"9010'&1':'3\'

fren e wefrE:

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. NumSPo6033 call Num:
General Guidelines:

¢ Library books should be used with great care.
¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.
¢ Any defect noticed at the time of borrowing books
must be broug—h‘ﬁto the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.
& The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

RN

SPO

T

SMART CAR PARKING LOT

r Project Report submitted in partial fulfillment of the requirement
for the degree of

Bachelor of Technology
in
Electronics and Communication Engineeripg
By
Palak Nayyar(061088)
Deepak Semwal(061044)
Deepak Kumar(061043)

under the Supervision of

Prof. D.C. Kulshreshtha

JAYPEE UNIVERSITY OF
INFORMATICN TECHNOLOGY

May 2010

J éypee University of Information Technology
Waknaghat, Solan - 173 234, Himachal Pradesh

Certificate

This is to certify that the project report entitled “SMART CAR PARKING LOT”,
submitted by Deepak Semwal (061044), Palak Nayyar (061088) and Deepak Kumar
(061043) in partial fulfillment for the award of degree of Bachelor of Technology in
Electronics and Communication Engineering to Jaypee University of Information

Technology, Waknaghat, Solan has been carried out under my supervision.

Date: 257 5/// a E Prof~P7C. Kulshreshtha

Certified that this work has not been submitted partially or fully to any other University

or Institute for the award of this or any other degree or diploma

1. Palak Nayyar
061088

Qb A%

2. Deepak Semwal
061044

At

3. Deepak Kumar

061043
%Lwy,/

ACKNOWLEDGEMENT

It has been a wonderful and intellectually stimulating experience working on the SMART

CAR PARKING LOT which has much of practical implication in near future,

We gratefully acknowledge the management and administration of J aypee University of
Information Technology for providing the opportunity and hence the environment to

initiate the project.

We would like to extend our first thanks to our HOD, Dr. S.V. Bhooshan, for helping us
with the entire Lab works.

For Providing with the finest details of the subject ,We are greatly thankful to our project
guide Prof. D.C. Kulshreshtha. He has provided us the way to get the job done ,not
providing the exact way to do it ,but the complexities so that we can make better use of
the existing knowledge and build up higher skills to meet the industry needs. His
methodology of making the system strong from inside has taught us that output is not the

end of project.

DATE Deepak Semwal KQ@

061044)
Palak Nayyar Q([fck RApUeS
(061088)

Deepak Kumar% 5
P

(061043)

Table of Content

S. No. Topic Page No.
Abstract
1 Chapterl Introduction & Components
1.1 Overview l
1.2 Components 3
1.2.1 DC Motor 3
1.2.2 Microcontroler Unit 3
i 1.2.3 Power Supply 4
1.2.4 REED Sensor 5
1.2.5 IR Sensor 6 :‘
L.261LED 6 !
1.2.7 Integrated Circuit 6
1.2.8 Diode 7 i
1.2.9 Transformer 8
1.2.10 Resistor 9
1.2.11 Capacitor 11
2 Chapter 2 Microcontroller 14
2.1 The 8051 14
2.1.1 Different Microcontroller in Market 15
2.1.2 Intel 8051 15
2.1.3 Derivatives 16
2.2 Architecture 17
2.3 Execution Time 18
2.4 Features of 8051 20
2.5 Pin Function of 89¢51 23
2.6 Special function Resistor Addresses 24
2.7 Instructions 25

2.7.1 Single Bit Instructions 25

2.7.2 MOV Instructions

2.7.3 ADD Instructions

2.7.4 Sub Routine Call Functions

2.7.5 Instructions Related to Carry

2.7.6 Instructions Related to Jump with
Accumulator

2.7.7 Instructions Related to Rotate

2.7.8 DPTR Instructions

2.7.9 Arithmatic Instructions

Chapter 3 LCD Display

3.1 Introduction

3.2 Programming the LCD
3.2.1 Handling the EN Control Line
3.2.2 Checking the Busy State of LCD
3.2.3 Initializing the LCD
3.2.4 Clearing the Display
3.2.5 Writing Text to LCD
3.2.6 Cursor Positioning
3.2.7 Pin Wise Detail of LCD

Chapter 4 Programming

27
28
29

37
39
39
40
41

43
44

46
48

50

Abstract

In the recent years problems regarding availability of suitable parking spaces have
increased by leaps and bounds. It's a common sighting that despite the availability of
parking spaces, the parking lot is not utilized to its maximum potential. If there would
have been a good alternative parking system ,the problems like time and hassle can
solved to a great extent .Thus we have aimed our project to overcome all these problems
and come up with a good parking system based on sensors and microcontrollers with less
human intervention .Our project features a multistory lift based parking system which
will further reduce problems regarding space and customer complexity .Since parking in
the busiest of places is not very pleasing to the customers because of time it takes and
overall chaos. The need for smart parking lots is growing everyday with ever increasing

number of vehicles. This kind of parking system will grow up as the basis of upcoming

urban society.

Chapter-1

Introduction and Components Used

1.1 Overview

With this project we have shown use of lift for multi level parking system. To make such
a system efficient, a proper understanding about vacant parking spaces and appropriate
floor to choose is needed .To carry this kind of job various kinds of sensors are being
used .Every thing starts with Infrared Sensor which is employed at the gate to check
entrance of a car.

When a car is being detected, a smart card already given to the user has to be swiped.
The LCD will show the proper amount to be paid by customer according to his status.

An ic 89¢cs52 micro controller is used to control the lift without any user intervention. A
DC motor is used to rotate the lift in desired direction according to microcontroller. But
at start a ‘start’ switch has to be pressed by the user. Few REED sensors are used to
monitor the lift and few sensors to check the availability of the space. After pressing the
start switch DC motor starts and when it reaches the first floor then firstly we sense the
floor by REED sensor. REED sensor is a magnetic sensor, when magnet connected to the
lift is near by the reed sensor then reed sensor is activated and provides a signal to the
controller.

Controller sense the floor position and at the same time it checks the empty space
position, if the -empty space is there then lift stops automatically ,otherwise lift go
forward to the next floor. In this project we use two floor and only two spaces for
parking. Here in this project we monitor the floor and space every thing by the reed
sensor. SO we use magnetic proximity switches to monitor the space and position of the
lift. We have designed this system for two floors only, but it can be expanded to as many
floors as per designer’s wish.

LCD and Microcontroller are two core components in our project. These are required to
be programmed accordingly to get optimum results. Further insight into above mentioned

will be in separate chapters dedicated to each of them.

