% Intrinsic mutual trust vulnerable to attacks.
%» Lack of authorization facilities.

% Volatile network topology makes it hard to detect malicious nodes.

> Security protocols for wired networks cannot work for ad hoc networks.

2.5 Applications of Mobile Ad-hoc Network

Because ad hoc networks are flexible networks that can be set up anywhere at
any time, without infrastructure, including pre configuration or administration, people
have come to realize the commercial potential and advantages that mobile ad hoc

networking can bring. Following are the range of mobile ad hoc network applications.

Emergency services

» Search-and-rescue operations as well as disaster recovery; e.g., early retrieval

and transmission of patient data (record, status, diagnosis) from/to the

hospital.
» Replacement of a fixed infrastructure in case of earthquakes, hurricanes, fire,

ete.

Commercial environments

#» E-Commerce, e.g., electronic payments from anywhere (i.e., in a taxi).

» Business:

» Dynamic access to customer files stored in a central location on the fly
provide consistent databases for all agents mobile office
7 Vehicular Services:
Transmission of news, road conditions, weather, music

Local ad-hoc network with nearby vehicles for road/accident guidance.

TR R TR)

VR

St

il

s R SRR T G705

N B

ledc G

+ e
=

e el

Home and enterprise networking

» Home/office wireless networking (WLAN), e.g, shared whiteboard
applications, use PDA to print anywhere, trade shows

» Personal area network (PAN).

Educational applications

% Set up virtual classrooms or conference rooms.

%» Setup ad hoc communication during conferences, meetings, or lectures
Entertainment

% Multi-user games
%» Robotic pets

% Outdoor Internct access

Location-aware services

> Follow-on services, e.g., automatic call forwarding, transmission of the actual
workspace to the current location.

» Information services:
Push, e.g., advertise location-specific service, like gas stations

Pull, e.g., location-dependent travel guide; services (printer, fax, phone,

server, gas stations) availability information; caches, intermediate results, state

information, etc.

Tactical networks

» Military communication, operations

» Automated Battlefields

2.6 Concerns related to MANET

The wircless and mobile ad hoc nature of MANET brings new security
challenges to network design. Because nodes in mobile ad hoc network generally

communicate with each other via open and shared broadcast wireless channels, they

are more vulnerable to security attacks. In addition, their distributed and infrastructure

. o

S PR R

T

re means that centralized security control is hard to implement and the

less natu
network has to rely on individual security solutions from each mobile node.

Furthermore, as ad hoc networks are often designed for specific environments and
may have to operate with full availability even in adverse conditions, security

solutions applied in more traditional networks may not be directly suitable.

Understanding the possible form of attacks is the first step toward developing
good security solutions. In mobile ad hoc networks, the broadcasting wireless medium
inherently signifies that an attack may come from any direction and from different
layers (network or application transport such as TCP flooding and SYN flooding).
The principle of ad hoc networks sounds like a great idea. A dynamic connection
between devices that can be used from anywhere and offers limitless business,
recreational and educational opportunities appears 1o be a promising technological
advancement towards making our lives easier. However, as with conventional

networks, security and safety considerations have to be taken into account.

Ad hoc networks are by nature very open to anyone. Their biggest advantage
is also one of their biggest disadvantages: basically anyone with proper hardware and
knowledge of network topology and protocols can connect to the network. This
allows potential attackers to infiltrate the network and carry out attacks on its

participants with the purpose of stealing or altering information.

Also, depending on the application, certain nodes or network components may
be exposed to physical attacks which can disrupt the functionality. In contrary to
conventional networks, ad hoc network hosts are more often than not part of an
environment that is not maintained professionally. Wireless nodes might be scattered

over a large area, where it may pose difficult to supervise all of them.

Another specia'lty of ad hoc networks is their heavy reliance on inter-node
communication. Due to the dynamic nature of the link between the single nodes, it
may happen that a certain node B is not in range of node A. In these cases, the
information can be routed through intermittent nodes. Even though this is of course
not a new concept since it is heavily utilized in the infrastructure of the Internet, the

fact that ad hoc network nodes are usually mobile and can disappear at any time (both

(17]

from within the range of a particular node as well as from the entire network), the
b

possibility that a certain data route becomes unavailable is significantly higher than in

fixed-location networks. This makes easier for attackers to disrupt the network tan in

conventional networks.

R —
(2= g

(18]

CHAPTER 3

Introduction to Ns-2

3.1 The Basics

NS2 is Network Simulator (version 2) covers a large number of
applications, of protocols, of network types, of network elements and of traffic
models. These are called “simulated objects”. NS2 is Discrete Event Simulator
where events are to be maintained at discrete interval of time. The advance of
time depends on the timing of events which are maintaind by a scheduler. An
event is an object in the C++ hierarchy with an unique ID, a schedule time and
the pointer to an object in that handles the event. The scheduler keeps an
ordered data structure with the events to be executed and fires them one by

one, invoking the handler of the event. Queue of Events are maintained which

o e WS

e AT

are ordered by time. In this state variable changes at discrete points in time, for

e.g. length of a queue in a packet switching network or buffer occupancy. NS2
is primarily UNIX based. It is also supported in windows operating

environment, since most of the library files of ns2 is supported in UNIX based

environment so to simulate our project we have used Ns2 in UNIX.

NS simulator is based on two languages:-

e ——

17 OTCL interpreter: It is Object oriented extension of Tcl (Tool Command

Language). It is used to execute user’s command scripts like to define specific

S —

topology, specific protocols and application that has to be simulated.

C++ Programming language: Used as backhand (library files) in NS2 which

allow in achieving efficiency in simulation and faster execution time, Since

3 NS2 is discrete event simulator so backhand files must be supported over

there.

NS has a rich library of network and protocol objects. There are two

class hierarchies: the compiled C++ hierarchy and the interpreted OTcl one, 1

with one to one correspondence between them. The compiled C++ hierarchy

allows us to achieve in the simulation and faster execution times. This is in

particular useful for the detailed definition and operation of protocols.

TCL_(Tool Command Language) is used by NS2. It is a language with a very

simple sintaxis and it allows a very easy integration with other languages. The

characteristics of these languages arc:

% It Allows a fast development.
» It provides a graphique interface.
5 It is compatible with many platforms.

5 It is easy to use and free.

Ns2 supports for:-

» TCP

Routing

VY

Multicast-Protocols
Wired

wireless (WLAN and satellite) networks

b7 SRR,

Energy and movement model

Elements of a simulation

Simulator

Nodes

Main class

b AR

Configuration of the simulation

Y

Creating objects

Y

Creating events and their scheduling

Nodes in a network (end or intermediate)

Attached list of agents (~protocols)

v VvV |V

Attached list of neighbors (=> Links)

A7

Unique ID (~address)

connecting nodes (,,physically®)

>
>

simplex-, duplex links

multiple access LANs, including wireless

Y

bandwidth

‘.’

» delay

» queue object

» different trace-objects
e cnqueue, dequeue,
e drop

e receive (implemented in next node)

Queues
“part of” link
store, drop packets if necessary

Decide which packet is dropped

Random Early Detect (RED)

»

>

>

» Drop-tail (FIFO)
>

» Class Based Queuing (CBQ, priority + Round Robin)
>

Several Fair Queuing mechanisms (SFQ, DRR,...)

v

..Drop Destination*

Y

Object all dropped packets are forwarded to

Agents

v

Endpoint of (logical) connections
~ OSl level 3 (network)

Create and receive packets

YN Y

implement protocols

[21]

gometimes additional sender and receiver

ecessary

TCP, TCPSink in div. ,flavors™
ubDP

RTP, RTCP

by PARSE Ao B B 7 N

The NS2 Directory Structure:-

Ns- fG
Tcl8.0 TK8.0 OTcl tclcl Ns-2
tcr
Commu
nication mcas
eeQQ
h E Validation «—_%]

Running NS2 Program:-

Ns-2 Program Run ns-2 Simulation

[Otel Script] Program Results Analysis
[Trace files]
= [Tsmerefe ey

_+Read trace file.
| _+Replay with
AT NAM.

«Otcl Interpreter = | “1 1 <Draw
- 3 ~ Statistical
‘NS libraries pictures.

3.2 Writing TCL Scripts

3.2.1 2 Nodes Topology

To create a 2 node topology we will write a TCL script. Lets name it ‘simulation].tcl’.

First of all, you need to create a simulator object. This is done with the command

set ns [new Simulator]

Now we open a file for writing that is going to be used for the nam trace data.

set nf [open out.nam w)
$ns namtrace-all $nf
The first line opens the file 'out.nam' for writing and gives it the file handle 'nf'. In the

second-line-we-tell the simulator. Object that we created above to write all simulation

data that is going to be relevant for nam into this file.

set n0 [$ns node]
set nl [$ns node]
$ns duplex-link $n0 $nl 1Mb 10ms DropTail

(23]

The above code creates two nodes and assigns them to the handles 'n0' and 'nl".
The next line connects the two nodes. Now we will write codes for Sending data from
node n0 to node nl. In ns, data is always being sent from one 'agent' to another. So the
next step is to create an agent object that sends data from node n0, and another agent

object that receives the data on node nl.

set udp0 [new Agent/UDP]

$ns attach-agent $n0 $udp0

set cbr0 [new Application/Traffic/CBR]
$cbro0 set packetSize_ 500

$cbr0 set intervai 0.005

$cbr0 attach-agent Sudp0

These lines create a UDP agent and attach it to the node n0, then attach a CBR
traffic generator to the UDP agent. CBR stands for 'constant bit rate'. Line 7 and 8
should be self-explaining. The packet Size is being set to 500 bytes and a packet will
be sent every 0.005 seconds (i.e. 200 packets per second). You can find the relevant
parameters for each agent type. The next lines create a Null agent which acts as trafﬁé
sink and attach it to node nl. After that the two agents have to be connected with each
other. Finally to tell the CBR agent when to send data and when to stop sending write

last two lines.

set null0 [new Agent/Null]
$ns attach-agent $n1 $null0
$ns connect Sudp0 $null)
$ns at 0.5 "$cbro start"

$ns at 4.5 "$cbr0 stop"

In next step add a 'finish' procedure that closes the trace file and starts nam.

proc finish {} {
global ns nf

$ns flush-trace

close $nf

exec nam out.nam &
exit 0

}

[24]

The next line tells the simulator object to execute the 'finish' procedure after 5.0

seconds simulation time. The last line finally starts the simulation.

$ns at 5.0 "finish"
$ns run

3.2.2 7 Nodes Scenario

As always, the topology has to be created first, though this time we take a
different approach which you will find more comfortable when you want to create

larger topologies.

The following cade creates seven nodes and stores them in the array n(). To connect

the nodes to create a circular topology last line are written.

for {seti 0} {$i <7} {incr i} {
set n($i) [$ns node]
}

for {seti 0} {$i <7} {incri} {
$ns duplex-link $n(8$i) $n([expr ($i+1)%7]) 1Mb 10ms DropTail
}

The next step is to send some data from node n(0) to node n(3). Create a UDP agent

and attach it to node n(0) and then Create a CBR traffic source and attach it to udp0.

set udp0 [new Agent/UDP]

$ns attach-agent $n(0) Sudp0

set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize_ 500

$cbro set interval_ 0.005

$cbr0 attach-agent $udp0

set null0 [new Agent/Null|
$ns attach-agent $n(3) $null0
$ns connect $udp0 $null0

$ns at 0.5 "$cbr0 start"
$ns at 4.5 "$cbr0 stop"
If you start the script, you will see that the traffic takes the shortest path from node 0 to
node 3 through nodes | and 2, as could be expected. Here we complete 7 node
scenarios. Only one difference we got over here is use of array to crate large number of

nodes.

" | Nodeo | Q

|
#
i
i
i
i
i

3 Now we add another interesting feature. We let the link between node 1 and 2 (which

is being used by the traffic) go down for a second.

$ns rtmodel-at 1.0 down $n(1) $n(2)

$ns rtmodel-at 2.0 up $n(1) $n(2)

Since link is broken between nodes we will use dynamic routing to solve that 'problem’
by adding following line at the beginning of Tcl script, after the simulator object has
been created.

$ns rtproto DV

Start the simulation again, and you will see how at first a lot of small packets run
through the network. If you slow nam down enough to click on one of them, you will
see that they are tProtoDV' packets which are being used to exchange routing

information between the nodes.

When the link goes down again at 1.0 seconds, the routing will be updated and the
traffic will be re-routed through the nodes 6, 5 and 4.

Node 0

When link between nodel and node2 is broken then new dynamic route has been
discovered and data is being transferred through next route.

[27]

In this way we have many routing protocol used for wired and wireless topology
according to demand of specific situation.

3.3 XGRAPH

Creating Output Files for Xgraph:-
I. Creating topology and traffic sources: In below codes a 5 node scenario is

being created to analyze traffic by generating XGRAPH.

@

set n0 [Snsnode]|
set nl [Snsnode]
set n2 [$nsnode]
set n3 [$nsnode]
set n4 [$nsnode]
$ns duplex—link $n0 $n3 1 Mb 100 ms Drop Tail
$ns duplex—link $nl $n3 1 Mb 100 ms Drop Tail
$ns duplex—link $n2 $n3 1 Mb 100 ms Drop Tail
$ns duplex—link $n3 $n4 1 Mb 100 ms Drop Tail

After creating topology we will set traffic agent with nodes,
Now Recording DATA in output files:-We have to open three output files. The
following lines have to appear 'early' in the Tecl script.

set f0 [open outl.tr w]
set fl1 [open outl.tr wj
set f2 [open out.tr w |

(28]

These files have to be closed at some point. We use a modified 'finish' procedure to do
that. It not only closes the output files, but also calls xgraph to display the results. You

may want to adapt the window size (800 x400) to your screen size.

Proc finish {} {

global 0 f1 £2

close $f0

close $f1

close $f2

exec xgraph out(O.tr outl.tr out2.tr - geometry 800x400 &

exit 0
}

Now we can write the procedure which actually writes the data to the output files.

Proc record {} {

global sink0 sinkl sink2 f0 f1 £2

set ns [Simulator instance]

set time 0.5

set bw0 [$sink 0 set bytes_ |

set bwl [$sink 1 set bytes |

set bw2 [$sink 2 set bytes |

setnow [$ns now|

puts $f0 "$now [expr $bw0/Stime* 8/1000000]"
puts $f1 "$now [expr $bwl/$time* 8/1000000]"
puts $f2 "Snow [expr $bw2/$time* 8/1000000]"
$sink0 setbytes 0

$sinkl setbytes 0

$sink2 set bytes 0

$ns at [expr $now +$time| "record"

}

This procedure reads the number of bytes received from the three traffic sinks. Then it
calculates the bandwidth (in M Bit/s) and writes it to the three output files together

with the current time before it resets the bytes values on the traffic sinks. Then it

re-schedules itself.

Now running the Simulation:-

We can now schedule the following events:

(29]

e

R ——

| $ns at 0.0 "record"
$ns at 10.0 " $ source0 start" I
$ns at 10.0 " § sourcel start" ,
$ns at 10.0 " $ source2 start" f
$ns at 50.0 " $source0 stop" |
$ns at 50.0 " $sourcel stop"
$ns at 50.0 " $source2 stop" i
$ns at 60.0 " finish"
$ns run

First, the 'record ' procedure is called, and afterwards it will re-schedule itself

periodically every 0.5 seconds. Then the three traffic sources are started at 10 seconds
and stopped at 50seconds. At 60seconds, the 'finish' procedure is called. When you run
the simulation, an xgraph window should open after some time which should look

similar to this one:

200,000

1150.0000

1100.0000 -+

3.4 Running Wireless Simulations

3.4.1 Scenario File

We are going to simulate a very simple 2-node wireless scenario. The topology

consists of two mobilenodes, node (0) and node (1). The mobilenodes move about

within an area whose boundary is defined in this example as 500mX500m. The nodes

start out initially at two opposite ends of the boundary. Then they move towards each
other in the first half of the simulation and again move away for the second half. A
TCP connection is setup between the two mobilenodes. Packets are exchanged
between the nodes as they come within hearing range of one another. As they move

away, packets start getting dropped.

Just as with any other ns simulation, we begin by creating a tcl script for the wireless
simulation. We will call this file simple-wireless.tcl.

A mobilenode consists of network components like Link Layer (LL), Interface Queue
(IfQ), MAC layer, the wireless channel nodes transmit and receive signals from etc.
For details about these network components see section 1 of chapter 15 of At the
beginning of a wireless simulation, we need to define the type for each of these
network components, Additionally, we need to define other parameters like the type of
antenna, the radio-propagation model, the type of ad-hoc routing protocol used by
mobilenodes etc. See comments in the code below for a brief description of each
variable defined. The array used to define these variables, val() is not global as it used
to be in the earlier wireless scripts. For details and available optional values of these
variables, see chapter 15 (mobile networking in ns) of ns documentation. We begin our
script simple-wireless.tcl with a list of these different parameters described above, as

follows:

set val(chan)

Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation model
set val(ant) Antenna/OmniAntenna ;# Antenna type

set val(ll) LL ;# Link layer type

set val(ifq) Queue/DropTail/PriQueue ;# Interface queue type

set val(ifqlen) 50 ;# max packet in ifq

set val(netif) Phy/WirelessPhy :# network interface type

set val(mac) Mac/802_11 # MAC type

set val(rp) DSDV ;# ad-hoc routing protocol

set val(nn) 2 ;# number of mobilenodes

Next we go to the main part of the program and start by creating an instance of the

simulator,

setns_ [new Simulator]

Then setup trace support by opening file simple.tr and call the procedure trace-all {} as

follows:

set tracefd

[open simple.tr w]

$ns_ trace-all $tracefd

Next create a topology object that keeps track of movements of mobilenodes within the
topological boundary.

set topo [new Topography]

We had earlier mentioned that mobilenodes move within a topology of 500mX500m.
We provide the topography object with x and y co-ordinates of the boundary, (x=500,
y=500):

$topo load_flatgrid 500 500

The topography is broken up into grids and the default value of grid resolution is 1. A
diferent value can be passed as a third parameter to load_flatgrid {} above. Next we

create the object God, as follows:

create-god $val(nn)

Quoted from CMU document on god, "God (General Operations Director) is the object
that is used to store global information about the state of the environment, network or
nodes that an omniscent observer would have, but that should not be made known to
any participant in the simulation." Currently, God object stores the total number of
mobilenodes and a table of shortest number of hops required to reach from one node to

another.