Smart card
input

Seven
segmen
t
display

A 4

S5v
regulated
power

supply

MCU Sensors
89c2051 Input
,| Magnet
ic
Sensors
v
MOTOR
CONTOL
CIRCUIT
Y
DC
MOTOR

F'igl .1 Block diagram of car parking lift

L 39esmas_d

Fig 1.2 Circuit diagram

1.2Components

1.2.1 DC Motor

Here in this project we use slow speed dc motor with gear box to reduce the speed of the
platform. This type of gear motor can be obtained from the second hand machine. Supply
voltage of this dc motor is 6 to 9 volt de. As we vary the voltage the speed also varies.
Current consumption of dc motor is 200 mas. It is also possible to use a stepper motor. If
we use stepper motor then we require a high current supply. Normal stepper motor
requires a minimum 1 A power supply. Limitations of brushed DC motors overcome by
BLDC motors include lower efficiency and susceptibility of the commutator assembly to
mechanical wear and consequent need for servicing, at the cost of potentionally less

rugged and more complex and expensive control electronics.

1.2.2 Microcontroller Unit

A microcontroller is used to control the direction of motor with proximity

switches and monitor the space of the parking. An IC 89c2051 controller is used to sense

all the logic. IC 89¢2051 is a 20 pin member of the main 40 pin controller. We use
89c2051 because here in this project we use only 2 outputs for motor and control signal is
only four. Out of four sensors, two sensors are for the floor and two sensors for the space.
89¢2051 is a small micro controller with 128 byte of ram and 2 k byte of flash memory.
To use efficiently the microcontroller, it needs to be suitably programmed.

There are two other member in the 8051 family of microcontrollers. They are the 8052
and the 8031.

i 8051 A g
ROM 4K bytes 8K bytes OK bytes
RA&M'. S 128 bytes _ - 256 bytes 128
Timer 2 3 5
Serial port 1 q |
Inte p;. oumes 6 : B 8 T ; "

Figure 1.3 Family members of 8051

1.2.3 Power Supply

The microcontroller we are using takes 12 volt as input supply so we have to use a step
down transformer in order to convert voltage levels. As well as to convert AC to DC a

rectifier is also employed.

1 B40C1000. .. 5000
St =

UtR 0
220V

! iz

“siche Text

Figure 1.4 Power supply circuit

1.2.4 REED Sensors

The reed switch is an electrical switch operated by an applied magnetic field. It consists
of a pair of contacts on ferrous metal reeds in a hermetically sealed glass envelope. The
contacts may be normally open, closing when a magnetic field is present, or normally
closed and opening when a magnetic field is applied. The reed switch contains a pair (or
more) of magnetically, flexible, metal reeds whose end portions are separated by a small
gap when the switch is open. Since the contacts of the reed switch are sealed away from
the atmosphere, they are protected against atmospheric corrosion. The hermetic sealing of
a reed switch make them suitable for use in explosive atmospheres where tiny sparks
from conventional switches would constitute a hazard. One important quality of the
switch is its sensitivity, the amount of magnetic field necessary to actuate it. Sensitivity is
measured in units of Ampere-turns, corresponding to the current in a coil multiplied by
the number of turns. Typical pull-in sensitivities for commercial devices are in the 10 to

60 AT range. The lower the AT, the more sensitive the reed switches. Also, smaller reed

switches, which have smaller parts, are more sensitive to magnetic fields.

1.2.5 IR sensors

The emitted energy comes from an object and reaches the IR sensor through its optical
system, which focuses the energy onto one or more photosensitive detectors. The detector
then converts the IR energy into an electrical signal. The IR range falls between the
visible portion of the spectrum and radio waves. IR wavelengths are usually expressed in
microns, with the IR spectrum extending from 0.7 to 1000 microns. Only the 0.7-14

micron band is used for IR temperature measurement.

1.2.6 LCD

Frequently, an 8051 program must interact with the outside world using input and output
devices that communicate directly with a human being. One of the most common devices
attached to an 8051 is an LCD display. Some of the most common LCDs connected to
the 8051 are 16x2 and 20x2 displays. This means 16 characters per line by 2 lines and 20
characters per line by 2 lines, respectively. Fortunately, a very popular standard exists
which allows us to communicate with the vast majority of LCDs regardless of their {
manufacturer. The standard is referred to as HD44780U, which refers to the controller
chip which receives data from an external source (in this case, the 8051) and
communicates directly with the LCD.

The 44780 standard requires 3 control lines as well as either 4 or 8 I/O lines for the data
bus. The user may select whether the LCD is to operate with a 4-bit data bus or an 8-bit
data bus. If a 4-bit data bus is used, the LCD will require a total of 7 data lines (3 control
lines plus the 4 lines for the data bus). If an 8-bit data bus is used, the LCD will require a
total of 11 data lines (3 control lines plus the 8 lines for the data bus).

The three control lines are referred to as EN, RS, and RW,

1.2.7 Integrated Circuit

IC (Integrated Circuit) means that all the components of the circuit are fabricated on same

chip. Digital ICs are a collection of resistors, diodes, and transistors fabricated on a single

piece of semiconductor, usually silicon called a substrate, which is commonly referred to
as ‘wafer’. The chip is enclosed in a protective plastic or ceramic package from which
pins extend out connecting the IC to other device. Suffix N or P stands for dual-in-line
(plastic package (DIP)) while suffix J or I stands for dual-in-lime ceramic package. Also
the suffix for W stands for flat ceramic package.

The pins are numbered counter clockwise when viewed from the top of the package with
respect to an identity notch or dot at one end of the chip.The manufacturer’s name can
usually be guessed from its logo that is printed on the IC. The IC type number also
indicates the manufacturer’s code. For e.g. DM 408 N SN 7404 indicates National
Semiconductor and Texas Instruments.

Other examples are:

Fair Child : UA, UAF

National Semiconductor : DM, LM, LH, LF, and TA.
Motorola : MC, MFEC.

Sprague : UKN, ULS, ULX.
Signetic : N/s, NE/SE, and SU.
Burr-Brown :BB.

Texas Instruments : SN.

Various series with TTL logic family are:-
Standard TTL 74
Schottky TTL 74s
Low power Schottky 74LS
Advance Schottky 74AS
Advanced Low Power Schottky 74ALs

Also there are various series with CMOS logic family as metal state CMOS 40 or 140.
1.2.8 Diode
Diodes are polarized, which means that they must be inserted into the PCB the correct

way round. This is because an electric current will only flow through them in one

direction (like air will only flow one way trough a tyre valve). Diodes have two

connections, an anode and a cathode. The cathode is always identified by a dot, ring or
some other mark. The PCB is often marked with a +si gn for the cathode end. Diodes

come in all shapes and sizes. They are often marked with a type number.

Figure 1.3 Diode

1.2.9 Transformer

Transformer works on the principle of mutual inductance. We know that if two coils or
windings are placed on the core of iron, and if we pass alternating current in one winding,
back emf or induced voltage is produced in the second winding. We know that alternating
current always changes with the time. So if we apply AC voltage across one winding, a
voltage will be induced in the other winding. Transformer works on this same principle.
It is made of two windings wound around the same core of iron. The winding to which
AC voltage is applied is called primary winding. The other winding is called as
secondary winding.