First, we need to configure nodes before we can create them. Node configuration API
may consist of defining the type of addressing (flat/hierarchical etc), the type of adhoc

routing protocol, Link Layer, MAC layer, IfQ etc.

The configuration API for creating mobilenodes looks as follows:

$ns_ node-config -adhocRouting $val(rp) \
-lIType $val(l) \

-macType $val(mac) \

-ifqType $val(ifq) \

-ifqLen $val(ifqlen) \

-antType Sval(ant) \

-propType $val(prop) \

-phyType $val(netif) \

-topolnstance $topo\

-channelType $val(chan) \
-agentTrace ON\
-routerTrace ON\
-macTrace OFF \
-movementTrace OFF

Next we create the 2 mobilenodes as follows:

for {seti 0} {$i < $val(nn) } {incr i} {
set node_($i) [$ns_ node |
$node_(8$i) random-motion 0 ;# disable random motion

}

The random-motion for nodes is disabled here, as we are going to provide node

position and movement (speed & direction) directives next.

Now that we have created mobilenodes, we need to give them a position to start with,

$node_(0) set X_ 5.0
$node_(0) set Y_ 2.0
$node (0) set Z_ 0.0

$node (1) set X_390.0
$node (1) set Y_ 385.0
$node (1) setZ 0.0

Node0 has a starting position of (5,2) while Node1 starts off at location (390,385).

Next produce some node movements,

$ns_at 50.0 "$node_(1) setdest 25.0 20.0 15.0"
$ns_ at 10.0 "$node_(0) setdest 20.0 18.0 1.0"
$ns_at 100.0 "$node_(1) setdest 490.0 480.0 15.0"

$ns_at 50.0 "$node (1) setdest 25.0 20.0 15.0" means at time 50.0s, nodel starts to
move towards the destination (x=25,y=20) at a speed of 15m/s. This API is used to
change direction and speed of movement of the mobilenodes.

Next setup traffic flow between the two nodes as follows:

set tep [new Agent/TCP]|

(33]

$tep set class_ 2

set sink [new Agent/TCPSink]
$ns_ attach-agent $node_(0) $Stcp
$ns_ attach-agent $node_(1) $sink
$ns_ connect Step $sink

set ftp [new Application/FTP]
$ftp attach-agent $tcp

$ns_ at 10.0 "Sftp start"

This sets up a TCP connection betwen the two nodes with a TCP source on node0.
Then we need to define stop time when the simulation ends and tell mobilenodes to

reset which actually resets their internal network components,

for {seti 0} {$i < $val(nn) } {incr i} {
$ns_ at 150.0 "$node_(Si) reset";
}

$ns_ at 150.0001 "stop"
$ns_ at 150.0002 "puts \"NS EXITING...\" ; $ns_ halt"

proc stop {} {
global ns_ tracefd

close $tracefd

}

At time 150.0s, the simulation shall stop. The nodes are reset at that time and the "Sns_
halt" is called at 150.0002s, a little later after resetting the nodes. The procedure stop{}
is called to flush out traces and close the trace file. And finally the command to start
the simulation,

puts "Starting Simulation..."

$ns_run

CHAPTER 4

ROUTING

4.1 Definition

Routing is the act of moving information from a source to a destination in an

internetwork. Routing is usually performed by a dedicated device called router. It is a
key feature of the internet because it enables messages to pass from ne computer to
another and eventually reachthe target machine. Each intermediary computer

performs routing by passing along the message to the next computer.

Routing is often confused with bridging, which performs a similar function.
The principal difference between the two is that bridging occurs at a lower level and
is therefore more of a hardware function whereas routing occurs at a higher level
where the software component is more important. And because routing occurs at a
higher level, it can perform more complex analysis to determine the optimal path for
the packet. The transferring of packets through an internetwork is called as packet
) switching which is straight forward, but the path determination could be very

complex.

Routing protocols use several metrics as a standard measurement to calculate
the best path for routing the packets to its destination. The process of path
determination is that, routing algorithms find out and maintain routing tables, which
contain the total route information for the packet. The information of route varies

from one routing algorithm to another.

Routing is mainly classified into static routing and dynamic routing. Static
routing refers to the routing strategy being stated manually or statically in the router.

Static routing maintains a routing table usually written by the network administrator. i

(35]

Dynamic routing refers to the routing strategy that is being learnt by an interior or
exterior routing protocol. This routing primarily depends on the state of the network

i.e., the routing table is affected by the activeness of the destination.

4.2 Routing in mobile Ad-hoc networks

Mobile Ad-hoc networks are self-organizing and self-configuring multihop
wireless networks, where the structure of the network changes dynamically. This is
mainly due to the mobility of the nodes. Nodes in these networks utilize the same
random access wireless channel, cooperating in an intimate manner to engaging
themselves in multihop forwarding. The node in the network not only acts as hosts but
also as routers that route data to/from other nodes in network. In mobile ad-hoc
networks there is no infrastructure support as is the case with wireless networks, and
since a destination node might be out of range of a source node transferring packets;
so there is need of a different routing procedure.

Each device in a MANET is free to move independently in any direction, and
will therefore change its links to other devices frequently. Each must forward traffic
unrelated to its own use, and therefore be a router. The primary challenge in building
a MANET is equipping each device to continuously maintain the information required

to properly route traffic.

4.3 Problemsin routing with Mobile Ad-hoc Networks

> Asymmetric Links: Most of the wired networks rely on the symmetric links
which are always fixed. But this is not a case with ad-hoc networks as the
nodes are mobile and constantly changing their position within network.

Routing Overhead: In wireless ad-hoc networks, nodes often change their location

‘.’

within network. So, some stale routes are generated in the routing table which leads to
unnecessary routing ovérhead.

% Interference: This is the major problem with mobile ad-hoc networks as the links
come and go depending on the transmission characteristics, one transmission might

interfere with another and node might overhear transmissions of other nodes and can

corrupt the total transmission.

» Dynamic Topology: Since the topology is not constant, so the mobile node might
move or medium charateristics might change. In ad-hoc networks, routing tables must
somehow reflect these changes in topology and routing algorithms have to be
adapted. For example, in a fixed network routing table updating takes place at every

> fixed interval. This updating frequency must be very high in case of ad-hoc networks.

(37]

CHAPTER 5

CLUSTERING

Besides being advantageous of having low deployment cost, ad-hoc networks
are battery and power constrained. The nodes in an ad hoc network can vary from a
Laptop to a Cell Phone. These devices have limited power and processing capabilities.
Therefore, the more the network grows, the more they are required to forward packets

for other nodes; devoting a significant amount of processing power.

Intrusion Detection System can be deployed in these self-organizing multi-hop
wireless networks to protect them against a number of attacks by offering auditing
and monitoring capabilities to a node. However, normal intrusion detection
approaches cannot be used in this environment. Since these networks lack
infrastructure, we need to monitor intrusions at all nodes in the network. But, due to
mobility and other constraints such as restricted power and processing capacity, nodes
cannot run heavy applications to detect intrusions. If every node starts monitoring
intrusions separately, processing overhead at each node will consume a large portion
of their battery and power. Therefore, a scalable and fault tolerant IDS is required to

K govern these on-secure wireless ad-hoc networks against attacks.

The efficient solution is to defend against intrusion co-operatively, rather than
cach mobile node performing full analysis of traffic passing through it. In order to
cooperate, the nodes must trust on each other so that they should not audit all the data,

and hence, they can save a lot more processing and memory overhead.

The clustering approach can be taken as an additional advantage in these
processing constrained networks to collaboratively detect intrusions with less power
usage and minimal overhead. Existing clustering protocols are not suitable for
intrusion detection purposes because they are linked with the routes. The route

establishment and route renewal affects the clusters and as a consequence, the

(38]

e —————————————

processing and traffic overhead increases due to instability of clusters. The ad-hoc
networks are battery and power constraint, and therefore a trusted monitoring node
should be available to detect and respond against intrusions in time. This can be
achieved only if the clusters are stable for a long period of time. If the clusters are
regularly changed due to routes, the intrusion detection will not prove to be effective.
Therefore, a generalized clustering algorithm is needed that can run on top of any
routing protocol and can monitor the intrusions constantly irrespective of the routes.
Clustering is also useful to detect intrusions collaboratively since an individual node
can neither detect the malicious node alone nor it can take action against that node on

its own.

5.1 Clustering

One of the key questions in cooperative intrusion architecture is related to the
organization of nodes. If every node is required to cooperate with every other node (as
in a peer-to-peer architecture) without a structured organization, then overheads will
grow proportionally to the square of the number of nodes. Rather than assuming a
completely flat structure, it may be possible to organize nodes in a hierarchy by

forming groups efficiently, leading to reduced communication overheads.

It 1s critical to organize the groups appropriately in order to achieve a
significant reduction in overhead. This problem of designing groups efficiently is a
fundamental problem that has been the focus of research in MANET used which has
been considered especially in relation to routing. The same concept can be adapted for
the intrusion detection function. When designing the clustering schemés for detection,
researchers have tried to exploit several characteristics of the network in order to

minimize overheads.

An intuitive approach for- organizing -into clusters is according to node
mobility. Clusters are not static but change as nodes move around. As the nodes
move, they may drop out from their existing cluster and join a different cluster that is

closer to them. Clusters in some cases may join together or a single cluster may split

e

into two or more clusters. Typically, a node might be elected in the cluster as a leader

and such a node is typically called the cluster-head.

There are several algorithms that have been proposed in the literature for
organizing nodes in the clusters based on a variety of criteria, including how the
clusters adapt to connectivity changes due t0 mobility and how cluster-heads for each

cluster are elected.

5.2 Applications of Clustering

The clustering algorithms have been studied extensively for MANET and have
been shown to improve the performance of routing and other functions in MANET.
So a natural question here is whether it is possible to use the clustering concept for
organizing the intrusion detection functions efficiently in a MANET. The clustering
algorithms used for routing may not be quite applicable directly and might have to be

modified because of the unique characteristics of the intrusion detection process.

One potential use of clustering in intrusion detection is for creating a dynamic
hierarchy for collecting and consolidating intrusion detection information. This would
be in lieu of the peer-to-peer architecture. Another potential application of clustering
is in distributing the function of collecting evidence in the network. For example, the
formation of cluster in which a cluster head is one hop away from every member of
the cluster. In that cas¢, a cluster-head can observe all communications in the cluster
through premiscuous monitoring and therefore become the natural chokepoint in the
neighborhood for placing the intrusion detection function. The cluster-head in this
case can then be the single node in the cluster that needs to run the intrusion detection
function. Such a cluster-head would focus on malicious behavior that can be observed
from the network traffic. Multiple nodes in the cluster do not need to perform the

same function, reducing the power consumption on those nodes.

5.2.1 Limitations

The use of clustering algorithms for intrusion detection also has significant

limitations specific to intrusion detection. The biggest limitation, as remarked earlier,

[41]

is that these algorithms are not resistant to attacks such as cluster-heads being taken
over by an adversary in order to bypass the intrusion detection mechanism. A cluster-
head that becomes malicious can introduce malicious intrusion detection reports and
share these reports with the rest of the hierarchy. This could result in a well-behaved
node being declared malicious and being expelled from the network. The higher the
cluster-head is in the hierarchy, the more severe is the damage caused by a malicious
cluster-head. The root of the hierarchy can potentially make the whole network

inoperable if it becomes malicious.

Another limitation of the use of clustering for intrusion detection purposes is
that algorithms may be manipulated by a malicious node to cause that node to be
clected as a cluster-head. The election of a malicious node as a cluster-head can have

significant impact in bypassing the overall intrusion detection architecture.

Due to mobility and other constraints such as restricted power and processing
capacity, nodes cannot run heavy applications to detect intrusions. Therefore, the
architecture should be simple yet effective to provide security against different type of
attacks. The more efficient solution is to defend against intrusion co-operatively,
rather than each mobile node performing full analysis of traffic passing through it. In
order to co-operate, the nodes must trust on each other so that they should not audit all

the data, and hence they can save a lot more processing and memory overhead.

The clustering schemes like Cluster-Based Routing Protocol, Cluster Switch
Gateway Routing, and One-Demand Clustering result in a monitoring node, called
“Head Node”, which can be trusted in this regard if the selection of head node is

based upon fair and secure criteria.

We aimed to use ad-hoc clustering protocols such as Cluster-Based Routing
Protocol or Cluster Switch Gateway Routing, since only the cluster head node
forwards the data packets on behalf of all the cluster members; thus increasing route
efficiently by reducing network traffic. However, the existing clustering protocols are
not widely used in ad hoc networks. Another important drawback with the clustering

protocol is that the clusters need to be changed whenever the route is changed.

(42]

Therefore, a generalized clustering algorithm is required that can be used
specifically for intrusion detection purpose irrespective of the routes. The cluster
members are ordinary nodes that parse the data for intrusion during the
communication and may seek help from the cluster head to detect intrusion if they

find some suspicious activity but their gathered information is still incomplete.

5.3 The Cluster Based Routing Protocol

Cluster Based Routing Protocol (CBRP) is a distributed, efficient and scalable
protocol that uses clustering approach to minimize on-demand route discovery traffic.
The cluster head is elected for each cluster to maintain cluster membership
information. The nodes periodically exchange HELLO packets to maintain a neighbor
table and to maintain a 2-hop topology link state table. To discover 3 hop away
cluster-heads, cluster adjacency table (CAT) is exchanged in HELLO message. It
does not allow two cluster heads to have a direct bi-directional link to each other.
Cluster Based Routing Protocol also opposes frequent elections. The overhead,
however, in this scheme is to maintain neighbor table and CAT at every node, thus
involving bulky traffic and processing load. Also, two heads in a radio range are not a

problem in our architecture and they are automatically adjusted after election timeout.

5.3.1 Election Process

The clusters are formed to obtain the head node to monitor traffic within its
cluster. The cluster head not only manages its own cluster, but also provides a way for
communication to other clusters. It maintains information of every member node and
neighbor clusters (forwarded by the gateway node). The neighbor information is
useful for network-wide communication. The cluster management responsibility is
rotated among the capable members of the cluster for the load balancing and fault
tolerance and must be fair and secure. This can be achieved by conducting regular
clections. The proposed election process is simple. The cluster head keeps an election
interval timer for managing the elections. Every node in the cluster must participate in

the election process by casting their vote showing their willingness to become the

(43]

cluster head. The node showing the highest willingness becomes the cluster head until

the next timeout period.

5.3.1.1 Node Status

The feature of node status has been taken from Cluster Based Routing
Protocol and Passive Clustering. UNDECIDED (UD), HEAD (HD), MEMBER
(MB), and GATEWAY (GW). Every node comes up in UD state. It switches to MB
state if it finds any HD node in its neighbor, otherwise it switches to HD state (if it
succeeds in election). If the connection of MB nodes with their HD node breaks, they
fall back to UD state. However, if MB node finds another HD node among its
neighbor (due to mobility or election process), it becomes GW. Both the MB or GW
nodes can move to HD state after election. Simultaneously, HD node upon failing in
the election process becomes MB or GW (depending upon number of HD nodes, it is
linked to). The GW node upon loosing all its HD nodes except one goes back to MB

State. The transmission node states discussed is shown in the figure below:

All HEADs lost

HEAD

Mo Neighbor or
After Election

‘ All HEADs lost

After . except 1

HEAD

After Election

after Election

Figure5.1: Transition diagram of nodes taking part inthe clusterformation

5.3.1.2 Data Structure

Two types of data structures have been used: “Member Table” and “Cluster
Adjacency Table” (CAT) as in. Since the proposed architecture does not perform
routing, the processing overhead and.storage space at each node are reduced by
keeping all neighbors information only at the head node. The member nodes do not
keep the information about their neighbors (except their respective head node) as
communication among the member nodes is not required. The cluster-head maintains
connections with all its neighbors (MB or GW) in member table using HELLO
messages. The fields in member table are Neighbor ID, Status (MB or GW) and an
Expiry Timer. The timers associated with each entry arc used to delete stale entries.
MB and GW nodes only keep information of their respective head nodes in their

member tables.

Another
HEAD

(45]

Communication with adjacent clusters is done via cluster-heads. HD node
maintains neighbor cluster information in CAT with the help of its GW nodes. GW
node forwards its member table to the HD node by which HD adds/updates entries in
its CAT. This table contains 4 fields: Cluster ID, Cluster HEAD ID, Link (“Direct” or
ID of GW) and an Expiry Timer (same as in Member table).

5.3.1.3 HELLO Messages

HELLO messages are used to maintain connectivity. If all nodes in the
network start broadcasting HELLO after HELLO_INTERVAL, the network would be
too congested and much processing would be involved. Therefore, the better idea is to
periodically broadcast HELLO only from HD node after every hello timer, rather than
all nodes broadcasting HELLO. When neighbor nodes receive HELLO from a HD,
they simply reply with unicast HELLO to show their presence.

Besides HD, a UD node can also broadcast the HELLO message. This is done
to find any HD node, and starts HELLO_INTERVAL timer. If some HD node replies,
the UD node changes its status to MB. Nodes other than HD simply drop the packet.
If timer expires and no HD node replies, the UD node starts election. It is mandatory
for a UD node to broadcast at least 1 HELLO packet before starting the election. The
following figure 5.2 demonstrates the process of a UD node broadcasting HELLO.

(46]

Figure 5.2: Different scenarios for reply to broadcast HELLO from UD node

(5.2 a) HELLO

HELLO

v

B T T e

LI

HELLO

HELLO ° HELLO

HELLO

(5.2 b) IEEEEELEELE R p@...............
HELLO HELLO
rrvssnununnnanus EEERE TR =

MEMBER TABLE MEMBER TABLE
feesernsnnnnnnns T
HELLO HELLO

(5.2

ELECTION PROCESS

_ HELLO HELLO:.
HELLO HELLO
e B

MEMBER TABLE

uosusnsunnunsunnns

Notations Used:

—_—

FT e — > Shows Broadcast message

[47]

In figure 2a, UD node broadcasts HELLO, gets response from HD and
becomes MB. Figure 2b shows that UD node becomes GW after getting response
from 2 HD nodes. In figure 2c, it is shown that UD node starts election after not
[receiving any response for its broadcasts HELLO. On becoming HD, MB nodes in

neighbor become GW and UD nodes convert to MB.

oW UNNEENNNNENENNEN NNy,
L]) L]
™] ¢ EEEEENNNNNSUNEN NN AN,
L - » [}
" L L L
u L L]]
L] L]]]
[] [] . L
L]] []]
] [] u]
L}] [] []
L] n]] |
L] [] L}
[]] " []
L] -] []
L] . [] []
» ¥ []]
. "]
Li

‘mussunnuEEEEEREEEE NP

0’.
& .-IIIIIIIIIIIIII' Il
.’ n [1
¥ . n 1
L n I |
L] . L
" v . " “.
L] L] [] u
u n u n
[n [[]
|] n [] L]
u u []] t
L] L] B n |
L] L] m A u H'
) it :
& u "
L v Ll

L4 .
Myggur®

f Fig: 5.3: A Scenario of 18 nodes with 5 clusters

Notations used

Head Node

‘ Member Node
O Gateway Node

(48]

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

After studying the literature about ns-2 and practically implementing various
topologies for wired networks with different routing protocols like dsdv, dsr etc., it
can be stated easily that ns-2 is a very powerful and reliable network simulator. Not
only for wired networks simulations, ns-2 is also quite reasonably good for simulating
almost every real life wireless scenarios. Moreover analyzing the working of a
network like monitoring packets, calculating bandwidth and plotting graphs is not a
problem at all to tackle in network simulator.

Due to mobility and other constraints such as restricted power and processing
capacity, nodes cannot run heavy applications to detect intrusions. If every node starts
monitoring intrusions separately, processing overhead at each node will consume a
large portion of their battery and power. Therefore, a scalable and fault tolerant
clustered approach is needed to collaboratively detect intrusions with less power
usage and minimal overhead. The clustered scheme is simple and offers low overhead
in terms of memory usage and number of messages exchange. It can be deployed on

top of any ad hoc routing protocol.

6.2 Suggestions for Future Work

As far as working in ns-2 is concerned more complex scenarios of wired as
well as wireless networks-could be simulated and analyzed. Xgraph feature of ns-2 for
plotting graphs could be used to compare cbrp with other in-built routing protocols
like dsdv, dsr etc.

Clustering could be implemented for an ad-hoc network with dynamic nodes

i.e. nodes are free to move completely including the head node and can disappear at

[49]

any time like in real life situations. Sybil attack detection and detection of other type
of intrusions could aiso be studied in more detail and implemented using clustering
formation or using some different approach like: If mobile nodes cooperating in
detecting a Sybil node had more accurate and closely synchronized clocks then it is
possible for the trusted nodes to establish their relative positions using the localization
scheme. Once the relative position was determined, then each node could record the
time that every individual message was received. By then comparing these times, each
node could determine the distance form each sender. This could quickly show that
different nodes were not close together, ruling out the possibility that they were a
Sybil attacker. As the hardware costs decrease, it is likely that many mobile nodes
will contain Global Positioning System (GPS) receivers. This will let nodes know
their positions down to within a meter. Given just this absolute position information,
nodes could collaborate to determine the position of an ad hoc Sybil attacker. In this
case, each node could record its position when it received a message. Later
comparison of the locations in which the same messages were received by different
nodes would quickly indicate if different identities were heard in different locations

that were far enough apart to rule out movement between them.

(50]

=

SAMPLE CODES

cbrp.tel

dsr.tcl
’ # $Id: dsr.tcl,v 1.10 1998/08/11 14:46:54 dmaltz Exp S

set opti{rt port) 255
set opt(cc) Noffl ;# have god check the caches
for bad links?

Ryent/CBRPEgebiSport—i255
Agent/CBRP set dport 255

Agent/CBRP set no_of clusters_ 0

#Agent /CBRP set sport 0

#Agent /CBRP set dport 0

#Agent/CBRP set wstO_ 6 ; As specified by

Pravin ‘

#Agent/CBRP set perup_ 15 ; As given in the paper il 1]
¢ (update period) Il
' 'Agent/CBRP set use mac_ 0 i # Performance suffers il

with this on

Agent/CBRP set be random 1 i# Flavor the

performance numbers :)

#Agent /CBRP set alpha 0.875 ; 7/8, as in RIP(?)

#Agent/CBRP set min_update periods_ 1 ; #Missing perups
before linkbreak

Agent/CBRP set myaddr 0 ;# My address
Agent/CBRP set verbose 1 ;

Agent/CBRP set trace wst 0 e i

#

god cache monitoring

source tcl/ex/timer.tcl

Elass—CachePimer—superctass—TFimer

CacheTimer instproc timeout {} { |
global opt node ; %
$self instvar agent;
$agent check-cache
$self sched 1.0

[51]

proc checkcache {a}l {

Class SRNode -superclass MobileNode

SRNode instproc init {args} {

P

CEY:

- i3

global cachetimer ns_ ns

set ns $ns_

set cachetimer [new CacheTimer]
$cachetimer set agent 3$a
Scachetimer sched 1.0 i

global opt ns_ tracefd RouterTrace
$self instvar cbrp agent dmux_ entry_point

eval $self next S$args ;# parent class constructor
set cbrp agent [new Agent/CBRP]

$cbrp_agent ip-addr [$self id]
$cbrp agent_ set myaddr_ [$self id]

puts "Creating node [$self id]";

if { SRouterTrace == "ON" } {
Recv Target
set rcvT [cmu-trace Recv "RTR" S$self]
$rcvT target S$cbrp agent
set entry peoint SrevT
} else {
Recv Target
set entry point $cbrp agent_

1
]

#
Drop Target (always on regardless of other tracing)

:
set drpT [cmu-trace Drop "RTR" $self]
$cbrp agent drop-target $drpT

#

Log Target

#

set T [new Trace/Generic]

$T target [$ns_ set nullAgent_]
ST attach S$tracefd

S —set—spe—FSaedfid]

$cbrp agent_ log-target $T

$cbrp agent_ target $dmux_

¥ packets to the DSR port should be dropped, since we've
already handled them in the DSRAgent at the entry.

(52]

set nullAgent [$ns_ set nullAgent]
$dmux_ install Sopt(rt_port) S$nullAgent_
#Sdmux_ install Sopt(rt_port) S$cbrp_agent_

SRNodes don't use the IP addr classifier. The DSRAgent
should

be the entry point

$self instvar classifier_

set classifier "srnode made illegal use of classifier_ "

}

SRNode instproc start-cbrp {} {
$self instvar cbrp_agent_

global opt:

$cbrp agent_ startcbrp

if {$opt(cc) == "on"} {checkcache $cbrp_agent_}
}
SRNode instproc entry {} {

$self instvar entry point_
return $entry point_

SRNode instproc add-interface {args} {

args are expected to be of the form

S$chan S$prop $tracefd S$opt(ll) Sopt(mac)
global ns_opt RouterTrace

eval $self next S$Sargs
Sself, instvar ebrp.agent 1l ;magw 1Ld§
$cbrp agent mac-addr [$mac_(0) id]

if { SRouterTrace == "ON" } {
Send Target '
set sndT [cmu-trace Send "RTR" $self]
$sndT target 511 (0)
$cbrp agent add-11 $sndT $ifq_(0)
} else {
Send Target
$cbrp agent add-11 $11_(0) $ifg (0)
}

¥ setup promiscuous tap into mac layer I
#$cbrp agent install-tap $mac_(0) il

}

SRNode instproc reset args { l
$self instvar cbrp_agent_ i

(53]

eval S$self next Sargs

Scbrp _agent reset

proc create-mobile-node { id } {
global ns_ chan prop topo tracefd opt node
global chan prop tracefd topo opt i

set node ($id) [new SRNode] i

set node $node ($id)
$node random-motion 0 i# disable random motion
$node topography S$topo

connect up the channel
$node add-interface $chan $prop $opt(ll) S$Sopt(mac) \
Sopt(ifqg) S$opt(ifglen) $opt(netif) Sopt (ant)

#

This Trace Target is used to log changes in direction

and velocity for the mobile node and log actions of the
DSR agent

i

set T [new Trace/Generic]

ST target [$ns_ set nullAgent)
5T attach S$tracefd

$T set src_ $id

$node log-target ST

$ns_ at 0.0 "$node start-cbrp"

cbrp_Packet.h

/*
cbrp packet.h
Jinyang 6/9/99 modified from dmaltz' srpacket.h from DSR

Hif

#ifndef cbrp packet h
itdefine _cbrp_packet h_

#include <packet.h>
#include "hdr cbrp.h"
#include "path.h"

struct CBRP_Packet { l

[54]

ID dest;

LD Srey

Packet *pkt; /* the inner NS packet */

Path route;

CBRP_Packet (Packet *p, struct hdr cbrp *cbhbrph) @ pkti(p)

if (cbrph->valid() && (cbrph->num addrs() > 0)) ({
route.setLength(cbrph—>num_add;s());
for- (dnt i=0;i<cbrph—>num_addrs();i++) {
route[i] = ID(cbrph->addrs([i]);
1
if (cbrph->cur_addr ()>=0) {
route.setIterator(cbrph—>cur_addr());
}
}else {
route.reset () ;
1
}
CBRP_ Packet () : pkt (NULL) {}
}i

fendlfo . cbrp.packet _h_

cbrpagent.h

/* cbrp.h

*/

#ifndef cbrp h
ffdefine cbrp h

#include <agent.h>
#include <ip.h>
#include <delay.h>
#include <scheduler.h>
#include <queue.h>
#include <trace.h>
finclude "config.h"
ffinclude "scheduler.h"
finclude "queue.h"
#include <cmu/arp.h>
#include <cmu/11.h>
#include <cmu/mac.h>
#tinclude <cmu/priqueue.h>

//cbrp's request table, route cache implementation are all
from DSR.

//:) thanks david!

#include <cmu/dsr/path.h>

#include <cmu/dsr/routecache.h>

#include <cmu/dsr/reguesttable.h>

#include "cbrp packet.h"
#include "ntable.h"

{

[55]

m

typedef double Time;
typedef unsigned int uint;

#define MAX QUEUE LENGTH S
fdefine ROUTER_PORT Oxff

/* The below set of constants are taken from DSR's
implementation, I think they work fine */

#define BUFFER_CHECK 0.03 // seconds between buffer
checks

#define RREQ JITTER 0.010 // seconds to jitter broadcast
route requests

#idefine SEND TIMEOUT 30.0 // # seconds a packet can live

in sendbuf
fdefine SEND BUF SIZE 64
#define RTREP_HOLDOFFgSIZE 10

fdefine GRAT ROUTE_ERROR 0

class CBRP_Agent;

class NeighborTablePeriodicHandler;
class NeighborTableTimeoutHandler;
class NeighborTableCFormationHandler;
class ntable ent;

class adjtable ent;

class nexthop ent;

struct CBRP_RtRepHoldoff { // Taken from DSR's
implementation

ID requestor;

ID requested dest;

int best length;

int our_ length;

b

struct CBRP_ SendBufEntry {
Time t; // insertion time
CBRP_Packet p;

bi

class CBRP_SendBufferTimer : public TimerHandler ({ //Taken

from DSR's implementation

public: (
CBRP_SendBufferTimer (CBRP Agent *a) : TimerHandler() { a = ﬁ

aj) ‘

void expire (Event *e);
protected:
EBRP—Agent—*a—;

bi
class CBRP_Agent : public Tap, public Agent {

friend class NeighborTable;
friend class NeighborTablePeriodicHandler;

(56]

friend class NeighborTableTimeoutHandler;
friend class NeighborTableCFormationHandler;
friend class NeighborTableCContentionHandler;
friend class CBRP_SendBufferTimer;

publie:

CBRP_Agent ();

virtual int command(int argc, const char * const * argv); |

virtual void recv(Packet *, Handler* callback = 0);

void Terminate (veid); l

void lost_link(Packet *p);

static int no_of clusters_ ; // Jinyang It prints out
how many clusters that have been formed in total

void tap(const Packet *p);

protected:
void process_cluster update(Packet * p);
void forwardSRPacket (Packet *);

void startUp():

void trace(char* fmt, ...);
void tracepkt (Packet *, double, int, const char *);

Trace *logtarget; // Trace Target
PriQueue *11 queue; // link level output queue
int myaddr ; // My address...

int be random ;
NeighborTable *ntable;

// Randomness/MAC/logging parameters used in DSR's
implementation

int use mac_;

int verbose ;

int trace wst ;

f

private: i
int off mac ;
intoff 11 ;
int off ip ;

int off cbrp ;

1D net_id, MAC id; // our IP addr and MAC addr
NsObject *11; //our link layer output
PriQueue *ifq; // output interface queue

/****‘k**‘k internal state ********/
CBRP_SendBufferTimer send buf timer;
CBRP_SendBufEntry send buf [SEND_BUF SIZE];
RequestTable request table;

(57]

RouteCache *route cache;

int route_request_num; // number for our next
route request

//below codes r inherited from DSR for dealing with route
errors

bool route_error_held; // are we holding a rt err to
propagate?

IDzerr-from;-err-to; // data from the last route err
sent to us

Time route_error_data_time; // time err data was filled in

void handlePktWithoutSR(CBRP_Packet& p, bool retry);

void handlePacketReceipt (CBRP_Packets& p);

void handleForwarding (CBRP Packets p);

void handleRREQ (CBRP Packet &p);

int handleRREP (CBRP Packet &p);

bool ignoreRouteRequestp(CBRP_Packet& p):

void sendOutPacketWithRoute (CBRP_ Packet& p, bool fresh,
Time delay = 0.0);

void sendOutRtReq(CBRP_Packet &p, int max_prop =
MAX_ SR_LEN) ;

void getRouteForPacket (CBRP_Packet &p, bool retry):

void acceptRREP (CBRP Packet &p);

void returnSrcRouteToRequestor (CBRP_Packet &p):

bool replyFromRouteCache (CBRP_Packet &p);

void processBrokenRouteError (CBRP_Packet& p);

void xmitFailed(Packet *pkt);

veid undeliverablePkt (Packet *p, int mine);

void dropSendBuff (CBRP Packet &p);

void StickPacketInSendBuffer(CBRP_Packet& r);

void sendBufferCheck():;

void sendRouteShortening (CBRP_Packet &p, int heard at, int
xmit at);

void BroadcastRREQ (CBRP_Packet &p);

int UnicastRREQ(CBRP_Packet &p, int nextcluster);

void fillCBRPPath(Path &path, hdr cbrp *&cbrph);

void testinit():

friend void CBRP_XmitFailureCallback(Packet *pkt, void
*data) ;

friend int CBRP_FilterFailure (Packet *p, void *data);

Yo

#endif

cbrpagent.cc

(58]

/* cbrp.cc
*/

extern "C" |
#include <stdarg.h>
#include <float.h>
I

#ftinclude "cbhrpagent.h"
#include "prigueue.h"

#include <random.h>

#include <cmu/cmu-trace.h>
#include <cmu/marshall.h>
#include <packet.h>
#include <cmu/mac-802 11.h>
#define CBRP_ALMOST NOW 0.1 // jitter used for events that
should be effectively
// instantaneous but are jittered to
prevent
// synchronization
#define CBRP_MIN_TUP_PERIOD 1.0 // minimum time between
triggered updates
fdefine CBRP IP DEF TTL. . 32 // defsult . TITL
#define MAX_ LOCAL REPAIR TIMES 5

static const int verbose srr = 0;

//the following codes are from DSR's implementation -Jinyang

Time cbrp arp timeout = 30.0e-3; // (sec) arp request
timeout

Time cbrp rt rq period = 0.5; // (sec) length of one
backoff period

Time cbrp_rt_rqg _max_period = 10.0; // (sec) maximum time
between rt reqs

Time cbrp max err hold = 1.0; // (sec)

/*************** selectors ******************/

bool cbrp_shortening route if possible = true;

bool cbrp local repair = true;

bool cbrp_snoop_forwarded errors = true; //same as DSR's snoop
error

//with CBRP, you do get much benefit from snooping other
nodes' source e

//routes as DSR, netherless, we include this for people to try
out themselves

bool cbrp snoop_source routes = false;

// should we only respond to the first route request we
receive from a host?
bool cbrp reply only to first rtreq = false;

(59]

// should we take the data from the last route error msg sent
to us

// and propagate it around on the next propagating route
request we do?

// this is aka grat route error propagation DSR uses this

// to check invalid entries in route cache. As most of route
replies in DSr

// comes from route cache, keeping route cache as updated as
possible is

// crutial to DSR's performance. In CBRP, most route replies
comes from

//destination node itself and hence does not depend too much
on route cache.

bool cbrp propagate last error = false;

// Should CBRP save the packet if the Local Repair procedure
fails?
bool chrp salvage with cache = true;

// should we listen to a promiscuous tap?

// Unlike DSR, most of CBRP's RREP comes from destination node
instead of

// cache and hence doing eavesdropping does no significant
improvements.

bool cbrp use tap = false;

// CBRP does not use cache to reply when progagating RREQ.
bool cbrp_reply_ from cache on propagating = false;

// Used only when a node is eavesdropping.
bool cbrpagent_reply from cache uninvited = false;

// Returns a random number between 0 and max, from dmaltz
static inline double
jitter (double max, int be random)
{
return (be random_? Random::uniform(max) : 0);

}

#ifdef CBRP_DEBUG
static char*
return_reply path(Packet *p, int off cbrp)
{
hdr_cbrp *cbrph = (hdr cbrp *)p->access(off cbrp_);
static char buf[100];
char *ptr =-buf;
char«trtn.bofe=.pted
int len = cbrph->route reply len();

if (len== 0)
{
sprintf(rtn buf," [<empty path>]"};
return rtn buf;

}

*ptrt++ = [y

M|

for (int ¢ = 0 ; ¢ < len ; c ++)
{
ptr += sprintf(ptr,"%d ",cbrph->reply addrs() [c].addr);
}
*ptrtt Y1
*ptr++ = 'N\0';
return rtn_ buf;

}

Il

static char*
return_RREQ_forward_nodes (Packet *p, int off cbrp)
{
hdr_cbrp *cbrph = (hdr_cbrp *)p->access(off cbrp);
static char buf[100];
char *ptr = buf;
char *rtn buf = ptr;
int len = cbrph->num forwarders();

if (len== 0)
{
sprintf(rtn buf, "[<empty forwarders>]");
return rtn buf;
}
*pLitt = [y
for (int ¢ = 0 ; ¢ < len ;c+=2)
{
ptr += sprintf (ptr,"%d(%d) ",cbrph-
>forwarders[c1.which_head,cbrph—>forwarders[c].which_gateway);
}
*pbodde=-E] Ly
fpprddo= TROLp
return rtn_ buf;
)
#endif //CBRP_DEBUG

//the below two functions are from DSR's implementation -
Jinyang :)

void CBRP _Agent:: trace (char *fmt,...)