Let Vy volts be input alternating voltage applied to primary winding. I; Amp is input
alternating current through primary winding. V2 volt is output alternating voltage

produced in the secondary. I amp is the current flowing through the secondary.

Then relationship between input and output voltages is given by

Relationship between input and output currents is
Ii/I; = No/Ny

(Where N is no. of turns of coil in primary and N; is number of turns in secondary)

1.2.10 Resistors

The flow of charge (or current) through any material, encounters an opposing force
similar in many respect to mechanical friction. This opposing force is called resistance of
the material. It is measured in ohms. In some electric circuits resistance is deliberately

introduced in the form of the resistor.

Resistors are of following types:
Wire wound resistors
Carbon resistors

Metal film resistors

e Wire Wound Resistors:

Wire wound resistors are made from a long (usually Ni-Chromium) wound on a ceramic
core. Longer the length of the wire, higher is the resistance. So depending on the value of
resistor required in a circuit, the wire is cut and wound on a ceramic core. This entire
assembly is coated with a ceramic metal. Such resistors are generally available in power
of 2 watts to several hundred watts and resistance values from 1ohm to 100k ohms. Thus

wire wound resistors are used for high currents.

e Carbon Resistors:

Carbon resistors are divided into three types:

B e

a. Carbon composition resistors are made by mixing carbon grains with Binding material
(glue) and modulated in the form of rods. Wire leads are inserted at the two ends. After
‘ this an insulating material seals the resistor. Resistors are available in power ratings of

1/10, 1/8, 1/4, 1/2, 1.2 watts and values from 1 ochm to 20 ohms.

b. Carbon film resistors are made by deposition carbon film on a ceramic rod. They are

cheaper than carbon composition resistors.

c. Cement film resistors are made of thin carbon coating fired onto a solid ceramic
substrate. The main purpose is to have more precise resistance values and greater stability

with heat. They are made in a small square with leads

e Metal Film Resistors:

They are also called thin film resistors. They are made of a thin metal coating deposited
on a cylindrical insulating support. The high resistance values are not precise in value
however such resistors are free of inductance effect that is common in wire wound

resistors at high frequency.

e Variable Resistors:

Potentiometer is a resistor where values can be set depending on the requirement.
Potentiometer is widely used in electronics systems. Examples are volume control, tons

control, brightness and contrast control of radio or T.V. sets.

¢ TFusible Resistors:

These resistors are wire wound type and are used in T.V. circuits for protection. They
have resistance of less than 15 ochms. Their function is similar to a fuse made to blow off
whenever current in the circuit exceeds the limit. Resistance of a wire is directly
proportional to its length and inversely proportional to its thickness. Resistance of a wire

is directly proportional to its length and inversely proportional to its thickness.

10

COLOUR NUMBER | MULTIPLIER | COLOUR | TOLERANCE
Black 0 10° Gold 5%
Brown 1 10'

e 5 £ Silver 10%
Orange 3 10° No colour 20%
Yellow 4 10*

Green 5 10°

Blue 6 10°

Violet 7 10

Grey 8 10®

White 9 10°

Gold 10"

Silver 107

Table 1.1 Colour Coding of resistors

1.2.11 Capacitors

A capacitor can store charge, and its capacity to store charge is called capacitance.
Capacitors consist of two conducting plates, separated by an insulating material (known
as dielectric). The two plates are joined with two leads. The dielectric could be air, mica,
paper, ceramic, polyester, polystyrene, etc. This dielectric gives name to the capacitor.

Like paper capacitor, mica capacitor etc.

Capacitors can be broadly classified in two categories, i.e., Electrolytic capacitors and

Non-Electrolytic capacitors.

e Electrolytic Capacitor:

Electrolytic capacitors have an electrolyte as a dielectric. When such an electrolyte is
charged, chemical changes takes place in the electrolyte. If its one plate is charged
! positively, same plate must be charged positively in future. We call such capacitors as

polarized.

e Mica Capacitors:

It is sandwich of several thin metal plates separated by thin sheets of mica. Alternate
plates are connected together and leads attached for outside connections. The total
assembly is encased in a plastic capsule or Bakelite case. Such capacitors have small
capacitance value (50 to 500pf) and high working voltage (500V and above). The mica
capacitors have excellent characteristics under stress of temperature variation and high

voltage application. These capacitors are now replaced by ceramic capacitors. .

¢ Ceramic Capacitor:

Such capacitors have disc or hollow tabular shaped dielectric made of ceramic material
such as titanium dioxide and barium titanate. Thin coating of silver compounds is
deposited on both sides of dielectric disc, which acts as capacitor plates. Leads are
attached to each sides of the dielectric disc and whole unit is encapsulated in a moisture
proof coating. Disc type capacitors have very high value up to 0.001uf. Their working
voltages range from 3V to 60000V. These capacitors have very low leakage current.

Breakdown voltage is very high.

e Paper Capacitor:

It consists of thin foils, which are separated by thin paper or waxed paper. The sandwich

of foil and paper is then rolled into a cylindrical shape and enclosed in a paper tube or

12

encased in a plastic capsules. The lead at each end of the capacitor is internally attached
to the metal foil. Paper capacitors have capacitance ranging from 0.0001uf to 2.0uf and

working voltage rating as high as 2000V.

Item Qty. ID

OPTOCOUPLER 2 IC B17

Microcontroller Unit 1 IC 89C2051

CRYSTAL 1 12 MHZ N
CERAMIC 2 27 PF

CONNECTING WIRES

IC BASE 1 20 PIN

IC BASE 1 16 PIN

LEDS 5 RED 15 MM !
REGULATOR 1 7805 :
CAP 1 1000 MICROFARAD |
TR 2 TR548

TR 9 TR 558

MICRO SWITCHES 7 PUSH TO ON

REED SENSOR 6 MAGNETIC

Table 1.2 Components used in our project

13

CHAPTER -2
Micro Controller 8051

2.1 The 8051

The 8051 developed and launched in the early 80's, is one of the most popular micro
controller in use today. It has a reasonably large amount of built in ROM and RAM. In

addition it has the ability to access external memory.

The generic term “8x51" is used to define the device. The value of x defining the kind of
ROM, i.e. x=0, indicates none, x=3, indicates mask ROM, x=7, indicates EPROM and
x=9 indicates EEPROM or Flash.

A note on ROM
The early 8051, namely the 8031 was designed without any ROM. This device could run

i A ——

only with external memory connected to it. Subsequent developments lead to the
development of the PROM or the programmable ROM. This type had the disadvantage of
being highly unreliable. The next in line, was the EPROM or Erasable Programmable
ROM. These devices used ultraviolet light erasable memory cells. Thus a program could
be loaded, tested and erased using ultra violet rays. A new program could then be loaded
again. An improved EPROM was the EEPROM or the electrically erasable PROM. This
does not require ultra violet rays, and memory can be cleared using circuits within the
chip itself. Finally there is the FLASH, which is an improvement over the EEPROM.
While the terms EEPROM and flash are sometimes used interchangeably, the difference
lies in the fact that flash erases the complete memory at one stroke, and not act on the

individual cells. This results in reducing the time for erasure

14

2.1.1 Different microcontrollers in market

e PIC

One of the famous microcontrollers used in the industries. It is based on RISC

Architecture which makes the microcontroller process faster than other microcontroller.

e INTEL

These are the first to manufacture microcontrollers. These are not as sophisticated other

microcontrollers but still the easiest one to learn.

Ty A

e ATMEL

F Shed

Atmel’s AVR microcontrollers are one of the most powerful in the embedded industry.
This is the only microcontroller having 1kb of ram even the entry stage. But it is

unfortunate that in India we are unable to find this kind of microcontroller.

2.1.2 Intel 8051

Intel 8051 is CISC architecture which is easy to program in assembly language and also
has a good support for High level languages. The memory of the microcontroller can be
extended up to 64k. This microcontroller is one of the easiest microcontrollers to learn.

The 8051 microcontroller is in the field for more than 20 years. There are lots of books

and study materials are readily available for 8051.

2.1.3 Derivatives

The best thing done by Intel is to give the designs of the 8051 microcontroller to
everyone. So it is not the fact that Intel is the only manufacture for the 8051 there more
than 20 manufactures, with each of minimum 20 models. Literally there are hundreds of
models of 8051 microcontroller available in market to choose. Some of the major

manufactures of 8051 are
» Atmel
» Philips

o Philips

The Philips‘s 8051 derivatives has more number of features than in any microcontroller.
The costs of the Philips microcontrollers are higher than the Atmel’s which makes us to

choose Atmel more often than Philips

P ——

e Dallas

Dallas has made many revolutions in the semiconductor market. Dallas’s 8051 derivative
is the fastest one in the market. It works 3 times as fast as a 8051 can process. But we are

unable to get more in India.

e Atmel

These people were the one to master the flash devices. They are the cheapest
microcontroller available in the market. Atmel’s even introduced a 20pin variant of 8051
named 2051. The Atmel’s 8051 derivatives can be got in India less than 70 rupees. There

are lots of cheap programmers available in India for Atmel. So it is always good for

students to stick with 8051 when you learn a new microcontroller.

2.2 Architecture

Architecture is must to learn because before learning new machine it is necessary to learn
the capabilities of the machine. This is some thing like before learning about the car you
cannot become a good driver. The architecture of the 8051 is given below. The 8051
doesn’t have any special feature than other microcontroller. The onl y feature is that it is

easy to learn. Architecture makes us to know about the hardware features of the

microcontroller.

4K RAM
] 128 Bytes w'ﬁmer 1__. ;1
Program [; i
merrory SFR l Timer 2

- s =

Serial
inputioutput

- External memory

4 /O ports
contral (64K) ¥

(32 lines)

H

Figure 2.1 pin diagram of 8051 microcontroller

The features of the 8051 are
e 4K Bytes of Flash Memory ‘
e 128 x 8-Bit Internal RAM |
e Fully Static Operation: 1 MHz to 24 MHz

e 32 Programmable I/O Lines

e Two 16-Bit Timer/Counters

e Six Interrupt Sources (5 Vectored)

e Programmable Serial Channel

17

® Low Power Idle and Power Down Modes

The 8051 has a 8-Bit CPU that means it is able to process 8 bit of data at a time. 8051 has
235 instructions.Let’s now move on to a practical example. We shall work on a simple
practical application and using the example as a base, shall explore the various features of
the 8051 microcontroller.

Consider an electric circuit as follows,

Switch
|]

LS A SR BRI o D

o Bulb/LED |
Lot

Figure 2.2 Simple electric Bulb Circuit

The positive side (+ve) of the battery is connected to one side of a switch. The other side
of the switch is connected to a bulb or LED (Li ght Emitting Diode). The bulb is then
connected to a resistor, and the other end of the resistor is connected to the negative (-ve)
side of the battery. When the switch is closed or ‘switched on’ the bulb glows. When the
switch is open or ‘switched off’ the bulb goes off.if you are instructed to put the switch
on and off every 30 seconds, how would you do it? Obviously you would keep looking at
your watch and every time the second hand crosses 30 seconds you would keep turning
the switch on and off. Imagine if you had to do this action consistently for a full day. Do
you think you would be able to do it? Now if you had to do this for a month, a year??

No way, you would say!

The next step would be, then to make it automatic. This is where we use the
Microcontroller. But if the action has to take place every 30 seconds, how will the

microcontroller keep track of time?

2.3 Execution time
Look at the following instruction

clr p1.0

this is an assembly language instruction. It means we are instructing the microcontroller

18

to put a value of ‘zero’ in bit zero of port one. This instruction is equivalent to telling the
microcontroller to switch on the bulb. The instruction then to instruct the microcontroller

to switch off the bulb is set p1.0

Set p1.0

This instructs the microcontroller to put a value of ‘one’ in bit zero of port one.

Don’t worry about what bit zero and port one means. We shall learn it in more detail as
we proceed. There are a set of well defined instructions, which are used while
communicating with the microcontroller. Each of these instructions requires a standard
number of cycles to execute. The cycle could be one or more in number.

How is this time then calculated?

The speed with which a microcontroller executes instructions is determined by what is
known as the crystal speed. A crystal is a component connected externally to the
microcontroller. The crystal has different values, and some of the used values are 6MHZ,
10MHZ, and 11.059 MHz etc.

Thus a 10MHZ crystal would pulse at the rate of 10,000,000 times per second.

The time is calculated using the formula

No of cycles per second = Crystal frequency in HZ / 12.

For a 10MHZ crystal the number of cycles would be,

10,000,000/12=833333.33333 cycles.

This means that in one second, the microcontroller would execute 833333.33333 cycles.
Therefore for one cycle, what would be the time? Try it out.

The instruction clr p1.0 would use one cycle to execute. Similarly, the instruction setb
pl.0 also uses one cycle.

So go ahead and calculate what would be the number of cycles required to be executed to
get a time of 30 seconds!

Getting back to our bulb example; all we would need to do is to instruct the
microcontroller to carry out some instructions equivalent to a period of 30 seconds, like

counting from zero upwards, then switch on the bulb, carry out instructions equivalent to

30 seconds and switch off the bulb. Just put the whole thing in a loop, and you have a

T Tl

= . 2

never ending on-off sequence.