{

va list ap;

if (!logtarget)
return;

va_ start (ap, fmt); |
vsprintf (logtarget->buffer (), fmt, ap):; r
logtarget->dump () ; '
va_end (ap);

void i
CBRP_Agent::tracepkt (Packet * p, double now, int me, const
char *type)
{

char buf[1024];

(61]

unsigned char *walk = p->accessdata ();

int ct = *(walk++);
int seq, dst, met;

snprintf (buf, 1024, "V%s %.5f

oQ

ct);

while (ct--)
{

dst = *(walk++);
met = *(walk++);
seq = *(walk++);
seq = seqg << 8 *(walk++);

|
seq = seq << 8 | *(walk++);
seq = seq << 8 | *(walk++);
snprintf (buf, 1024, "%s (%d,%d,%d)", buf, dst,

seq);

}

}
// Now do trigger handling.
//trace ("VTU %.5f %d", now, me);
if (verbose)

trace ("%s'", buf);

void
CBRP_Agent::recv(Packet * p, Handler *)

{

hide ip *Iph = (hdr ip *} p-Paceess (oLl dpiy
hdr_cmn *cmh = (hdr_cmn *) p->access (off cmn);
hdr_cbrp *cbiph-= (hdr_cbrp*)p->accessiolLitabrpiii
/-k
* Must be a packet I'm originating...
%/
if (iph->src_ == myaddr_ && cmh->num_forwards () == 0)
iph->ttl = CBRP_IP DEF TTL;
}
7%
* Packet I'm forwarding...
i 4
else |
/*

* Check the TTL. If it is zero, then discard.
L4
if (--iph->ttl == 0) ({
drop(p, DROP RTR._TTL);
return:

if ((iph->src_ != myaddr_) && (!cbrph->valid(}))}
{

d_ [%d]:", type, now, me,

met,

{

[62]

// process a BROADCAST pkt. .
ntable->processUpdate (p) :
}
else
{
// process a CBRP source route pkt, RREP, RREQ, ERR pkt.
forwardSRPacket (p)

}

void
CBRP_Agent::tap(const Packet *packet)
/* CBRP does not need promiscuous mode, this is just for
interested

party to test out

The implementation is mostly taken from DSR -Jinyang*/
{

hdr_cbrp *cbrph = (hdr_cbrp*) ((Packet *)packet)-
>access (off cbrp);

hdr_ip *iph = (hdr ip*) ((Packet *)packet)->access (off ip);

hdr cmn *cmh = (hdr cmn*) ((Packet *)packet)-

>access (off cmn);
if (!cbrp_use tap) return;
if (!cbrph-»valid{()) return; // can't do anything with it
// don't trouble me with packets I'm about to receive anyway
/* this change added 5/13/98 -dam */
1D next_hop(cbrph—>addrs[cbrph—>cur_addr()].addr, iR)4
if (next_hop == net_id || next hop == MAC id) return;

CBRP_Packet p((Packet *) packet, cbrph);

p.dest = ID{iph->dst(),::IP);
p.src = ID(iph->src{(),::IP);
if (p.src == net id) return;

/* snoop on the errori */
b (cbrph—>route_error())
{
if (verbose)
trace("Sdebug %s tap saw error 3%d", net_ id.dump(),
cmh->uid());
processBrokenRouteError (p) :

}

if (cbrph->route reply())
{
Path reply path(cbrph->reply addrs(), cbrph-
>route reply len(});
reply path.reverseInPlace();

(63]

if (verbose)
trace{"Sdebug %s_ tap saw route reply %d %s",
net id.dump (), cmh->uid(), reply path.dump());
route cache->noticeRouteUsed(reply path,
Scheduler::instance () .clock(),

jSISE=h el e Yi]
return;

if (cbrph->route request() && ((unsigned long)iph->dst()) !=
IP BROADCAST) ({
if (cbrpagent reply from cache uninvited) ({
Packet *p copy = p.pkt->copy();
p.pkt = p _copy;
//this copying is because replyFromRouteCache will free
the pkt which we dont want
replyFromRouteCache (p);
}
lelse if (cbrph->route request() && ((unsigned long)iph-
>dst()) == IP BROADCAST) {
return;

}

// the logic is wrong for shortening rtreq's anyway,
cur addr always = 0

if (cbrp snoop source_routes)
{
if (verbose)
trace("Sdebug _%s_ tap saw route use %d %s",
net id.dump (),

cmh->uid (), p.route.dump(})?:
route cache->noticeRouteUsed(p.route,
Scheduler::instance().clock(), net_id):

}
}

static class CBRPClass:public TclClass
{
public:
CBRPClass ():TclClass ("Agent/CBRP")
{
}
TclObject *create (int, const char *const *)

{
return (new CBRP_Agent ());

p—

}—eclass—cbrpy

CBRP_Agent::CBRP_Agent (): Agent (PT_CBRP), 11 _gueue (0),
myaddr (0), be_random_ (1),
use mac_ (0), verbose (1), trace wst_ (0),

send buf timer (this),request_table(128), route_cache (NULL)
{

(64]

ntable = new NeighborTable(this);
route_ cache = makeRouteCache () ;

route_request num = 1; !
target. = 0;

logtarget = 0;

bind("off_ CBRP_", &off_cbrp);

bind("off_ 11 ", &off 11);

bind("off mac ", &off mac_);

bind("off ip ", &off ip);

route error held = false;

bind ("use_mac_", &use mac_);
bind ("be_random_ ", &be random);
bind ("verbose ", &verbose);
bind ("trace_wst_ ", &trace wst);

bind ("no_of clusters ", &no_of clusters);

}

void

CBRP_Agent::startUp()

{
// kick off periodic advertisments
ntable->startUp():

}

/* This command function is mainly taken from DSR
implementation */
int
CBRP_Agent::command (int argc, const char *const *argv)
{

TclObject *obij;

if (argc == 2)
{ ;
if (strcmp (argv[l), "startcbrp") == 0)
{
startUp();
send_buf_ timer.sched(BUFFER_CHECK
+ BUFFER_CHECK *
Random: :uniform(1.0)) ;
return (TCL _OK);
)]
else if (strcmp (argv([1l], "testinit") == 0)
{
testinit ();
return (TCL OK);
}
else if (stremp (argv[l], "reset") == 0)

{

Terminate () ;

(65]

return Agent::command(argc, argv);
el;e if (strcasecmp(argv[l], "check-cache") == 0)
{ return route_cache->command(argc, argv);
el;e if (strcasecmp (argv([l], "ll-queue") == 0)
if (! (11_queue = (PriQueue *) TclObject::lookup
(argv(2])})
{

fprintf (stderr, "CBRP_Agent: ll-queue lookup of
failed\n", argv([2]):

return TCL_ ERROR;
}

return TCL CK;
}

}

else if (argc == 3)
{

if (strcasecmp(argv([l], "ip-addr") == 0)
{
net id = ID(atoi(argv[2]), ::IP);:
myaddr_ = net_id.addr; //myadd_is the IP addr
shortform
route cache->net _id = net id;

return TCL OK;
}
else if (strcasecmp({argv[l], "mac-addr") == 0)
{
MAC id = ID(atoi(argv([2]), ::MAC);
route cache->MAC id = MAC id;
return TCL OK;
}

if((obj = TclObject::lookup(argv[2])) == 0)
{ :
fprintf(stderr, "CBRP_Agent: %s lookup of %s
failed\n", argv([1l],
argvi2l);
return TCL ERROR;
1
if (strcasecmp (argvi{l], "log-target") == 0)
{
logtarget = (Trace *)obj;
return route_cache—>command(argc, argv) ;
)
else if (strcasecmp(argv[l], "install-tap") == 0)
{
Mac *m = (Mac*) obj;:
m->installTap(this);
return TCL OK;
}

oe

[66]

}

else 1f (argc == 4)
{
if (strcasecmp(argv([l], "add-1l") == Q)
{
1f{ {ob] = TeclObject!:lockup(argv2])): == 0) {
fprintf (stderr, "CBRP_Agent: %s lookup of $s
failed\n", argv[1l],

argv([2]);
return TCL_ ERROR;
)
11 = (NsObject*) obj;
if{ (obj = TclObject::lookup(argv(3])) == 0) ({
fprintf (stderr, "CBRP_Agent: %s lookup of $%s
failed\n", argv[1l],

argv(3]):
return TCL ERROR;
}
ifg = (PriQueue *) obj;
return TCL OK;
1
1

return (Agent::command (argc, argv));

/ *=::::::::::::::::::::::::::::=======::::::::::::::::::::::::
SendBuf management and helpers -- from cmu/dsr/cbrp.cc by

dmaltz

_____________ &/

void

CBRP_SendBufferTimer::expire (Event *e)
{
a_ ->sendBufferCheck();
resched (BUFFER_CHECK + BUFFER CHECK * (double) ((int) e>>5 &
Oxff) / 256.0);
}

void
CBRP_Agent::dropSendBuff (CBRP Packet &p)
// log p as being dropped by the sendbuffer in CBRP agent

{

trace("Ssb %.5f %s_ dropped %s -> %s",

S
Scheduler::instance().clock(),
)

net id.dump(), p.src.dump(), p.dest.dump());
drop(p.pkt; DROP_RTR QTIMEOUT);
p.pkt = 0;

p.route.reset();

}

void
CBRPiAgent::StiCkPacketInSendBuffer(CBRP_Packet& p)

(67]

Time min = DBL_ MAX;
int min index = 0;
int ¢;

if (verbose)
trace("Sdebug %.5f _%s_ stuck into send buff %s -> $%s",
Scheduler::ingtagce().clock(),
net_id.dump(), p.src.dump(), p.dest.dump());

for (c = 0 ; c < SEND_BUF_SIZE ; c ++)
if (send buf(c].p.pkt == NULL)
{
send buf(c].t
send buf(c].p
return;
}
else if (send buf(c).t < min)
{
min = send buf(c].t;
min_index = c;

}

1l

Scheduler::instance().clock();
P

i

// kill somebody
dropSendBuff (send buf[min index].p);

send buf([min index].t Scheduler::instance () .clock();
send_buf[min index].p p;

Il

}

void
CBRP_Agent::sendBufferCheck()

// see if any packets in send buffer need route requests
sent out

// for them, or need to be expired
{ // this is called about once a second. run everybody
through the

// get route for pkt routins to see if it's time to do

another
// route request or what not
int ¢:
for (¢ =0 : c <SEND BUF SIZE ; c++)
{
if (send buf[c].p.pkt == NULL) continue;
if (Scheduler::instance().clock() - send buf(c].t >

SEND_TIMEOUT)
{
dropSendBuff (send buf([c].p);
send—buftelppkt—"07
continue;
}
#ifdef DEBUG
trace ("Sdebug %.5f _%s__ checking-for -ToULerfor-dst %=,
Scheduler::instance().clock(), net id.dump(), *
send buf[c].p.dest.dump()); i

(68]

ffendif
handlePktWithoutSR(send buf(c].p, true);
#ifdef DEBUG
if (send buf(c].p.pkt == NULL)
trace("Sdebug %.5f _%s_ sendbuf pkt to %s liberated by
handlePktWOSR",
Scheduler::instance(}.clock(), net_id.dump(),
send buf(cl.p.dest.dump());
ffendif

static bool
BackOffTest (Entry *e, Time time)
// look at the entry and decide if we can send ancther route
// request or not. update entry as well
{

Time next = ((Time) (0x1<<(e->rt regs outstanding*2))) *
cbrp rt rgq period;

if (next > cbrp rt rg max period) next =
cbrp_rt_rq max period;

if (next + e->last rt req > time) return false;

// don't let rt regs outstanding overflow next on the
LogicalShiftsLeft's

if (e->rt_reqgs_outstanding < 15) e->rt_reqs outstanding++;

e->last_rt reqg = time;

return true;

}

void
CBRP_Agent::Terminate ()
{
TR G
for (¢ =0 ; ¢ < SEND BUF SIZE ; c++) {
If—{send buf[cl ppkt)
drop(send buf[c].p.pkt,
DROP_END OF SIMULATION)
send buf[c].p.pkt = 0;
}

}

void
CBRP_Agent::testinit ()

f
1

struct hdr cbrp hsr;

if (net 1d == "1ID(1,::IP))
{
printf ("adding route to 1\n");
hsrindt i)

(69]

hsr.append_addr(1, AF INET)
hsr.append addr(2, AF INET);
hsr.append_addr(3, AF_INET);
hsr.append_addr(4, AF_INET)

r

r

route_ cache->addRoute (Path (hsr.addrs, hsr.num_addrs())
Q50 - ID (1 e TR Yy
}

’

if (net _id == ID(3,::1IP))
{
printf ("adding route to 3\n");
hsr.init () ;
hsr.append addr(3, AF_INET);
hsr.append addr(2, AF INET)

.
7

route_cache->addRoute (Path (hsr.addrs, hsr.num addrs()),
0.0, ID(3,::IP));

[Fmm e from here onwards, we deal with more CBRP
specific stuff---*/

void
CBRP_Agent::forwardSRPacket (Packet* packet)
{

hdr cbrp *cbrph = (hdr cbrp*}packet->gccess (0ff cbip)
hdreip *aph = - (hdr ip* packet->acoess (off ip)i
hdr_cmn *cmh = (hdr_cmn*)packet->access(off_cmn_);

assert (cmh->size () >= 0);

CBRP_ Packet p(packet, cbrph):
p.dest = ID(iph->dst (), ::IP);
p.src = ID{iph->src(),::IP);

assert (logtarget != 0);

if (!cbrph->valid{))
{
// this must be an outgoing packet, it doesn't have a SR
header on it
i cbrph->init () ; // give packet an SR header
now
if (verbose)
trace(¥S5:%:91f0(%3. originating %s.=> %s',
Scheduleri+instance(}~clock () net—id-dump (),
p.src.dump (),
p.dest.dump()) ;
cmh->size() += IP_HDR LEN;
cmh->ptype () = PT CBR;
handlePktWithoutSR(p, false);
goto done;

[70]

1

if (({p.dest == net_id) && (!cbrph->route_request()))

Il ((p.dest == IP broadcast) &s& (!cbrph-
>route_request()))

Il (cbrph->route_request() && ((unsigned
long) cbrph->request _destination() == net id.addr)))

{
//this is either a route_reply for my previously sent-
out RREQ or a data packet for me
//or a route_request searching for me
handlePacketReceipt (p);
goto done;
}

// should we check to see if it's an error packet we're
handling
// and if so call processBrokenRouteError to snoop
Gt (cbrp_snoop_forwarded_errors && cbrph~>route_error())
{

processBrokenRouteError (p) ;

}

34 (cbrph->route request())
{
// propagate a route request that's not for us
//if I am not a cluster head, forward the RREQ as
indicated to p.dest
//if I am cluster head, broadcast to other un-visited
neighboring clusters
handleRREQ(p) ;
1
else if (!cbrph->route repaired() && !cbrph-
>route_shortened() && cbrph->route reply())
{
//if I am cluster head, i1 have to calculate part of the

RREP
//if I am oridnary node, record myself in RREP and
forward it to the next cluster head
handleRREP (p) ;
}
else
{ // we're not the intended final receipient, but we're a
hop along the route
// since repaired route is hop by hop, we will use
normal data packet forwarding
// function to _handle it
handleForwarding (p):

)
/

done:
assert (p.pkt == 0);
return; i

1‘
i
- 71 e

void
CBRP#Agent::handlePktWithoutSR(CBRP_PaCket& p, bool retry)
/* obtain a source route to p's destination and send it off.
this should be a retry if the packet is already in the
sendbuffer */
{

hdr cbrp *cbrph = (hdr_cbrp*)p.pkt~>access(off_cbrp_);
hdr ip *iph = (hdr_ip*)p.pkt—>access(off_ip_);
hdr emn *ch = (hdr_cmn*)p.pkt—>access(off_cmn_);

assert (cbrph->valid()):

assert (iph->src() == myaddr_]):
if (p.dest == net_id)
{
// it doesn't need a source route, 'cause it's for us
handlePacketReceipt (p):
return;

}

//firstly, try our route cache to see if the route has been
discovered
Jif (route_cache—>findRoute(p.dest, p.route, 1))
{

// lucky! we've got a route...
if (verbose_)
trace ("S$hit %.5f _%s_ %s -> %s %s",

scheduler: :instance () .clock(), net id.dump(),
p.src.dump (), p.dest.dump(), p.route.dump())
sendQutPacketWithRoute (p, true);

return;

}

//secondly, examine neighborhood table to see if destination
node is our neighbor
1f (ntable—>isNeighbor(p.dest.addr))
{
p.route.reset();
p.route.appendToPath (net_id);
p.route.appendToPath(p.dest);

if (verbose) { (11
trace("S$direct hit %.5f _%s_ %d -> %s %s”, i
Scheduler: :instance () .clock(), net id.dump(),
iph->src(), p.dest.dump(), p.route.dump());

3

sendOutPacketWithRoute (p, true);
return;

[72]

//thirdly, we'll check using two-hop-neighbor table if we
could reach
// the destination using only one intermediate node
1E (ntable—>GetQuickNextNode(p.dest.addr))
{
p.route.reset ();
p.route.appendToPath (net_id);
p.route.appendToPath(ID(ntable-
>GetQuickNextNode (p.dest.addr), ::IP)};
p.route.appendToPath(p.dest);

if (verbose_) {

trace ("S$direct hit %.5f %s_ %d -> %s %s'",
Scheduler: :instance () .clock(), net_id.dump(),
iph->src(), p.dest.dump (), p.route.dump ());

}
sendOutPacketWithRoute (p, true);

return;

}

// We have to send out a RREQ to discover the destination

if (verbose_)
trace("S$miss $.5f _%s_ %s -> %s retry 3%d",
Scheduler: sinstance () .clock(), net id.dump(),
net id.dump(), p.dest.dump (), retry?1:0);

getRouteForPacket (p, retry);

}

void
CBRP_Agent::handlePacketReceipt(CBRP_Packet& p)
/* Handle a packet destined to us */

{
hdr cbrp *cbrph = (hdr_cbrp*)p.pkt">access(off_cbrp_);

if (cbrph->route reply())
{

//wie've got a route reply!
acceptRREP (p);
}
1t (cbrph—>routeﬁrequest())

{
assert ((unsigned long)cbrph->request_destination() ==

net idiaddr-||-net-id- == p.dest);
if (cbrp reply only to first_rtreq &&

ignoreRouteRequestp(p)}
t//we only respond to the first route request

// we receive from a host

Packet::free(p.pkt): // drop silently
p.pkt = 0;
return;
}
else

[73]

{ // we're going to process this request now, so
record the req num
request_table.insert(p.src, p.src, cbrph-
>rtreq _seq());
//initiate a RREP in reply to the RREQ
returnSrcRouteToRequestor (p) ¢
}
}