2.4 Features of the 8051 core

Let us now have a look at the features of the 8051 core, keeping the above example as a

reference

2.4.1 8-bit CPU.(Consisting of the ‘A’ and ‘B’ registers)

Most of the transactions within the microcontroller are carried out through the ‘A’
register, also known as the Accumulator. In addition all arithmetic functions are carried
out generally in the ‘A’ register. There is another register known as the ‘B’ register,
which is used exclusively for multiplication and division.

Thus an 8-bit notation would indicate that the maximum value that can be input into these
registers is ‘11111111°. Puzzled?

The value is not decimal 111, [1,111! It represents a binary number, having an equivalent
value of ‘FF’ in Hexadecimal and a value of 255 in decimal. We shall read in more detail
on the different numbering systems namely the Binary and Hexadecimal system in our

next module.

2.4.2 4K on-chip ROM

Once you have written out the instructions for the microcontroller, where do you put
these instructions? Obviously you would like these instructions to be safe, and not get
deleted or changed during execution. Hence you would load it into the ‘ROM’.

The size of the program you write is bound to vary depending on the application, and the
number of lines. The 8051 microcontroller gives you space to load up to 4K of program

size into the internal ROM. 4K, that’s all? Well just wait. You would be surprised at the

20

el RN N .

& I\
~Zknaghat, S0

amount of stuff you can load in this 4K of space. Of course you could always extend the

space by connecting to 64K of external ROM if required.

2.4.3 128 bytes on-chip RAM

This is the space provided for executing the program in terms of moving data, storing

data etc.

2.4.4 32 1/0 lines. (Four- 8 bit ports, labeled P0, P1, P2, P3)

In our bulb example, we used the notation p1.0. This means bit zero of port one. One bit
controls one bulb. Thus port one would have 8 bits. There are a total of four ports named

p0, pl, p2, p3, giving a total of 32 lines. These lines can be used both as input or output.

2.4.5 Two 16 bit timers / counters

A microcontroller normally executes one instruction at a time. However certain
applications would require that some event has to be tracked independent of the main
program. The manufacturers have provided a solution, by providing two timers. These
timers execute in the background independent of the main program. Once the required
time has been reached, (remember the time calculations described above?), they can
trigger a branch in the main program. These timers can also be used as counters, so that
they can count the number of events, and on reaching the required count, can cause a

branch in the main program.

2.4.6 Full Duplex serial data receiver / transmitter

The 8051 microcontroller is capable of communicating with external devices like the PC
etc. Here data is sent in the form of bytes, at predefined speeds, also known as baud rates.

The transmission is serial, in the sense, one bit at a time.

21

P S —

2.4.7 5 interrupt sources with two priority levels (Two external and three internal)

During the discussion on the timers, we had indicated that the timers can tri gger a branch
in the main program. However, what would we do in case we would like the
microcontroller to take the branch, and then return back to the main program, without
having to constantly check whether the required time / count has been reached?

This is where the interrupts come into play. These can be set to either the timers, or to
some external events. Whenever the background program has reached the required
criteria in terms of time or count or an external event, the branch is taken, and on
completion of the branch, the control returns to the main program. Priority levels indicate
which interrupt is more important, and needs to be executed first in case two interrupts

occur at the same time.

2.4.8 On-chip clock oscillator

This represents the oscillator circuits within the microcontroller. Thus the hardware is

reduced to just simply connecting an external crystal, to achieve the required pulsing rate.

2.4.9 Micro controller used in our project

In this project we use micro controller to control the direction of motor with proximity
switches and monitor the space of the parking. Here in this project we use ic 89¢2051
controller to sense all the logic. 89¢2051 is a 20 pin member of the main 40 pin
controller. We use 89¢2051 because here in this project we use only 2 outputs for motor
and control signal is only four, Out of four sensors, two sensors are for the floor and two
sensors for the space. 89¢2051 is a small micro controller with 128 byte of ram and 2 k

byte of flash memory.

22

- —e

- e = —

2.5 PIN FUNCTION OF IC 89C51

® Supply pin of this ic is pin no 40. Normally we apply a 5 volt regulated dc power
supply to this pin. For this purpose either we use step down transformer power

supply or we use 9 volt battery with 7805 regulator.

® Ground pin of this ic is pin no 20. Pin no 20 is normally connected to the ground

pin (normally negative point of the power supply).

® XTAL is connected to the pin no 18 and pin no 19 of this ic. The quartz crystal
oscillator connected to XTALI and XTAL2 PIN .These pins also needs two
capacitors of 30 pf value .One side of each capacitor is connected to crystal and
other pin is connected to the ground point. Normally we connect a 12 MHz or

11.0592 MHz crystal with this ic. But we use crystal up to 20 MHz to this pins

e RESET PIN. Pin no 9 is the reset pin of this ic. It is an active high pin. On
applying a high pulse to this pin, the micro controller will reset and terminate all

activities. This is often referred to as a power on reset. The high pulse must be

s S L == T S S

high for a minimum of 2 machine cycles before it is allowed to go low.

* PORTO occupies a total of 8 pins. Pin no 32 to pin no 39. It can be used for input
or output. We connect all the pins of the port 0 with the pull up resistor (10 k
ohm) externally. This is due to fact that port 0 is an open drain mode. It is just like

an open collector transistor.

* PORTI.All the ports in micro controller is 8 bit wide pin no 1 to pin no 8 because
it is a 8 bit controller. All the main register and SFR all is mainly 8 bit wide. Port
1 is also occupies 8 pins. But there is no need of pull up resistor in this port. Upon

reset port 1 acts as a input port. Upon reset all the ports act as a input port

® PORT2.port 2 also has 8 pins. It can be used as an input or output. There is no

need of any pull up resistor to this pin.

® PORT 3. Port3 occupies a total 8 pins from pin no 10 to pin no 17. It can be used

as input or output. Port 3 does not require any pull up resistor. The same as port |

and port2. Port 3 is configured as an output port on reset. Port 3 has the additional

function of providing some important signals such as interrupts. Port 3 also use for

serial communication.

® ALE is an output pin and is active high. When connectin g an 8031 to external
memory, port 0 provides both address and data. In other words, the 8031
multiplexes address and data through port 0 to save pins. The ALE pin is used for
demultiplexing the address and data by connecting to the ic 7415373 chip.

® PSEN stands for program store enable. In an 8031 based system in which an
external rom holds the program code, this pin is connected to the OE pin of the

rom.

® EA In89c51 8751 or any other family member of the ateml 89¢51 series all come
with on-chip rom to store programs, in such cases the EA pin is connected to the

Vee. For family member 8031 and 8032 is which there is no on chip rom, code is

stored in external memory and this is fetched by 8031. In that case EA pin must

be connected to GND pin to indicate that the code is stored externally.