1f (cbrph—>route7error())
{ // register the dead route
processBrokenRouteError (p) ;

}

if (cbrph->route shortening()) {
//the previous route shortening attempt is successful,
shorten the route
for (int ¢ = (cbrph->cur addr()-1); c < cbrph-
>num_addrs ()-1 ; c++)
{
p.route(c].addr = p.route[c+1].addr;
}
p.route.setLength (cbrph->num addrs()-1);
cbrph->route shortened() = 1;
cbrph->route_shortening() = 0;
1

if (!cbrph->route reply() && (unsigned long)cbrph-

>addrs (0] .addr == p.src.addr
&& (cbrph->route shortened() || cbrph-
>route repaired())) {

CBRF_Packet p copy = p;
p_copy.pkt = allocpkt():
p_copy.dest = p.srcy
p_copy.src = net id;

hdr_ip *new_iph =- (hdr_ip*)p_copy.pkt=>access(off ip }:
hdr_cbrp *new_cbrph = (hdr_cbrp*)p copy.pkt-

>access (off cbrp);

new cbrph->init();

new_cbrph->route repaired() = cbrph->route repaired();
new_cbrph->route shortened() = cbrph->route_ shortened();
new_cbrph—>route_reply() = 1;

new_iph->src() = net id.addr;

mew tph=>dst{)—=p.srcaddy

new iph->dport() = RT PORT;

new_iph->sport() = RT PORT;

new iph->ttl() = 255;

p_copy.route.reverselnPlace();

(74]

p_copy.route.resetIterator();
fillCBRPPath(p copy.route,new_chbrph);

hdr cmn *new_cmnh = (hdr_cmn*)p_copy.pkt-
>access (off cmn_);
new_cmnh->ptype () = PT_CBRP;

sendOutPacketWithRoute (p copy,1);

}

target ->recv(p.pkt, (Handler*)O);
p.pkt = 0;
1

void

CBRP_Agent::handleForwarding (CBRP_Packet &p)
/* forward packet on to next host in source route,
snooping as appropriate */

hdr cbrp *cbrph = (hdr_cbrp*)p.pkt->access(off_cbrp_);
hdr cmn *cmh = (hdr_cmn*)p.pkt—>access(off_cmn_);
trace("cbrp %.9f %s_ --- %d [%s -> %s] %s",

Scheduler::instance() .clock(), net id.dump(), cmh-
>uid (),
p.src.dump (), p.dest.dump(}, cbrph->dump());

// first make sure we are the ~“current'' host along the
source route.
// if we're not, the previous node set up the source route

incorrectly.
assert(p.route[p.route.index ()] == net_id ||
p.route[p.route.index ()] == MAC_id);

if (p.route.index() >= p.route.length())
{
fprintf (stderr, "dfu: ran off the end of a source
route\n") ;
trace("SDFU: ran off the end of a source route\n") ;
drop (p.pkt, DROP_RTR_ROUTEWLOOP);
p.pkt = 0;
// maybe we should send this packet back as an error...
return;

}

// if there's a source route, maybe we should snoop 1t tde,
does not do it by default
if (cbrp snoop_ source_routes)
route_Eache—>noticeRouteUsed(p.route,
Scheduler: :instance () .clock (),
net id};

// sendOutPacketWithRoute will add in the size of the src
hdr, so
// we have to subtract it out here

(75]

struct hdr cmn *ch = HDR_CMN(p.pkt):

if (cbrph->route shortening()) {
//the previous node has successfully shortened one node
for (int c = (cbrphﬁ>cur_addr()—l); c < cbrph-
>num_addrs()-1 ; c++)

{
cbrph->addrs(c].addr = cbrph->addrs(c+l].addr;
p.routefc].addr = p.route([c+l] .addr;
}
cbrph->cur_addr({) -= 1
p.route.setIterator (chrph->cur_addr());

cbrph->num_addrs ()-= 1;
p.route.setLength(cbrph—>num_addrs(});
cbrph->route shortening() = 0;
cbrph->route_shortened() = 1;
trace("CBRP %.5f _%d_ success-shorten %s",
Scheduler: :instance () .clock () ,myaddr , p.route.dump ()) ;
}
ch->size() -= cbrph->size();

sendOQutPacketWithRoute (p, false);
}

int
CBRP_Agent::handleRREP(CBRP_Packet &p)
{

hdr cbrp *cbrph = (hdr_cbrp*)p.pkt—>access(off_cbrp_);
hdr cmn *cmnh = (hdr_cmn*)p.pkt->access (off_cmn_);

cmnh->addr_ type() = AF INET;

cmnh->xmit failure = CBRP_XmitFailureCallback;
cmnh->xmit failure_ data_ = (void *) this;

//just a cautionary step...
if (p.route.length()<=0) {

#ifdef CBRP_DEBUG
printf ("ERROR route len %d\n", p.route.length());
printf{"p.src %s, p.dest %s, me 25, route-reply %s\n",

p.src.dump (), p.dest.dump (), net id.dump (), return_reply path(p.p
kt, off cbrp)):; B
#endif
abort ()
}
if—{-tebrph=>cur—addr{)->=_0) && (p.route[pirouteiindex ()] ==
net id) && (ntable->my status == CLUSTER_HEAD)) {
~// I am the cluster head and have to calculate the route
cbrph->cur addr ()--;

if (cbrph->cur addr()<0) {

(76]

//1i am the first cluster head, should be able to reach

src
if (ntable->isNeighbor (p.dest.getNSAddr t())) {
cmnh->next _hop() = p.dest.getNSAddr_tT);
lelse {
if (! (cmnh->next hop()=ntable-
>GetQuickNextNode (p.dest.getNSAddr_t()))) {

trace ("CBRP %.5f %d drop-reply-no-route unable
return route to %s",Scheduler::instance().clock(),
myaddr ,p.dest.dump());

Packet::free(p.pkt):

p.pkt = NULL;

return 0;

}

//1if there is a link between next hop and the previous
calculated hop, i am bypassed.

//otherwise include me in the calculated route.
//Right now, the head won't search in its two-hop-
topology table
//for a non-cluster-head guy to take off its work as the
current 2-hop topology table
//implementation is not complete. A more efficient data
structure
//has to be implemented to speed up the search. :)
if (!ntable->existsLink(cmnh->next hop(),
(cbrph->reply addrs() [cbrph-
>route reply len()-1]).addr))
(cbrph->reply addrs() [cbrph->route reply len()]).addr
= net_ id.addr;
(cbrph->reply addrs() [cbrph-
>route reply len{)]).addr type = AF INET;
cbrph->route reply len()++;
}
cmunh->prev_hop = net id.getNSAddr t();

cmnh->size() = Cbrph—>§ize();
Scheduler::instance () .schedule(ll, p.pkt, 0):
goto done;

}

// I am not the first cluster head, I'll try to reach the
prev. cluster head

nsaddr_t prev_cluster = (cbrph->addrs) (cbrph-
>cur_addr].addr;
nsaddr—t—next node=—(cbrph->reply—addrs(}-{ebrph-

>route reply len()-1]).addr;

// firstly try to reach the prev_cluster by 2 hops
adjtable ent *ent = ntable->GetAdjEntry(prev_cluster,1);

if (ent == NULL) {

[77]

//if i could not reach prev_cluster by 2 hops, try 3-hop
gateway.
ent = ntable->GetAdjEntry(prev_cluster, 0);
}

if (ent == NULL) {
//I failed to reach prev_cluster
trace ("CBRP $.5f %s drop-reply-no-route #%d (route
reply %s -> %s cannot reach prev cluster %d on route %s)

previous hop %d", Scheduler::instance().clock(),
net_id.dump(), cbrph->rtreq seq(), p.src.dump(),
p.dest.dump(),prev_cluster, p.route.dump(), cmnh->prev_hop_) ;

Packet::free(p.pkt):
p.pkt = NULL;
return 0;

1
¥

nexthop_ent *next hop = ent->next_hop;
assert (next hop != NULL);

while (next hop) {
//try to search for a gateway node that could be
directly reached by route's next node
//therefore, bypassing me.

if (ntable->existsLink(next hop->next node,next node)) {
cmnh->next _hop() = next hop->next node;
cmunh->addr_type() = AF INET;
break;

}
next hop = next hop->next;

}

if {(next hop == NULL) {
cmnh->next hop() = ent->next hop->next node;
assert (cmnh->next hop()>0);
// it has to go pass me. -Jinyang
(cbrph->reply addrs () [cbrph->route reply len()]).addr =
net id.addr;
(cbrph->reply addrs () [chrph-
>route_reply len()]).addr type = AF_INET;
cbrph->route reply len()++;
}
cmnh->size () = cbrph->size();
cmnh->prev_hop = net id.getNSAddr t():
Scheduler::instance().schedule(1ll, p.pkt, 0);

} else {
/7T am an ordinary node non=CLUSTER_HEAD

nsaddr_t next cluster;

//if I am Jjust an ordinary node, I just forward it to the

next cluster head
cmnh->addr type() = AF_INET;

if (cbrph->cur_addr <0) {
//1 am supposed to be two hop away from the destination
node.
next cluster = p.dest.addr;

1 £ (ntable->isNeighbor (next cluster)) ({

cmnh->next hop() = next cluster;
lelse {
cmnh->next hop() = ntable-

>GetQuickNextNode (next cluster);
if (!cmnh->next hop()) {
trace ("CBRP %.5f %d_drop-reply-no-route %s->%s #%d
(route reply cannot reach prev cluster
5d)", Scheduler::instance().clock(), myaddr ,p.src.dump (),
p.dest.dump(), cbrph->rtreq seq(),next cluster);
Packet::free(p.pkt);
p.pkt = NULL;
return 0;
}
I
lelse {
//try to reach the next cluster head.
next cluster = cbrph->addrs[cbrph->cur_addr()].addr;
//check if the neighbor cluster is just one hop away
1E (ntable->isNeighbor (next cluster)) ({

cmnh->next_hop() = next cluster;
} else {
cmnh->next hop() = ntable-

>GetQuickNextNode (next cluster);
if (!cmnh->next hop()) {

trace ("CBRP %.5f _%d_ drop-reply-no-route %$s->%s #%d
(route reply cannot reach prev cluster %d)",
Scheduler::instance () .clock(), myaddr ,p.src.dump(),
p.dest.dump (), cbrph->rtreq seq(),next cluster);

Packet::free(p.pkt);

p.pkt = NULL;

return 0;

}

//checking for wrong route reply calculation which could
cause looping.

Int=1%
for. (i=cbrph->route reply len({};4>0;d==)-o

if (cbrph->reply addrs() (i-1].addr == cmnh->next hop())

{
break;

}
}
if - (a>0)|

trace ("CBRP %.5f %d_drop-reply-looped %s->%s #%d
existing route:%s reaching next cluster %d via

%d",Scheduler::instance().clock(),myaddr_, p.src.dump (),
p.dest.dump (), cbrph-
>rtreq_seq(),p.route.dump(),next_cluster,cmnh—>next_hop());

Packet::free(p.pkt):

p.pkt = NULL;

return 0;

}

//add myself to the route reply

(cbrphu>reply_addrs()[cbrph—>route_reply_len()]).addr =
net id.addr;

(cbrph—>reply_addrs()[cbrph->route_reply_len()]).addrwtype
= AF_INET;

chrph->route reply len()++;

cmnh->prev_hop_ = net_id.getNSAddr_t();
cmnh->size() = cbrph->size();

//Scheduler::instance () .schedule (11, P.pkt,
Random: :uniform (RREQ JITTER)) ;
Scheduler: :instance () .schedule (11, p.pkt,0);
}

done:
#ifdef CBPR_DEBUG

trace("cbrp _%d_route-reply-sent %s #2d4 -> %s , next hop %d
to reach %d, rest of recorded cluster heads %s, constructed
return path %s", myaddr_, p.src.dump (), cbrph->rtreq_seq(),
p.dest.dump(), cmnh~>next_hop(),(cbrph—>cur_addr()>—1)?cbrph—
>addrs[cbrph—>cur_addr()].addr:iph—
>dst(),p.route.dump(),return#replyﬁpath(p.pkt, off cbrp_)):
fendif

p.pkt = NULL;

return 1;

void
CBRP_Agent::handleRREQ(CBRP_Packet &p)

/* process a route request that isn't targeted at us
cluster heads will broadcast RREQ to all chosen gateways
Chosen gateways will unicast RREQ to neighbor cluster

head*/

{
hdr cbrp *cbrph = (hdrﬁcbrp*)p.pkt—>access(off_cbrp_);
Hdr=ap=*dphe= (hdr_ip*)p.pkt->access(off_ip_):

assert (cbrph->route_request());
+F ((u_int32_t)iph—>dst() != IP BROADCAST) ({
//I am the neighborcluster head, i should broadcast this
RREQ to my neighbors
if (ntable->my status == CLUSTER_HEAD || (iph->dst() ==
myaddr_)) {
BroadcastRREQ(p) /
}else |

(80]

//1i should forward packet to the clusterhead as specified
in ip destination
//this could happen when the neighbor cluster head is 3
hops away and I am the second gateway
UnicastRREQ(p, iph->dst ());
}

}else {
Packet *p ori = p.pkt;

for (int i=0;i<cbrph->num forwarders();i++) {

if (cbrph->forwarders([i].which gateway == myaddr_) {
p.pkt = p ori->copyl();

1£ ((cbrph—>forwarders[i].whichmhead == myaddr_ } &&
(ntable—>my_status == CLUSTER_HEAD)) {
//broadcast the pkt to other cluster heads
BroadcastRREQ (p) ;
}else {
// if I am just an ordinary node, then just
forward the RREQ as indicated in header
UnicastRREQ(p, cbrph->forwarders[i].which head);
1
}
}
// discard un-used RREQ packet
if (p_ori) Packet::free(p ori);

t
PPkt -=-NULL?

void
CBRP_Agent::BroadcastRREQ(CBRP Packet &p)
{

hdr_cbrp *cbrph = (hdr_cbrp*)p.pkt->access(off _cbrp);
hdr_cmn *cmnh = (hdr_cmn*)p.pkt->access(off cmn);
hdr_ip *iph = (hdr_ip*)p.pkt->access(off ip);

assert (cbrph->route request());

if (ignoreRouteRequéstp(p))
{

//-Jinyang only cluster heads records RREQs seen and
drop RREQ if duplicate etc.
if (verbose srr)
trace("cbrp %.5f _$%s_ dropped %s #%d (ignored)",
Scheduler::instance().clock(), net_id.dump(),
p.src.dump(),

cbrph->rtreq_seq());:
Packet::free(p.pkt); // pkt is a route request we've
already processed
return; // drop silently

1
request table.insert(p.src, p.src, cbrph->rtreq_seq()):
if (p.route.length() > (cbrph—>max_propagation()/2))
// the chain of cluster heads are roughly twice as long as

the hop by hop route
{

1f {yverbose sit)
trace("cbrp %.5f %s_ dropped %s #%d (prop limit
exceeded) ",
Scheduler::instance().clock(), net id.dump(),
p.src.dump (),
cbrph->rtreq seq());
Packet::free(p.pkt):; // pkt isn't for us, and isn't
data carrying
p.pkt = 0;
return;

if ((2*p.route.length()) > MAX SR _LEN)
{

// no propagation

trace ("cbrp %.5f _%s_ dropped %s #3%d (SR full)",
Scheduler: :instance () .clock(), net id.dump(),

p.src.dump (),

cbrph->rtreq seq()};:

Packet::free(p.pkt):

p.pkt = 0;

return;

p.route.appendToPath(net_id);
fillCBRPPath(p.route, cbrph);

cmnh->ptype() = PT_CBRP;
cmnh->addr type() = AF_INET; I

if (ntable->isNeighbor (cbrph->request_destination())) {

//directly unicast to the destination

cmnh=>next—hop{}—=-cbrph->request_destination(});
iph->dst () = cbrph->request_destination();
cbrph->num forwarders() = 0;

cmnh->size() = cbrph->size();

scheduler &s = Scheduler::instance();
s.schedule (11, p.pkt,0.0);

(82] i;

return;

}

#ifdef CBRP_DEBUG

trace ("cbrp RREQ 3%d: %s",myaddr_,ntable—>printNeighbors());
fendif

1E (ntable—>GetQuickNextNode(cbrph—>request_destination()))

iph->dst() = cbrph->request_destination();
cmnh->next hop() = ntable->GetQuickNextNode (cbrph-
>request destination());

cbrph—>num_forwarders() = 0;

cmnh->size () = cbrph->size();
Scheduler::instance () .schedule(1l1l,p.pkt,0.0);
p.pkt = 0;

return;

}

if (cbrp reply from_cache_on_propagating &&
replyFromRouteCache (p)) |
p.pkt = NULL;

return;
}
cmnh->next hop() = MAC_ BROADCAST;
iph->dst() = IP_BROADCAST;

int total = cbrph->num_ forwarders();

Packet *p copy = p.pkt->copy():

Il

hdr cbrp *new_cbrph (hdr_cbrp*)p_copy—>access(off_cbrp“);

adjtable ent *p_adj

ntable->adjtable 1;

int i=0;
int j=0;

while (p adj && 1i<MAX NEIGHBORS) ({
//check if a neighbor cluster head has been visited b4 by
this RREQ by checking its recorded route so far
1E (p‘route.member(ID(piadj—>neighbor_cluster, eTPY))|

#ifdef CBRP_DEBUG

trace ("cbrp RREQ%d: ignored %d, duplicate in
route(%s)",myaddr_,p_adj—>neighbor_cluster,p.route.dump{));
fendif

p_adj = p_adj->next;

continue;

(83]

}

//check if a neighbor cluster will have been visited by
prev. cluster head by checking the forwarders' list
for (j=0;j<total;j++) {

if (p_adj->neighbor_ cluster == cbrph-
>forwarders([j].which head) {

#ifdef CBRP_DEBUG
trace("cbrp RREQ%d: ignored %d, duplicate in previous
broadcast",myaddr ,p_ adj->neighbor_cluster);

ffendif
break;
}
1
if (j>= total) { //the next cluster head has NOT been
visited to the best of our knowledge. :)

#ifdef CBRP_DEBUG
trace("cbrp %.5f %s_ rebroadcast %s #3%d ->%d %s to 2
hop head %d via %d",Scheduler::instance().clock(),

net id.dump (),

p.src.dump (), chrph->rtreq seq(), cbrph- il
>request destination(), 4

p.route.dump(), p_adj->neighbor cluster, L

p_adj->next hop->next node); J?