PR T —

2.6 SPECIAL FUNCTION REGISTER (SFR) ADDRESSES

ACC ACCUMULATOR OEOH
B B REGISTER OFOH
PSW PROGRAM STATUS WORD 0DOH
SP STACK POINTER 81H
DPTR DATA POINTER 2 BYTES

DPL LOW BYTE OF DPTR 82H
DPH HIGH BYTE OF DPTR 83H
PO PORTO 80H
Pl PORT1 90H
P2 PORT?2 0AOH

24

P3 PORT3 0BOH

TMOD TIMER/COUNTER MODE CONTROIL, 89H
| TCON TIMER/ COUNTER CONTROL 88H
THO TIMER 0 HIGH BYTE 8CH
TLO TIMER 0 LOW BYTE 8AH
THI TIMER 1 HIGH BYTE 8DH
TLI1 TIMER 1 LOW BYTE 8BH
SCON SERIAL CONTROL 98H
SBUF SERIAL DATA BUFFER 99H
PCON POWER CONTROL 87TH

2.7 Instructions

PR IR T S e——.

2.7.1 Single bit instructions

SETBBIT SET THE BIT =1

CLRBIT CLEAR THE BIT =0

CPLBIT COMPLIMENT THE BIT 0 =1, 1=0

JBBIT, TARGET JUMP TO TARGET IF BIT =1

JNBBIT, TARGET JUMP TO TARGET IF BIT =0

JBCBIT, TARGET JUMP TO TARGET IF BIT =1 & THEN CLEAR THE BIT
2.7.2 MOYV Instructions

MOV D,S Copy the data from(S) source to D (destination)
] MOV R0, A Copy contents of A into Register RO

5 MOV RI1,A Copy contents of A into register R1
i
i

23

MOV A,R3 Copy contents of Register R3 into Accumulator.

Direct loading through MOV

MOV A, #23 H ; Direct load the value of 23h in A
MOV RO, #12h ; direct load the value of 12h in RO
MOV RS, #0OF9H ; Load the F9 value in the Register RS
2.7.3 ADD Instruction

ADD instruction adds the source byte to the accumulator (A) and place the result in the

Accumulator.
MOV A, #25H
ADD A, #42H ; BY this instruction we add the value 42h in Accumulator (42H+ 25H)

ADDA, R3 ; by this instructions we move the data from register r3 to accumulator and

then add the contents of the register into accumulator.

2.7.4 SUB ROUTINE CALL FUNCTION
ACALL, TARGET ADDRESS

By this instruction we call subroutines with a target address within 2k bytes from the

current program counter.
LCALL, TARGET ADDRESS.

ACALL is a limit for the 2 k byte program counter, but for up to 64k byte we use LCALL
instructions.. Note that LCALL is a 3 byte instruction. ACALL is a two byte instruction.

AJMP TARGET ADDRESS

AJMP stand for absolute jump. It transfers program execution to the target address
unconditionally. The target address for this instruction must be within 2 k byte of

program memory.

26

e — i -

LIMP is also for absolute jump. It transfer program execution to the target address un
conditionally. This is a 3 byte instructions LIMP jump to any address within 64 k byte

location,

2.7.5 Instructions related to carry

JCTARGET JUMP TO THE TARGET IF CY FLAG =1

JNC TARGET JUMP TO THE TARGET ADDRESS IF CY FLAG IS =0

2.7.6 Instructions related to jump with accumulator

JZTARGET JUMPTO TARGETIFA =0

JNZ TARGET JUMP IF ACCUMULATOR IS NOT ZERO

This instruction jumps if register A has a value other than zero

2.7.7 Instructions related to rotate

RL A ROTATE LEFT THE ACCUMULATOR

BY this instruction we rotate the bits of A left. The bits rotated out of A are rotated back

into A at the opposite end
RR A

By this instruction we rotate the contents of the accumulator from right to left from LSB

to MSB

RRC A

27

This is same as RR A but difference is that the bit rotated out of register first enter in to

carry and then enter into MSB

RLC A ROTATE A LEFT THROUGH CARRY

Same as above but shift the data from MSB to carry and carry to LSB
RET

This is return from subroutine. This instruction is used to return from a subroutine

previously entered by instructions LCALL and ACALL.
RET1

This is used at the end of an interrupt service routine. We use these instructions after

interrupt routine,

PUSH.

This copies the indicated byte onto the stack and increments SP by. This instruction !
supports only direct addressing mode. ;

!
POP. POP FROM STACK b

This copies the byte pointed to be SP to the location whose direct address is indicated,
and decrements SP by 1. Notice that this instruction supports only direct addressing

mode.
2.7.8 DPTR Instructions

MOV DPTR, #16 BIT VALUE

LOAD DATA POINTER

This instructions load the 16 bit dptr register with a 16 bit immediate value
MOV C A,@A+DPTR

This instruction moves a byte of data located in program ROM into register A. This

allows us to put strings of data, such as look up table elements.

28

@y

e

MOVC A,@A+PC

This instruction moves a byte of data located in the program area to A. the address of the
desired byte of data is formed by adding the program counter (PC) register to the original

value of the accumulator.

INC BYTE

This instruction adds 1 to the register or memory location specified by the operand.
INC A

INC Rn

INC DIRECT

DEC BYTE

This instruction subtracts 1 from the byte operand. Note that CY is unchanged
DEC A

DEC Rn

DEC DIRECT

2.7.9 Arithmetic Instructions

ANL dest-byte, source-byte
This perform a logical AND operation

This performs a logical AND on the operands, bit by bit, storing the result in the

destination. Notice that both the source and destination values are byte —size only
DIV AB

This instruction divides a byte accumulator by the byte in register B. It is assumed that
both register A and B contain an unsigned byte. After the division the quotient will be in

register A and the remainder in register B.

29

c

<O

2.15 Arithmetic Operations

Mnemonic Description

ADD A, Rn
ADD A, direct
ADD A, @Ri
ADD A, #data
ADDC A, Rn
ADDC A, direct
ADDC A, @Ri
ADDC A, #data
SUBB A, Rn
SUBB A, direct
SUBB A, @RI
SUBB A, #data
INC A

NC Rn

INC direct

Add register to Accumulator (ACC)

Add direct byte to ACC

Add indirect RAM to ACC

Add immediate data to ACC

Add register to ACC with carry

Add direct byte to ACC with carry.

Add indirect RAM to ACC with carry.

Add immediate data to ACC with carry.
Subtract register from ACC with borrows.
Subtract direct byte from ACC with borrow

Subtract indirect RAM from ACC with borrow.

Subtract immediate data from ACC with borrow.

Increment ACC
Increment register

Increment direct byte

Increment indirect RAM

Size

Cycles

1

1

B i e T~

DEC A

DEC Rn

DEC direct

DEC @Ri

INC DPTR

MUL AB

DIV AB

DA A

Decrement ACC
Decrement register
Decrement direct byte
Decrement indirect RAM

Increment data pointer.