fendif f

/*new_cbrph->reply addrs() [i].which_gateway= p_adj-
>next hop->next node; */

new cbrph->forwarders[i].which gateway= ntable-
>GetQuickNextNode (p adj->neighbor cluster);

new_cbrph->forwarders[i++].which_head= p_adj- |
>neighbor cluster; |

1
p_adj = p_adj->next;
}

//1if I am not a cluster head, i don't send RREQ to 3-hop
neighbor cluster head

if (ntable->my status != CLUSTER_HEAD) { |
goto DONE; , w
}

p_adj = ntable->adjtable_2;
while (p_adj && i<MAX NEIGHBCORS) {

if (p.route.member (ID(p adj->neighbor_cluster, ::IP))) ({

(84]

#ifdef CBRP_DEBUG
trace ("cbrp RREQ%d: ignored %d,
route(%s)",myaddr ,p adj->neighbor cluster,p.route.dump()):
#endif
p_adj= p_adj->next;
continue;
}
// 1 don't send to 3-hop neighbor head in cluster
adjacency table if it is within 2-hop range
if (ntable->GetAdjEntry(p adj->neighbor cluster,1)) {
#ifdef CBRP_DEBUG =
trace ("cbrp RREQ%d: ignored (sent it to 2-hop gw) %d,
route (%s)",myaddr ,p_ adj->neighbor cluster,p.route.dump());
#endif
p_adj= p_adj->next;
continue;

}

for (j=0;j<total;j++) {
if (p_adj->neighbor_cluster == cbrph-

>forwarders[j].which head) {
#ifdef CBRP_DEBUG

trace ("cbrp RREQ%d: ignored %d, duplicate in previous
broadcast"”,myaddr ,p adj->neighbor_cluster);
fendif

break;

1
LE -1 5= Botal } o
new cbrph->forwarders[i].which_gateway= p_adj->next_hop-
>next node;
new cbrph->forwarders [i++].which_head= p_adj-
>neighbor cluster;
}
p_adj = p_adj->next;
1

DONE :
new cbrph->num_forwarders() = qs
1E L= lZ2s0y]

hdr cmn *new_cmnh=(hdr_cmn*)p_copy—>access(off_cmn_);

new_cmnh->size() = new_cbrph->size();
#ifdef CBRP_DEBUG

trace("cbrp %.5f %d_my route addres size %d forward path
%s",Scheduler::instance() .clock(), myaddr_, new_cbrph-
>num_addrs(),return_RREQ“forward_nodes(pﬁcopy,offbcbrp_));
#endif

trace ("CBRP %.5f %d_ broadcast-request 3%d->%d",
Scheduler: :instance () .clock(),myaddr , iph->src(),cbrph-
>request destination());

Scheduler: :instance () .schedule(1ll,p copy,0.0);

(85]

o
|
i

Packet::free(p.pkt);
p.pkt = NULL;

int
CBRP_Agent::UnicastRREQ (CBRP_Packet &p, nsaddr_t nextcluster)
{
hdr_cbrp *cbrph = (hdr_cbrp*)p.pkt->access(off_cbrp_):
hdr cmn *cmnh = (hdr cmn*)p.pkt->access (off_cmn_);

hdr ip *iph = (hdr_ip*)p.pkt->access(off_ip_);
cmnh->addr_type() = AF_INET;

if (ntable->isNeighbor (cbrph->request destination())) {

//directly unicast to the destination
cmnh->next _hop() = cbrph->request_destination();
iph->dst () = cbrph->request destination();

cbrph->num_ forwarders() = 0;
cranh->size () = cbrph->size();
Scheduler &s = Scheduler::instance();
s.schedule(ll,p.pkt,0.0);

return 1;

}

if (cbrp reply from cache on_ propagating &&
replyFromRouteCache (p)) {
p.pkt = NULL;
return 1;

if (ntable->isNeighbor (nextcluster))

cmnh->next hop(} = nextcluster;
iph->dst () = nextcluster;
}else 1f ((cmnh->next hop() = ntable-

>GetQuickNextNode (nextcluster))) {
iph->dst () = nextcluster;
Jelse |

trace ("CBRP %:Sf _%d_ drop-request : dropped(does not know

how to reach next cluster %d), route(%s) cluster head?
$s'", Scheduler: :instance().clock () ,myaddr_,nextcluster,p.route,
dump (), (ntable->my status == CLUSTER_HEAD)? "yes":"no");

Packet::free(p.pkt);

p.pkt = NULL;

return 0;
}
cmnh->xmit failure_ = CBRP_XmitFailureCallback;
cmnh->xmit failure data = (void *) this;

trace("cbrp %.5f _%s_ relay %s #%d ->%d %s to designated

head %d via %d",Scheduler::instance().clock(), net_id.dump(),
p.src.dump (),
cbrph->rtreq seq(), cbrph->request destination(),

p.route.dump (),
nextcluster, cmnh->next hop());

cmnh->size () = cbrph->size();

Scheduler: :instance () .schedule(11l,p.pkt, 0.0);
p.pkt = NULL;
return 1;

bool
CBRP_Agent::ignoreRouteRequestp (CBRP_Packet &p)
// should we ignore this route request? by dmaltz from DSR
{
hdr cbrp *cbrph = (hdr cbrp*)p.pkt->access(off cbrp_);

if (request table.get(p.src) >= cbrph->rtreq_seq())
{ // we've already processed a copy of this regest so
// we should drop the regquest silently
return true;
}
if (p.route.member (net id,MAC_id))
{ // we're already on the route, drop silently
return true;

}

if (p.route.full())
{

return true;

}

return false;

bool
CBRPﬁAgent::replyFromRouteCache(CBRP_Packet &p)
/* - see if can reply to this route request from our cache
if so, do it and return true, otherwise, return false

(87]

- frees or hands off p iff returns true by dmaltz from
DSR,modified for CBRP

- CBRP does not reply from route-cache by default*/
{

Path rest of route;

// do we have a cached route the target?
/* XXX what if we have more than 1? (and one is legal for
reply from

cache and one isn't?) 1/28/9%7 -dam */
hdr cbrp *old cbrph = (hdr cbrp *)p.pkt->access(off_ cbrp_);
p.dest = ID(old cbrph->request destination(),::IP);
if (!route cache->findRoute(p.dest, rest_of_route, 0))

{ // no route => we're done

return false;

}

/* but we should be on on the remainder of the route (and
should be at
the start of the route */ i
assert (rest of route[0] == net id || rest_of route[0] ;
MAC id): |

Il
Il

if (rest of route.length() + 2 * p.route.length() > :
MAX SR_LEN) Ml
return false; // tco long to work with... '

// if there is any other information piggybacked into the
// route request pkt, we need to forward it on to the dst |
hdr cbrp *cbrph = (hdr cbrp*)p.pkt->access(off cbrp_); e
int request seqgnum = cbrph->rtreq_seq();

// make up and send out a route reply
Packet* rrp = allocpkt{();

hdr ip *iphi= (hdr ip*)rerp->access(off ip);
iph—>src() = myaddr ;

iph->sport() = RT PORT;

iph->dst() = p.src.addr;

iph->dport () = RT_PORT;

iph=>ttl () = 255}

cbrph = {hdr_cbrp*)rrp—>access(off_cbrp_);
cbrph->init () ;

cbrph->route reply() = 1;

int len = rest of route.length();
O tInt— =0 et
rest of route[len - i - 1].fillSRAddr (cbrph-
>reply addrs() [i]);
cbrph->route reply len{() = len;

// propagate the request sequence number in the reply for
analysis purposes

(88]

cbrph->rtreq seq() = request_seqgnum;

hdr_cmn *cmnh = (hdr_cmn*)rrp->access(off_cmn_);
cmnh->ptype() = PT_ CBRP;

cmnh->size() = cbrph->size();

// copy the rest of cluster head by cluster head route over
fillCBRPPath(p.route, cbrph);

cbrph->cur_addr() = cbrph->num_addrs(}) - 1;

nsaddr_ t next cluster;
if (cbrph->cur addr() >= 0) {
next cluster = cbrph->addrs(cbrph->cur_addr()].addr;
}else {
next cluster = iph->dst();
}

adjtable_ent *adj_ent;

if ((cmnh->next hop() = ntable-
>GetQuickNextNode (next cluster)))
goto DONE;
lelse if ((adj _ent = ntable->GetAdjEntry(next_cluster, 0)))
{
cmnh->next hop() = adj_ent->next hop->next_node;
goto DONE;
telse {

Packet::free(rrp);
return false;

}

DONE:

Scheduler::instance() .schedule(ll,rrp,0);

trace ("CBRP %.9f %s_ cache-reply-sent %d => %d #%d (len %d)
e,

M

Scheduler::instance () .clock(), net id.dump(},
iph->src(), iph->dst(), request_seqnum,
rest_of route.length(),
rest of route.dump(}):
Packet::free(p.pkt):
p.pkt = NULL;
return true;

}

void
CBRP_ Agent::sendOutPacketWithRoute (CBRP_Packeté& p, bool fresh,
Time delay = 0.0)

// take packet and send it out, packet must a have a
route—in—it

// This packet should not not be a RREQ packet

// if fresh is true then reset the path before using it,
if fresh

// is false then our caller wants us use a path with the
index

// set as it currently is

(89]

hdr cbrp *cbrph = (hdr_cbrp*)p.pkt->access (cff_cbrp);
hdr _cmn *cmnh = (hdr_cmn*)p.pkt->access (off_cmn_); i

assert (chrph->valid());
assert (!cbrph->route request()});

if ((p.dest == net_id)) //Jinyang
{ // it doesn't need to go on the wire, 'cause it's for us
recv(p.pkt, (Handler *) 0);
p.pkt = 0;
return;

S ————————

if (fresh)
{
p.route.resetIterator();
if (verbose)
{
trace{"80 %.9f _%s_ originating %$s, RREP? %s",
Scheduler: :instance() .clock(),
net id.dump(), p.route.dump(), cbrph-
>route_reply({)?"yes":"no");

1 } y
| fillCBRPPath(p.route,cbrph); i

assert ((unsigned long)cbrph*>addrs[cbrph—>cur_addr()].addr '
== net id.addr};

// check if we could shorten the route by looking at our
two-hop-topology table
// we don't shorten the route for route errors and RREP
(route reply)
if ((!cbrph->route error()) &é& (!cbrph->route reply()) &&
cbrp shortening route_if possible && (cbrph-
>cur_addr ()< cbrph->num_addrs()-2)) {

//we only check to see if the node after next is
| reachable or not.
| //cause that's the most likely case. :)

nsaddr_t next next_node = cbrph->addrs (cbrph-
>cur addr()+2].addr;

i if (ntable->isNeighbor (next next node)) {

//I'1l send the packet directly to the next next
node.)

cmnh->next hop() = next_next_node;

cbrph->cur addr() += 2;

//set the flag to indicate I'm temporarily
shortening the route,

//no changes are made to route at this point of
1 time.

[90]

cbrph->route_shortening() = 1;

trace{"cbrp %.5f %d trying to shorten the route
$d->%d", Scheduler: :instance () .clock () ,myaddr_,myaddr_, cbrph-

>addrs [cbrph->cur addr()].addr);
lelse {
cmnh->next hop() = cbrph->get next addr();
cbrph->cur_addr() = cbrph->cur_addr () + 1;
}
} else {
cmnh->next _hop() = cbrph->get_next addr();
cbrph->cur_addr () = cbrph->cur_addr () + 1;
}
cmnh->xmit failure = CBRP_XmitFailureCallback;
cmnh->xmit failure data_ = (void *) this;
cmnh->prev_hop_ = net_id.getNSAddr_t():
cmnh->addr _type() = AF_INET;
assert (p.pkt->incoming == 0); // this is an outgoing packet

if (ifg->length() > 25)
trace("SIFQ %.5f %s len 3d",
Scheduler: :instance () .clock(), net_id.dump(), ifqg-
>length());

//calculate the packet size

if (cbrph->route reply() || cbrph->route error(}) {
cranh->size () = cbrph->size();
}else {

cmnh->size() += cbrph->size();
}

// off it goes!!!!

//assert (cmnh->ptype () == PT CBR || cbrph->route_reply() ||
cbrph->route error());

Scheduler: :instance () .schedule(ll, p.pkt, delay):

p.pkt = NULL;

t

void
CBRP_Agent::getRouteForPacket(CBRP_Packet &p, bool retry)
/* try to obtain a route for packet
pkt is freed or handed off as needed, unless retry ==
true
in which case it is not touched */

Entry *e = request table.getEntry(p.dest);
Time time = Scheduler::instance().clock();

if (lretry)

{
stickPacketInSendBuffer (p):

[91]

p.pkt = 0; // pkt is handled for now (it's in
sendbuffer)

}

/* make the route request packet */
CBRP_Packet rrqg;

| reg.dest. = ID(0, #i1IR)s /F the ip destination of RREQ is
| not necessarily same the destinate node

rrq.src = net_id;

rrg.pkt = allocpkt();

hdr_cbrp *cbrph = (hdr_cbrp*)rrq.pkt—>access(off_cbrpw);
hdr ip *iph = (hdr_ip*)rrg.pkt->access(off_ip_);
hdr _cmn *cmnh = (hdricmn*)rrq.pkt—>access(off_cmn_);
iph->dport () = RT_PORT;
iph->src() = net_id.getNSAddr_t();
iph->sport () = RT_PORT;

* cmnh->ptype() = PT_CBRP;

cmnh—>num_forwards?) = 0y
cmnh->addr type() = AF_INET;

cbrph->init ();

//set the requested destination node
cbrph->route request() = 1;
cbrph->request_destination() = p.dest.getNSAddr_t();
if (BackOffTest(e, time)) |
(// it's time to start another route request cycle
// CBRP does not have ring zero search, but we still set
the appropriate |
// e->last type for reusing this part of DSR's code i
e->last type = UNLIMIT;
sendOutRtReq(rrq, MAX SR_LEN);
e->last _arp = time;

}
else if (LIMITO == e->last type && (time - e->last_arp) >
cbrp arp_timeout)
{
// try propagating rt req since we haven't heard back
from limited one
// Actually this part of the code will never be executed
by CBRP - Li Jinyang
e—>last—type—=—UNLIMIT;
sendOutRtReq(rrqg, MAX_SR_LEN);

else

{

// it's not time to send another route request...
if (!retry && verbose_srr) { I

[92] '

AR

trace ("SRR $.5f %s RR-not-sent %s -> %s",
Scheduler::instance () .clock (),
net id.dump(), rrg.src.dump(), p.dest.dump()):;
}
trace("cbrp %s -> %s, request entry rt regs outstanding
%d, last rt req %.9f",rrg.src.dump(), p.dest.dump(),e-
>rt_regs_outstanding, e->last rt req);

Packet::free(rrq.pkt); // dump the route request packet
we made up

rrg.pkt. = 0
}

}

void
CBRP_Agent::sendOutRtReq(CBRP_Packet &p, int max_prop)

// Send out the Route request packet we have made
{

hdr_cbrp *cbrph = (hdr_cbrp*)p.pkt->access(cff cbkrp);
hdr_ip *iph = (hdr_ip*)p.pkt->access(off ip);:

hdr_cmn *cmnh = (hdr_cmn*)p.pkt->access(off cmn);

int i=0;

assert (cbrph->valid());

cbrph->rtreq seq() = route request numt+;
cbrph->max propagation() = max prop;

p.route.reset (),

// CBRP does not propagate last error seen on Route Request,
if you are
// interested to see how this might help as it does for DSR,
turn crtson. and ity
if (cbrp propagate last error && route error held
&& Scheduler::instance().clock() - route error data time
< cbrp max _err hold)
(:
assert (cbrph->num_route_errors() < MAX ROUTE ERRORS) ;
cbrph->route error() = 1;
link down cbrp *deadiink = &(cbrph->down links() [cbrph-
>num route errors()]);:
" deadlink->addr_ type = AF INET;
deadlink->from_addr = err from.getNSAddr t();
deadlink->to addr = err to.getNSAddr t();
deadlink->tell addr = GRAT ROUTE ERROR;
cbrph->num route errors() += 1;
/*
* Make sure that the Route Error gets on a propagating
request.
L4

iflmadspropaz_Ol=folteertor heldis false?

(93]

}

trace ("CBRP %.5f _%s_ new-request %d %s #%d -> d",

Scheduler::instance().clock(), net id.dump(),
max_prop, p.src.dump(), cbrph->rtreq seq(), cbrph-
>request _destination());

//Jinyang - if i am the cluster head, append myself to the
path before sending RREQ
if (ntable->my_status == CLUSTER HEAD) ({

p.route.appendToPath(net id);
fillCBRPPath(p.route, cbrph);

//T will include all my 2-hop neighbor cluster head on
forwarders list
adjtable_ent *p_ent = ntable->adjtable_1;
while (p_ent && (i<MAX NEIGHBORS)) {
cbrph->forwarders[i] .which gateway= p_ent->next hop-
>next node;
cbrph->forwarders[i] .which head = p ent-
>neighbor cluster;

#tifdef CBRP_DEBUG
trace ("cbrp %.5f %s_ (head) RREQ(%d->%d) broadcasted to
2-hop head %d via %d",
Scheduler::instance() .clock(},net_id.dump(),
cbrph->rtreq seq(), cbrph-
>request_destination(),p_ent->neighbor_ cluster,
p_ent->next hop->next node);
fendif
N -
p_ent = p ent->next;

}

// T will include all my 3-hop neighbor cluster head on
forwarders list
p_ent = ntable->adjtable 2;

while (p ent && (i<MAX NEIGHBORS}) ({
cbrph->forwarders[i] .which_gateway= p_ent->next hop-
>next node; :
—cbrph—>forwarders[i].which_head= p_ent-
>neighbor cluster;

#ifdef CBRP_DEBUG
trace("cbrp %.5f _%s_(head) RREQ(%d->%d) broadcasted to
3-hop head %d via %d",
scheduleririnstance{)-cltock{t)7net—idrdump{)
cbrph->rtreq seq(), cbrph-
>request destination(),p_ent->neighbor_cluster,
p_ent->next hop->next node);
#endif
it++;
p-ent-=-p-ent=>next;

(94]

}

lelse {

//I have to send the route request to one of my cluster
head

ntable ent *ent = ntable->head;

while (ent && (i< MAX NEIGHBORS)) {
if (ent->neighbor_status == CLUSTER_HEAD) ({
cbrph->forwarders[i].which gateway= ent->neighbor;
cbrph—>forwarders[i].which:head = ent->neighbor;
#ifdef CBRP_DEBUG
trace("cbrp %.5f _%s_ RREQ(%d->%d) broadcasted to 1-
hop head %d",

Scheduler::instance().clock(),net _id.dump(),cbrph-
>rtreq seq(),

cbrph->request_destination(),ent->neighbor);
fftendif
i++;
}
ent = ent->next;

}

// I will include all 2-hop cluster head in forwarders
list
adjtable_ent *adjent=ntable->adjtable 1;

while (adjent && (1<MAX NEIGHBCRS)) ({

// 1if the 2-hop cluster head is "really" not directly
reachable
if (!ntable->GetEntry(adjent->neighbor cluster)) {

cbrph->forwarders(i].which_gateway= adjent->next hop-
>next node;

cbrph->forwarders(i].which head= adjent-
>neighbor_ cluster;

#ifdef CBRP_DEBUG
trace("cbrp %.5f %s_ RREQ(%d->%d) broadcasted to 2-
hop head %d via %d",

Scheduler::instance () .clock(),net id.dump (), cbrph-
>rtreq seq(),

= cbrph->request destination(),adjent-
>neighbor cluster,adjent->next hop->next node);
ftendif

Foobobg
1
adjent = adjent->next;

}

cbrph->num forwarders() = i;

[95]

cmnh->next hop() = MAC_ BROADCAST;
iph->dst () = IP_BROADCAST;
iph->src() = myaddr ;
cmnh->size () = cbrph->size();

Scheduler::instance().schedule (11,p.pkt,0.0);

1'

void
CBRP Agent::returnSrcRouteToRequestor (CBRP_Packet &p)

// take the route in p, add us to the end of it and return

the
// RREP to the sender of p
// doesn't free p.pkt

hdr cbrp *old cbrph = (hdr_cbrp*)p.pkt->access(off_cbrp_);
if (p.route.full())
! return; // alas, the route would be to long once we add
| ourselves
' CBRP_Packet p copy = p;
p_copy.pkt = allocpkt():;
p_copy.dest = p.src;
hdr ip *new_iph = (hdr_ip*)p_copy.pkt->access(off_ip_);
hdr_cbrp *new_cbrph = (hdr cbrp*)p_copy.pkt-
>access (off cbrp);:
hdr _cmn *new_cmnh = (hdr_cmn*)p_copy.pkt->access (off_cmn_);
new cbrph->init();
new ebrph=~>route reply(} = L}
trace ("CBRP %.5f %s reply-sent %s->%d %s',
Scheduler: :instance().clock(),net_id.dump (),
p.src.dump(),o0ld cbrph-
>request destination(),p.route.dump());
assert (old cbrph->request destination() ==
net_id.getNSAddr_t());
p cepyistoi=aiet sidy
//if i am the cluster head, i have to complete the recorded

route first
if (ntable->my status == CLUSTER_HEAD) {
new cbrph->reply addrs() [0].addr = net_id.addr;
new cbrph->reply addrs()(0].addr_type = AF_INET;
new—cbrph—>route_reply_len{) = 1;
pﬁcgpy.route.appendToPath(net_id);
}
fillCBRPPath(p copy.route,new_cbrph);

(96]

// just in case the route is empty
if (!old cbrph->num addrs()) {
//try to reach the sender directly!
if ({new_cmnh->next hop() = ntable-
>GetQuickNextNode (p_copy.dest.addr))) {

new_cbrph->reply addrs() [0] .addr = p_copy.src.addr;
new_cbrph->reply addrs() (0] .addr_type = AF INET;

new_cbrph->route reply len() = 1;
new_iph->dst() = p copy.dest.addr;
new_iph->src() = myaddr ;
new_cmnh->size() = new chrph->size();

Scheduler::instance () .schedule(ll,p _copy.pkt,0.0);

lelse {
Packet::free(p_ copy.pkt):
1

return;

//initialize route index pointer
} new_cbrph->cur_addr() = p copy.route.length()-1;
p_copy.route.setlIterator (new_cbrph->cur_addr());

new iph->dst() = p copy.dest.addr;

new iph->dport () RT PORT;

new iph->src() = p_copy.src.addr; |
new_iph->sport() = RT_PORT;

new iph->ttl() = 255;

I o

// propagate the request sequence number in the reply for
analysis purposes

new_cbrph->rtreq_seg(}) = old cbrph->rtreq seq(); i

new cmnh-->ptype() = PT CBRP;

handleRREP (p copy) ;

} I

void
CBRP Agent::acceptRREP (CBRP_ Packet é&p)
/* - enter the packet's source route into our cache

- see 1f any packets are waiting to be sent out with this
source route
- doesn't free the pkt */

Path reply route;
hdr—ebrp—tcbrph—=——(hdr—cbrpt)ppkt=>access-lfoff_cbrp)+ |

if (cbrph->route repaired()) { .
trace("CBRP %.5f %d_ grat-reply-repair from %d, route E
$s", Scheduler::instance().clock(),myaddr , p.src.addr,
p.route.dump());
}else if (cbrph->route shortened()) {

[97]

trace("CBRP %.5f _%d_ grat-reply-shorten from %d, route
%s", Scheduler::instance().clock(),myaddr , p.src.addr,
p.route.dunp ()); o
}else {

trace ("CBRP %.5f %d_ reply-received from %d, route %s",
Scheduler::instance().clock(),myaddr ,p.src.addr,p.route.dump (
V)

}

if (!cbrph->route reply())
{ // somethings wrong...
trace ("SDFU non route containing packet given to
acceptRREP") ;
fprintf (stderr, "dfu: non route containing packet given
to acceptRRP\n");
}

if ((!cbrph->route repaired()) && (!cbrph-
>route_shortened()))_{
Path reverse_reply route(cbrph->reply addrs(), cbrph-
>route reply len()); = f
//Jinyang - in CBRP, the returned source route is in
reverse order
reverse_reply route.appendToPath(net id);
reply route = reverse reply route,reverse();
}else {
Path reverse reply route(cbrph->addrs, cbrph-
>num_addrs());
reply route = reverse_reply route.reverse();

}

/* check to see if this reply is valid or not using god info
*/

int’ iy

bool good reply = true;

for (i = 0; i < reply route.length(}-1 ; i++)

if (God::instance()->hops(reply route[i].getNSAddr t(),
reply route[i+l].getNSAddr t())

1= 1)

false;

good reply
break;

}

#ifdef CBRP_ DEBUG
trace("cbrp %.9f %s reply-received %d from %s $%s #%d ->

a "

5 S %S,

Scheduler: :instance().clock(), net id.dump(),
(O OLLe ot o e e SO
p.src.dump (), reply route([0].dump(), cbrph-

>rtreq seq(),
reply route[reply route.length()-1].dump(),
reply route.dump());

ffendif

[99]

// add the new route into our cache
route_cache->addRoute (reply route,
Scheduler: :instance () .clock (), p.src);

// add the new loose source route to our loose source route
cache

Path source_route(cbrph—>addrs,cbrph~>num_addrs());

// back down the route request counters

ERntry-*e& =
request_table.getEntry(reply route[reply route.length()-11);:
e->rt_regs_outstanding = 0;

e->last_rt regq = 0.0;

// see if the addtion of this route allows us to send out
// any of the packets we have waiting
Time delay = 0.0;
for+{int o= 01 e < SEND BUF SIZE; c++)
{
if (send buf[c].p.pkt == NULL) continue;
if (route_cache->findRoute(send buf[c].p.dest,
send buf[c].p.route, 1))
{ // we have a route!
#ifdef CBRP DEBUG
struct hdr cmn *ch =
if (ch=>»size() < Q) { i
drop(send buf[c].p.pkt, "XXX");: i

HDR_CMN (send_buf[c].p.pkt);

abort () ; j
} i
#endif il
if (verbose) %'
trace("Sdebug %.9f 2%s liberated from sendbuf %s-
>%s %s'",

Scheduler::instance () .clock(),
net id.dump (),

send buflc].p.src.dump(),
send buf[c].p.dest.dump(),

send buf[c].p.route.dump());

sendOutPacketWithRoute (send buf([c].p, true, delay);
/* DSR spread out the rate in order to arp to
complete, since
we've already optimized ARP to take in MAC
address of neighbors
in advance, we don't really need to delay any
more */ ; :
//delay += cbrp arp timeout; i
send buf(cl.p.pkt = NULL; |
} |

}

void
CBRP_Agent::processBrokenRouteError (CBRP_Packets& p)

[100]

|
|

// take the error packet and proccess our part of it.
// if needed, send the remainder of the errors to the next
person
// doesn't free p.pkt, mostly taken from DSR's implementation
by dmaltz
{

hdr cbrp *cbrph = (hdr_cbrp*)p.pkt->access(off_cbrp_):

if (!cbrph->route error())
return; // what happened??

/* 1f we hear A->B is dead, should we also run the link B->A
through the
cache as being dead, since 802.11 requires bidirectional
links
XXX -dam 4/23/98 */

// since CPU time is cheaper than network time, we'll
process
// all the dead links in the error packet
assert(cbrph—>num_routemerrors() > 0):
int count = cbrph->num route errors();
for (int ¢ = 0 ; ¢ < count ; c++)
{
assert (cbrph->down_links () (c].addr_type == AF INET);
route cache->noticebDeadLink (ID(cbrph-
>down_links () [c].from addr, ::IP),
ID(cbrph-
>down_links () [c].to_addr,::IP),

Scheduler::instance () .clock());
// I'll assume everything's of type AF INET for the
printontt XXX
if (verbose srr)
trace ("SRR %.9f _%s_ dead-link tell %d %d -> s%d",
Scheduler::instance () .clock(), net id.dump(),
cbrph->down links() [c].tell addr,
cbrph->down_links () [c].from_addr,
cbrph->down_links () [c].to_addr);

ID who = ID(cbrph—>down_links()[cbrph—>num_route_errors()—
1) .tell ;adde; {4 IP):
if (who != net id && who != MAC_id)
{ // this error packet wasn't meant for us to deal with
// since the outer entry doesn't list our name
return;

}

// record this route error data for possible propagation on
our next

// route request

route error held = true;

err from = ID(cbrph—>downmlinks()[cbrph—>num_route_errors()"
1l].from-addr, ::IB).;

[101]

err_to = ID(cbrph->down_ links () [cbrph->num route_ errors()-
1] .to_addr, ::1IP); @

route_error data_time = Scheduler::instance().clock();

T {1l == cbrph—>numyroute_errors())
{ // this error packet has done its job
// 1it's either for us, in which case we've done what it
sez
// or it's not for us, in which case we still don't have
to forward

// it to whoever it is for
return;

}

/* make a copy of the packet and send it to the next
tell addr on the

error list. the copy is needed in case there is other
data in the

packet (such as nested route errors) that need to be
delivered */

if (verbose)

trace("Sdebug %.5f %s_ unwrapping nested route error",
Scheduler: :instance () .clock(), net id.dump());

CBRP_ Packet p copy = p;
p_copy.pkt = p.pkt->copy();

hdr cbrp *new cbrph = (hdr cbrp*)p copy.pkt-
>access(off cbrp)
hdr ip *new_iph

“ ~e

(hdr ip*)p copy.pkt->access(off ip);

// remove us from the list of errors

new cbrph->num route errors() -= 1;
new cbrph->route request() = 0;
//new_cbrph->route error{) = 1;

// send the packet to the person listed in what's now the
last entry

p_copy.dest = ID{new cbrph->down links{() [new cbrph-
>num_route errors()-1].tell addr, ::IP);

p_copy.src = net id;

new iph->dst() = p copy.dest.addr;
new_ iph->dport () = RT_PORT;

new iph->src() = p_copy.src.addr;
new_iph->sport(} = RT_PORT;
new_iph->ttl() = 255;

//—an—error—packet—is—a—first—elass—eitizen;—so-—welll
// use handlePktWOSR to obtain a route if needed
handlePktWithoutSR(p copy, false);

Callback for link layer transmission failures

struct filterfailuredata {
nsaddr_t dead next hop;
int off cmn ;

CBRP_Agent *agent;

i

int
CBRP_FilterFailure (Packet *p, void *data)
{
struct filterfailuredata *ffd = (filterfailuredata *) data;
hdr_cmn *cmh = (hdr_cmn*)p->access (ffd->off cmn_);
int remove = cmh—>next_hcp() == ffd->dead next hop;
if (remove) ffd->agent->undeliverablePkt (p,1):
return remove;

}

void

CBRP_Agent::undeliverablePkt (Packet *pkt, int mine)

/* try our best to save the undeliverable packet using local
repair or cache */

{

hdr cbrp *cbrph = (hdr_cbrp*)pkt->access (off_ cbrp);
hdr_dp *iph = (hdr ip*)pkt->acoess(offiipa)y
hdr_cmn *cmh = (hdr_cmn*)pkt->access(off cmn) ;

CBRP_ Packet p(pkt,cbrph);

p.dest = ID{iph->dst(),::IP);
p.src = ID(iph->src{),::IP);
p.pkt = mine ? pkt : pkt->copy();

chirphT= _(hdr Cbrp¥)p; pkt=>actess (0L GhYD =)l
iph = (hdr_ip*)p.pkt->access(off ip);
cmh = (hdr cmn*)pipkt->access (off cmn)

if ((cbrph->route request()))

{
if (UnicastRREQ(p,iph->dst())) {
trace ("CBRP %.5f %d salvage-request %d->%d",
Scheduler::instance().clock(), myaddr , iph->src(),cbrph-
>request destination()):
1
return;
)
else if (cbrph->route reply())
{
/7 we have already dropped the gratuitous route reply
packet
assert (!cbrph->route repaired());
//try to salvage the route reply
ffifdef CBRP_DEBUG

[103]

7- : '!ﬂr‘

printf ("cbrp %d %.9f trying to salvage route reply %d-
>%di\n”,net_id.getNSAddr_t(),Scheduler::instance().clock(),iph
=2s8re ()i iph=>dst ().)

cbrph->cur_addr ++;
p.route.setIterator(cbrph—>cur_addr());
}
if (cbrph—>reply_addrs()[cbrph—>route_reply_len()"
1] .addr == netﬁid.getNSAddr_t()) {
cbrph—>route_reply_len()——;

ffendif
if ((ntable->my status == CLUSTER_HEAD) && (cbrph-
>cur_addr () <(cbrph->num_addrs()-1)) }
& & (cbrph—>addrs[cbrph—>cur_addr()+1}.addr ==
myaddr)) {
\
\

}

p.dest.addr = iph->dst();
p.dest.type = IP; =
if (handleRREP (p)) { |
trace("CBRP %.9f _%d_ salvage-reply $%d- I§
>%d", Scheduler: :instance () .clock (), myaddr , iph->src(),iph-
>dst());
!
return;
}
else if (cbrph->route_shortening())
{
trace ("CBRP %.5f %d_ wrong-shorten %d...%d-
>%d...%d", Scheduler::instance().clock(),myaddr ,iph-
»>src(},myaddr_, cbrph->addrs[cbrph->cur_addr()].addr, iph-
>dst ())
//My shortening of the path is wrong, don't do it
cbrph->route shortening() = 0;
//reset the cur addr pointer
cbrph->cur_addr () = cbrph->cur addr()-2;

p.dest = ID(iph->dst (), ::IP);
prsre—==LD (Aiph=ssrc (5 = -TP})}
p.route.setlterator (cbrph->cur addr()):;

sendOutPacketWithRoute (p, false);

//do not send any route error message
return;

1
// it's a packet we're forwarding for someone, save it if we
AT

Path salvage route;

//firstly reset the cur addr pointer correctly

chiph=2¢ur_addr()=s=—1
p.route.setIterator (cbrph->cur addr());
if (cbrph->»cur addr() >= (cbrph->num addrs() - 1)) {

[104]

trace("SDFU: route error beyond end of source route????");

fprintf (stderr, "SDFU: route error beyond end of source
route????2\n") ;

Packet::free(p.pkt):

return;

}

//salvage the route with local two hop topology information
if (cbrp_local repair && ({cbrph->route repaired() <
MAX_LOCAL_REPAIR TIMES) && ((unsigned long)cbrph-
>addrs [cbrph->cur_addr()].addr == net_id.addr)))
{
if ((p.route.index()<p.route.length()-2) &&
(cmh—>next_hop() = ntable-
>GetQuickNextNode (p.route[p.route.index ()+2].addr)))
{
//try to reach the hop after next using another
intermediate node
trace ("CBRP %.5f _%d_ salvage-repair link %d ->

(Hd):=gd "y Scheduler::instance().clock(),myaddr_,myaddr“, cmh-
>next hop(), cbrph—>addrs{cbrph—>cur_addr()+2].addr);

cbrph->addrs[cbrph->cur_addr(})+1].addr = cmh-
>next hop();

cbrph->addrs [cbrph->cur_addr()+1].addr type =
AF INET;

cbrph->cur_addr () ++;

}
else if ((cmh->next hop() = ntable-

>GetQuickNextNode ((p.route[p.route.index ()+1]).addr)))
{

//try to reach the next hop using a new
intermediate node

trace("CBRP %.5f _%d_ salvage-repair link %d ->
(sd) 3d ", Scheduler::instance().clock(),myaddr_,myaddr_, cmh-
>next_hop (), cbrph->addrs[cbrph->cur addr()+1].addr);

cbrph->cur_ addr () ++;

for (int i = cbrph->num_addrs();i>cbrph-
>cur_addr () ;i-=) |

cbrph->addrs([i] = cbrph->addrs([i-1];
}
cbrph->num_addrs () += 1;

cbrph->addrs[cbrph->cur addr()].addr = cmh-
>next hop();
cbrph->addrs [cbrph->cur_addr()].addr type =
AF_INET;
}
if (cmh->next _hop()) { //we've managed to save

using—local-—repair,—send-it-out

ilhic (cbrph->cur addr() == 1) {
assert (p.src == net id);
//amend the route directly in the cache, do not
need to mark repair flag
Path route;

[105]

//£111 the path
route.setLength (cbrph->num addrs());
for (int i=0;i<cbrph->num addrs();i++) {
route[i] = ID(cbrph->addrs([i]);
}
route,.resetlIterator();
route_cache->addRoute (route,
Scheduler::instance().clock(), p.dest);
lelse {
cbrph->route repaired()++;
1
cmh->size () += cbrph->size();
Scheduler::instance () .schedule (l1l,p.pkt, 0);
return;