Multiply A and B Result: A <- low byte, B <- high byte.

Divide A by B Result: A <- whole part, B <- remainder.

Decimal adjusts ACC.

Logical Operations

Mnemonic
ANL A, Rn
ANL A, direct
ANL A, @RI
ANL A, #data

ANL direct, A

Description
AND Register to ACC.
AND direct byte to ACC
AND indirect RAM to ACC
AND immediate data to ACC

AND ACC to direct byte.

ANL direct, #data AND immediate data to direct byte

ORL A, Rn
ORL A, direct
ORL A, @RI
ORL A, #data

ORL direct, A

OR Register to ACC.
OR direct byte to ACC
OR indirect RAM to ACC
OR immediate data to ACC

OR ACC to direct byte.

ORL direct, #data OR immediate data to direct byte

Size

—

Cycles

1

1

—

31

XRL ARn Exclusive OR Register to ACC | 1

XRL A, direct Exclusive OR direct byte to ACC 2 1

XRL A, @ RI Exclusive OR indirect RAM to ACC. 1 1

XRL A #data Exclusive OR immediate data to ACC. 2 1

XRL direct, A Exclusive OR ACC to direct byte. 2 1

XRL direct, #data XOR immediate data to direct byte 3 2

CLR A Clear ACC (set all bits to zero). 1 |

CPLA Compliment ACC ' 1 l

RL A Rotate ACC left. 1 1

RLC A Rotate ACC left through carry. l 1 .
RR A Rotate ACC right 1 1 I“
RRC A Rotate ACC right through carry. 1 ! ﬂ
SWAP A Swap nibbles within ACC. | 1 h
Data Transfer
Mnemonic Description Size Cycles

MOV A, Rn Move register to ACC l 1

MOV A, direct Move direct byte to ACC 2 1

MOV A, @Ri - Move indirect RAM to ACC ™ 1 1

MOV A, #data Move immediate data to ACC 2 1

MOV Rn, A Move ACC to register. 1 i

MOV Rn, direct Move direct byte to register. 2 2

32

. 2

MOV Rn, #data
MOY direct, A
MOV direct, Rn
MOV direct, direct
MOYV direct, @Ri
MOY direct, #data
MOV @Ri, A
MOV @Ri, direct

MOV @ R, #data

MOVC A,@A+PC
MOVX A,@Ri
MOVX A,@DPTR
MOVX @Ri,A
MOVX @DPTR,A
PUSH direct

POP direct

XCH A,Rn

XCH A ,direct
XCH A,@Ri

XCHD A,@Ri

Move immediate data to register.
Move ACC to direct byte.

Move register to direct byte.

Move direct byte to direct byte
Move indirect RAM to direct byte.
Move immediate data to direct byte
Move ACC to indirect RAM.
Move direct byte to indirect RAM.

Move immediate data to indirect RAM.

MOV DPTR,#datal6 Move immediate 16 bit data to data pointer register.

MOVC A,@A+DPTR Move code byte relative to DPTR to ACC

(16 bit address)

Move code byte relative to PC to ACC
Move external RAM to ACC (8 bit address).

Move external RAM to ACC (16 bit address).
Move ACC to external RAM (8 bit address).

Move ACC to external RAM (16 bit address).

Push direct byte onto stack.

Pop direct byte from stack.

Exchange register with ACC.

Exchange direct byte with ACC.

Exchange indirect RAM with ACC.

Exchange low order nibble of indirect

RAM with low order nibble of ACC

—

[e—

33

e

Boolean Variable Manipulation

Mnemonic
CLRC
CLR bit
SETB C
SETB
CPLC
CPL bit
ANL C,bit
ANL C,/bit
ORL C,bit
ORL C,/bit
MOV C,bit
MOV bit,C
JCrel

JNC rel

JB bit,rel
JNB bit,rel

JBC bit,rel

Description

Clear carry flag.

clear direct bit.

Set carry flag.

bit Set direct bit
Compliment carry flag.
Compliment direct bit.

AND direct bit to carry flag.

AND compliment of direct bit to carry.

OR direct bit to carry flag.
OR compliment of direct bit to carry.
Move direct bit to carry flag.
Move carry to direct bit.
Jump if carty is set.
Jump if carry is not set.
Jump if direct bit is set.
Jump if direct bit is not set.

Jump if direct bit is set & clear bit,

Size

Cycles

34

— e R a A =

Program Branching

Mnemonic Description Size Cycles

ACALL addrl1 Absolute subroutine call 2 2

LCALL addrl6 Long subroutine call 3 2

RET Return from subroutine. 1 2

RETI Return from interrupt. 1 2

AJMP addrll Absolute jump. 2 2

LIMP addr16 Long jump. 3 2

SIMP rel Short jump (relative address) 2 2

JMP @A+DPTR Jump indirect relative to the DPTR. 1 2 \
JZ rel Jump relative if ACC is zero. 2 2)
INZ rel Jump relative if ACC is not zero. 2 2 ﬁ
CINE A, direct,rel Compare direct byte to ACC and jump if not equal. 3 2 ’
CINE A, #data,rel Compare immediate byte to ACC and jump 3 2

If not equal
CINE Rn,#data,rel ~ Compare immediate byte to register and jump 3 2

If not equal

CJNE @Ri,#data,rel Compare immediate byte to indirect and jump 3 2
If not equal

DINZ Rn,rel Decrement register and jump if not zero. 2 2

DINZ direct,rel Decrement direct byte and jump if not zero. 3 2

35

.

2.20 Other Instructions
Mnemonic Description Size

NOP No operation

2.21 Software:-
Keil compiler or UMPS for programming

Window xp

Cycles

36

Chapter 3
LCD Display

3.1 Introduction

Frequently, an 8051 program must interact with the outside world using input and output
devices that communicate directly with a human being. One of the most common devices
attached to an 8051 is an LCD display. Some of the most common LCDs connected to

the 8051 are 16x2 and 20x2 displays. This means 16 characters per line by 2 lines and 20
characters per line by 2 lines, respectively. Fortunately, a very popular standard exists |
which allows us to communicate with the vast majority of LCDs regardless of their :{
manufacturer. The standard is referred to as HD44780U, which refers to the controller |
chip which receives data from an external source (in this case, the 8051) and o

communicates directly with the LCD. i

The 44780 standard requires 3 control lines as well as either 4 or 8 I/O lines for the data
bus. The user may select whether the LCD is to operate with a 4-bit data bus or an 8-bit
data bus. If a 4-bit data bus is used, the LCD will require a total of 7 data lines (3 control
lines plus the 4 lines for the data bus). If an 8-bit data bus is used, the LCD will require a

total of 11 data lines (3 control lines plus the 8 lines for the data bus).
The three control lines are referred to as EN, RS, and RW.