}

if (cbrp_salvage_with_cache && route cache-
>findRoute (p.dest, salvage route, 0))
{
p.route = salvage route;
p.route.setlterator(l);
fillCBRPPath (p.route, cbrph);
cmh->next hop() = cbhrph->addrs([p.route.index()].addr;
trace("CBRP %.5f %s salvage-cache %s -> %s --- %d
with %s",
Scheduler: :instance () .clock(), net id.dump(),
p.src.dump(), p.dest.dump(), cmh->uid(),
p.route.dump());
//prevent the route to be saved again in future.
cbrph—>route_repaired()=MAX_LOCAL_REPAIR_TIMES+l;
cmh->size() += cbrph->size();
Scheduler: :instance () .schedule(ll,p.pkt, 0);
return;

}

if (ID(iph->src(),::IP) == net id)
{

// it's our packet we couldn't send, we do another
RREQ

trace("cbrp SAVVVE by re-handle it %d -> %d old src
route %s",iph->src(),iph->dst(),p
.route.dump());

cbrph->init () ;

handlePktWithoutSR(p, false);

return;

}

//we failed in all previous attempts, no hope, say
byebye to the packet
trace("Ssalv $.5f %s_dropping --- %d %s -> %s %s CBR
5d",
Scheduler: :instance () .clock (),

(106]

|

1
|

net_id.dump (), cmh->uid(), p.src.dump(),
p.dest.dump (), p.route.dump(), cbrph->valid());
if (mine) drop(pkt, DROP_RTR_NO ROUTE) ;

}

#ifdef USE_GOD_FEEDBACK
static int linkerr is wrong = 0;
ftendif

void
CBRP_Agent::xmitFailed(Packet *pkt)
/* this function is called when the link layer fails to send
out a cbrp packet

we will firstly use this error information to update
neighbor table, adjacency table etc.

then we will run our local repair algorithm to save data
packets and RREP

as well as sending out route error message to the source if
it's data packet */
{

hdr cbrp *cbrph = (hdr_cbrp*)pkt->access(off cbrp };
hdr ip *iph = (hdr_ip*}pkt—>access(off_ipq);
hdr_cmn *cmh = (hdr_cmn*)pkt->access(off cmn);

ID tell id;
ID from id;
ID to id;

assert (cmh->size () >= 0);

if (verbose)
trace("SSendFailure %.9f
sd(%d, $d), RREP %d",
Scheduler::instance().clock(), net id.dump(), cmh-
= bWiTe {{AEF: cbrph->dump () , cmh->next _hop(), cbrph-
>request_destination(),iph->src(),cbrph->rtreq seq(),cbrph-
>route reply());

d - %s, (to %d) RREQ

o
wn

I

I

I
oo

//Jinyang -first update neighbor table to correct not-so-
fast timeout event leaveouts

//again - we did nct take into consideration of the uni-
directional links

ntablecent —tentin .
if ((ent = ntable->GetEntry(cmh->next hop()))) {

tifdef-CBRP—DEBUG
trace("cbrp %d delete %d from neighbor table last update

%.9f" , myaddr ,cmh->next _hop(),ent->last update);
#endif
ntable->DeleteEntry (cmh->next _hop());
}

(107]

// 1f it's a gratuitous route reply about a repaired route,
just drop it silently
if (cbrph->route reply() && (cbrph->route repaired() ||cbrph-
>route_shortened())) { N
Packet::free(pkt);

return;
}
cmh->size() -= cbrph->size(); //recalcuate the size
from_id = net_id;

to_id.addr = cmh->next hop();
to_id.type (ID_Type)AF INET;

i (!cbrph->route request() &s& !cbrph->route reply() &&
tcbrph->route repaired()) {
//if this is a unrepaired data packet, we have to inform
the packet src about the error
//the packet src may not be the packet originator
tell id.addr = cbrph->addrs[0].addr;
tell id.type (ID_Type) AF INET;
}

1l

#ifdef USE GOD_FEEDBACK
q4f (God::instance()—>hops(from_id.getNSAddr“t(),
to_id.getNSAddr t()) == 1)

{ /* god thinks this link is still valid */
linkerr is wrong++;
trace("SxmitFailed %.5f %

Scheduler: :instance (
from_id.getNSAddr t(
linkerr is wrong);
fprintf (stderr, ' i
"xmitFailed on link %d->%d god okays - ignoring
& recycling #%d\n"

s %d->%d god okays #3d",
) .clock(), net id.dump(), |
), to_id.getNSAddr t(), I

I
from id.getNSAddr t(), to_id.getNSAddr t(),
linkerr is wrong);
/* put packet back on end of ifq for xmission */
// make sure we aren't cycling packets

assert (p.pkt->incoming == 0); // this is an outgoing
packet
ll->recv(pkt, (Handler*) 0);
return;
}
ffendif

/* kill any routes we have using this link */
route_cache->noticeDeadlink(from _id, to id,
Scheduler::instance().clock());

/* give ourselves a chance to save the packet, only nodes on 3
the original route save the pkt, local repair nodes do not */ ﬁ
undeliverablePkt (pkt->copy (), 1): f
//if (Scheduler::instance().clock()>78.9) printf ("2\n"); i

[108) |l

/* now kill all the other packets in the output queue that
would
use the same next hop. This is reasonable, since 802.11
has
already retried the xmission multiple times => a
persistent failure. */

Backet ¥r;:*np, ‘*head =10y // pkts to be recycled
while((r = ifq—>filter(to_id.getNSAddr_t()))} {

r->next_ = head;

head = r;

}
hdr_cbrp *cbrph tmp;

for(r = head; r; r = nr) {

Ar=e - posnaRt)
cbrph tmp = (hdr_cbrp*)r->access (off cbrp }:
cmh->size() -= cbrph tmp->size();

/7 1ifit's-a gratuitous route reply about a repaired
route, just drop it silently
if (cbrph_tmp->route reply() && {cbrph_ tmp-

>route_repaired() | |cbrph_tmp->route shortened())) {
Packet::free(pkt);
return;

}
undeliverablePkt (r, 1);

}

/* warp pkt into a route error message */
if (tell_id == net_id || tell id == MAC_id)
{ // no need to send the route error if it's for us
if (verbose)
trace ("Sdebug
to myself",

o

%s not bothering to send route error

tell id.dump());
Packet::free(pkt);
pkt = 0;
return;

}

1 (cbrph—>route_request() | | (cbrph—>route_reply()) ||
cbrph->route repaired() || cbrph->route shortening()) {
Packet::free(pkt):
pkt = 0;
return;

if*(cbrph=>num_route_errors() >= MAX_ROUTE ERRORS)
{ // no more room in the error packet to nest an
additional error.
// this pkt's been bouncing around so much, let's just
drop and let
// the originator retry

[109]

// RAnother possibility is to just strip off the outer
error, and

// launch a Route discovey for the inner error XXX -dam
6/5/98
trace("SDFU %.5f $%s dumping maximally nested error %s
sd -> %d", o
Scheduler::instance().clock(), net id.dump(),
tell id.dump(),
from id.dump(),

to id.dump());
Packet::free(pkt); // no drop needed
pkt = 0;
return;

t
cbrph->cur_ addr()--;

link down cbrp *deadlink = & (cbrph->down_links () [cbrph-
>num_route_errors()]);

deadlink->addr type = cbrph->addrs|[cbrph-
>cur_addr()].addr_type;

deadlink—>from_addr = cbrph—>addrs[cbrph—>cur_addr()].addr;

deadlink->to addr = cbrph->addrs [cbrph->cur_addr()+1].addr;

deadlink—>tell_addr = cbrph->addrs (0] .addr;

cbrph->num_route errors() += 1;

if (verbose)
trace ("Sdebug %.5f _%s_ sending into dead-link (nest %d)
tell 3%d &%d -> %d",

Scheduler: :instance().clock(), net id.dump(),
cbrph->num_route errors(),

deadlink—>telliaddr,

deadlink->from addr,

deadlink->to addr);

cbrph->valid() = 1;
cbrph->route_error() = 1;
cbrph->route reply() = 0;
cbrph->route request() = 0;
iph->dst () = deadlink->tell addr;
iph~->dport () = RT_ PORT;
iph->src{) = net id.addr;
iph->sport() = RT_PORT;
Iph=2tl()==2255"
cmh->ptype() = PT_CBRP;
emh->num—forwards{)—=—07
cmh->size() = IP_HDR_LEN; //cut off data in the original
packet

// assign this packet a new uid, since we're sending it
cmh->uid() = uidcnt ++;
cbrph->num addrs() = cbrph->cur addr ()+1;

[110]

CBRP_Packet p(pkt, cbrph);
p.route.setLength(p.route.index()+l);
p.route.reverseInPlace();
pP.route.resetIterator();

fillCBRPPath(p.route,cbrph); 1

p.dest = tell id;
p.src = net id;

/* send out the Route Error message */
sendOutPacketWithRoute(p, true);
}

void
CBRP_XmitFailureCallback(Packet *pkt, void *data)
{
CBRP_Agent *agent = (CBRP_Agent *)data; // cast of trust
agent->xmitFailed (pkt);
}
/* fill the path information in CBRP header */
void CBRP_Agent::fillCBRPPath (Path &path, hdr_cbrp *& cbrph)
{

for (int i=0;i<path.length();i++) {
path[i].fillSRAddr(cbrph—>addrs[i]);

}

cbrph->num_addrs() = path.length() ;

cbrph->cur_addr() = path.index();

Wireless scenarios

set val (chan) Channel/WirelessChannel ;# channel
type

set val (prop) Propagation/TwoRayGround ;# radio- 1
propagation model

set val (netif) Phy/WirelessPhy ;# network ‘
interface type (H|
set val (mac) Mac/802 11 ;# MAC type il

[111]

set val(ifq) Queue/DropTail/PriQueue i #
interface gueue type

set val(ll) LL s# link
layer type

set wval (ant) Antenna/OmniAntenna ' # antenna
model

set val(ifglen) 50 ;# max
packet in ifq

set wal(nn) 2 : # number
of mobilenodes

set val (rp) DSDV J# routing
protocol

#

#

#

#f Initialize Global Variables

#

set ns:, [new Simulator]

set tracefd [open simple.tr w]

set namtrace [open prowireless.nam w]

$ns_ namtrace-all-wireless S$namtrace 500 500
$ns trace-all S$tracefd

set up topography object
set topo [new Topography]

S$topo load flatgrid 500 500

#
Create God
i

create-god $val (nn)

#

Create the specified number of mobilenodes [$val(nn)] and
"attach" them

to the channel.

Here two nodes are created : node(0) and node (1)

set chan [new $val (chan)]
#—configure node

$ns_ node-config -adhocRouting $val(rp) \
-11Type $val(ll) \
-macType $val (mac) \
-ifqType $val(ifqg) \
-ifgLen $val (ifglen) \

[112]

—antType $val(ant) \
-propType $val (prop) \
-phyType $val(netif) \
-channel $chan \
~topoInstance $topo \
—agentTrace ON \
-routerTrace ON \
-macTrace OFF \
-movementTrace OFF

for {set i 0} {$i < $val(nn) } {incr i} {
set node_($1) [$ns_ node]
$node ($i) random-motion 0 ;# disable random
motion

}

#
Provide initial (X,Y, for now %Z=0) co-ordinates for
mobilenodes

#

snode_(0) set X 5
$node (0) set N—i2
$node (0) set 72 0

QOO

Snode (1) set X 390.0
Snode (1) set Y 385.0
$node (1) set Z 0.0

#

Now produce some simple node movements

Node (1) starts to move towards node (0)

#

$ns_ at 50.0 "$node_(l) setdest 25.0 20,0 15.0"
$ns_ at 10.0 "Snode (0) setdest 20.0 18.0 1,0"

Node_(1) then starts to move away from node (0)
$ns_ at 100.0 "$node (1) setdest 490.0 480,0 15.0"

Setup traffic flow between nodes
TCP connections between node_(0) and node (1)

set tcp [new Agent/TCP]

$tep set class. 2

set sink [new Agent/TCPSink]

$ns_ attach-agent $node (0) $tcp
$ns_ attach-agent $node (1) $sink
$ns_ connect $tcp $sink

set ftp [new Application/FTP]
$ftp-attach-agent S$tep

$ns_at 10.0 "Sftp start"

#
Tell nodes when the simulation ends

#
for {set i 0} {$i < Swval(nn)_} {incr i} {

[113]

$ns_ at 150.0 "$node ($1i) reset"; f
}
$ns_ at 150.0001 "stop"

Sns_ at 150.0002 "puts \"NS EXITING...\" ; $ns halt"

proc stop {} ({ a2

global ns_ tracefd namtrace

sns_ flush-trace |
close Stracefd

close Snamtrace

puts "Starting Simulation..."
$ns_ run

«

5 reot@l,, [name1, o ..o INs Doc... | A (NS sin
£ Applications Places System B "€} root 10:29 PM e}
#—f:::_:'ffzzzz:::::w—A;:::
Define options
|
#==:$::::::=:::=::::::::::::2::::::::::====:::===::==:=::==::= ‘
set wval (chan) Channel/WirelessChannel ;# channel |
type 1
i
|
I
‘ [113]—

set val (prop) Procpagation/TwoRayGround ;# radio-

propagation model

set val (netif) Phy/WirelessPhy ;# network

interface type

set val (mac) Mac/802 11 1 MAC type

set val (ifq) Queue/DropTail /PriQueue ;# |
interface queue type j
set val(ll) LL 2% Link

layer type

set wval (ant) Antenna/OmniAntenna ;# antenna

model

set val(ifglen) 50 ;# max

packet in ifq

set wval (nn) 5 ; # number

of mobilenodes

set val (rp) DSDV ;# routing

protocol

i

|

:::::::::::::::ﬁ:===:::.‘;‘i:::::::::::::::::::::::::::::::i:::::: !‘

_=sms==== !

i

Initialize Global Variables

#

set ns. . [new Simulator] 1

set tracefd [open simple.tr w] f

set namtrace [open prowireless2.nam w] |
i

Sns_ namtrace-all-wireless $namtrace 500 500
$ns_ trace-all S$tracefd .

set up topography object
set topo [new Topography]

$topo load flatgrid 500 500

#
ff Create God
4

create-god $val (nn)

-

Create the specified number of mobilenodes [$val(nn)] and
"attach" them

to the channel.

Here two nodes are created : node (0) and node (1)

set chan [new $val (chan)]
configure node

$ns_ node-config -adhocRouting $val (rp) \
-11Type $val (11l) \
-macType S$val(mac) \
-ifgType $val(ifqg) \
-ifgLen $val(ifglen) \
—antType $val(ant) \
-propType $val (prop) \
-phyType $val(netif) \
-channel $chan \
-topoInstance $topo \
-agentTrace ON \
-routerTrace ON \
-macTrace OFF \
-movementTrace OFF

for {set i 0} {$i < $val(nn) } {incr i) {
set node ($i) [$ns_ node] '

$node ($i) random-motion 0 ;# disable random
motion
}
i
Provide initial (X,Y, for now Z=0) co-ordinates for
mobilenodes @
#

S$node (0) set X 5y
$node_(0) set Y 2.
$node_(0) set Z_ 0,

| S B B |

$node_ (1) set X 390.0
$node (1) set Y 385.0
$node (1) set Z 0.0

Snode (2) set X 250.0
$node (2) set ¥ 250.0
Snode (2).set Z 0.0

$node (3) st X" 150.0
$node (3) set Y 145.0
$node_ (3) set Z 0.0

$node (4) set X 167.0
$node (4) set Y 186.0
Snode (4) set Zz 0.0

#
Now produce some simple node movements
Node_ (l) starts to move towards node (0)

#

sns_ at 50.0 "$node_(1) setdest 25.0 20,0 15.0"
$ns_ at 10.0 "$node (0) setdest 20.0 18.0 1.0"
$ns_ at 15.0 "$node (2) setdest 167.0 186.0 2.0"
sns==at=25h550 "$node (3) setdest 28.0 45.0 7.0"

[116]

REFERENCES

(1]

[2]

(4]

[5)

“Simplified clustering Scheme for Intrusion Detection in Mobile Ad-hoc
Networks” — Kashan Samad, Ejaz Ahmed, Waqar Mahmood — NUST Institute
of Information Technology(NIIT), Rawalpindi, Pakistan.

“Cluster-based Intrusion Detection (CBID) Architecture for Mobile Ad Hoc
Networks” — Ejaz Ahmed, Kashan Samad, Waqar Mahmood — NUST Institute
of Information Technology (NIIT), Rawalpindi, Pakistan.

NS Simulator for Beginners — Lecture notes, 2003-2004, University de Los
Andes, Merida, Venezuela and ESSI, Sophia-Antipolis, France — Eitan Altman
and Tania Jimenez, December 4, 2003.

The ns Manual, The VINT Project, A collaboration between researchers at UC
Berkeley, LBL, USC/ISI, and Xerox PARC, Edited by Kevin Fall and Kannan
Varadhan, March 24, 2008.

“Sybil attack detection techniques in mobile ad-hoc networks” — Sarit Pal,
Achyut Sharma, Amol Vasudeva, Sanatya Singh, Debojyoti Saha, Anand
Mohan Sinha and S.K. Kak, March 2007.

Internet blogs — ns-users@iisi.edu and sites — Wikipedia.org etc.

[118]

{5

Node (1) then starts to move away from node_(0)
$ns_ at 100.0 "S$node (1) setdest 490.0 480.0 15.0"

Setup traffic flow between nodes
TCP connections between node (0) and node (1)

set tcp [new Agent/TCP]

Stcp set class_ 2

set sink [new Agent/TCPSink]

$ns_ attach-agent $node_(0) Stcp
$ns_ attach-agent $node (1) $sink
$ns_ connect $tcp $sink 4
set ftp [new Application/FTP] '
$ftp attach-agent Stcp

$ns_ at 10.0 "sftp start"”

#
Tell nodes when the simulation ends
#
for {set i 0} {%$i < $val (nn))} {incr i} {
sns_ at 150.0 "$node_(%1) reset';
}
$ns_ at 150.0001 "stop"
$ns_ at 150.0002 "puts \"NS EXITING...\" ; $ns_ halt"
proc stop {} {
global ns_ tracefd namtrace
$ns_ flush-trace
close Stracefd
close $namtrace

}

puts "Starting Simulation..."
$ns_ run

m‘:uufuufnufu.|=m_mlt‘nu?llﬁzm_‘ms‘lmmmﬁn:ﬂ

g
sl

o

Ll
PM 4D

113 pluwl 7
10:39

f'.S "] rco“t--@i.. R s-2.... G {wrn?' i

” e 2 i
£2 Applications FPlaces System 3 AR ke (g root

[117]