The EN line is called "Enable." This control line is used to tell the LCD that you are
sending it data. To send data to the LCD, your program should first set this line high (1)
and then set the other two control lines and/or put data on the data bus. When the other
lines are completely ready, bring EN low (0) again. The 1-0 transition tells the 44780 to
take the data currently found on the other control lines and on the data bus and to treat it
as a command. The RS line is the "Register Select" line. When RS is low (0), the data is

to be treated as a command or special instruction (such as clear screen, position cursor,

37

_

etc.). When RS is high (1), the data being sent is text data which should be displayed on

the screen. For example, to display the letter "T" on the screen you would set RS high.

The RW line is the "Read/Write" control line. When RW is low (0), the information on
the data bus is being written to the LCD. When RW is high (1), the program is effectively
querying (or reading) the LCD. Only one instruction ("Get LCD status") is a read
command. All others are write commands--so RW will almost always be low. Finally, the
data bus consists of 4 or 8 lines (depending on the mode of operation selected by the
user). In the case of an 8-bit data bus, the lines are referred to as DB0, DB1, DB2, DB3,
DB4, DBS, DB6, and DB7.

AN EXAMPLE HARDWARE CONFIGURATION

As we've mentioned, the LCD requires either 8 or 11 I/O lines to communicate with. For

the sake of this tutorial, we are going to use an 8-bit data bus--so we'll be using 11 of the

8051's I/O pins to interface with the LCD. Let's draw a sample psuedo-schematic of how :<
the LCD will be connected to the 8051.
i
4

—

w PB4 ynaqogn
DB% rop

w DBG
bpY

Figure 3.1 .Connection if display with microcontroller

As you can see, we've established a 1-to-1 relation between a pin on the 8051 and a line
on the 44780 LCD. Thus as we write our assembly program to access the LCD, we are
going to equate constants to the 8051 ports so that we can refer to the lines by their 44780

name as opposed to P0.1, P0.2, etc. Let's go ahead and write our initial equates:

38

DBO EQU P1.0
DB1 EQU P1.1
! DB2 EQU P1.2
DB3 EQU P1.3
DB4 EQU P1.4

DB5 EQU P1.5
DB6 EQU P1.6
DB7 EQU P1.7
EN EQU P3.7
RS EQU P3.6
RW EQU P3.5
DATA EQU P1

Having established the above equates, we may now refer to our I/O lines by their 44780

= I

name. For example, to set the RW line high (1), we can execute the following instruction:

SETB RW

T

TR

3.2 PROGRAMING THE LCD

3.2.1 HANDLING THE EN CONTROL LINE

As we mentioned above, the EN line is used to tell the LCD that you are ready for it to
execute an instruction that you've prepared on the data bus and on the other control lines.
Note that the EN line must be raised/lowered before/after each instruction sent to the
LCD regardless of whether that instruction is read or write, text or instruction. In short,
you must always manipulate EN when communicating with the LCD. EN is the LCD's
way of knowing that you are talking to it. If you don't raise/lower EN, the LCD doesn't
know you're talking to it on the other lines. Thus, before we interact in any way with the

LCD we will always bring the EN line high with the following instruction:

SETB EN

And once we've finished setting up our instruction with the other control lines and data

bus lines, we'll always bring this line back low:
CLR EN

Programming Tip: The LCD interprets and executes our command at the instant the EN
line is brought low. If you never bring EN low, your instruction will never be executed.
Additionally, when you bring EN low and the LCD executes your instruction, it requires
a certain amount of time to execute the command. The time it requires to execute an
instruction depends on the instruction and the speed of the crystal which is attached to the

44780's oscillator input,

3.2.2 CHECKING THE BUSY STATUS OF THE LCD

As previously mentioned, it takes a certain amount of time for each instruction to be

executed by the LCD. The delay varies depending on the frequency of the crystal ‘l‘
attached to the oscillator input of the 44780 as well as the instruction which is being
executed. While it is possible to write code that waits for a specific amount of time to
allow the LCD to execute instructions, this method of "waiting" is not very flexible. If the
crystal frequency is changed, the software will need to be modified. Additionally, if the
LCD itself is changed for another LCD which, although 44780 compatible, requires more
time to perform its operations, the program will not work until it is properly modified.

A more robust method of programming is to use the "Get LCD Status" command to
determine whether the LCD is still busy executing the last instruction received.

The "Get LCD Status" command will return to us two tidbits of information the
information that is useful to us right now is found in DB7. In summary, when we issue
the "Get LCD Status" command the LCD will immediately raise DB7 if it's still busy
executing a command or lower DB7 to indicate that the LCD is no longer occupied. Thus
our program can query the LCD until DB7 goes low, indicating the LCD is no longer

busy. At that point we are free to continue and send the next command.

40

Since we will use this code every time we send an instruction to the LCD, it is useful to
make it a subroutine. Let's write the code:

WAIT_LCD:

SETB EN ;Start LCD command

CLR RS ;It's a command

SETB RW ;lt's a read command

MOV DATA #0FFh ;Set all pins to FF initially

MOV A,DATA ;Read the return value

IJB ACC.7,WAIT_LCD ;If bit 7 high, LCD still busy

CLR EN ;Finish the command

CLR RW ;Turn off RW for future commands

RET

Thus, our standard practice will be to send an instruction to the LCD and then call our
WAIT_LCD routine to wait until the instruction is completely executed by the LCD. This
will assure that our program gives the LCD the time it needs to execute instructions and

also makes our program compatible with any LCD, regardless of how fast or slow it is.

S — i

Programming Tip: The above routine does the job of waiting for the LCD, but was it to
be used in a real application a very definite improvement would need to be made: as
written, if the LCD never becomes "not busy" the program will effectively "hang,”"
waiting for DB7 to go low. If this never happens, the program will freeze. Of course, this
should never happen and won't happen when the hardware is working properly. But in a
real application it would be wise to put some kind of time limit on the delay--for
example, a maximum of 256 attempts to wait for the busy signal to go low. This would

guarantee that even if the LCD hardware fails, the program would not lock up.

3.2.3 INITIALIZING THE LCD

Before you may really use the LCD, you must initialize and configure it. This is
accomplished by sending a number of initialization instructions to the LCD. The first
instruction we send must tell the LCD whether we'll be communicating with it with an 8-

bit or 4-bit data bus. We also select a 5x8 dot character font. These two options are

41

| _'ﬁ

selected by sending the command 38h to the LCD as a command. As you will recall from
the last section, we mentioned that the RS line must be low if we are sending a command
to the LCD. Thus, to send this 38h command to the LCD we must execute the following

8051 instructions:;

SETB EN

CLR RS

MOV DATA #38h
CLR EN

LCALL WAIT_LCD

Programming Tip: The LCD command 38h is really the sum of a number of option bits.
The instruction itself is the instruction 20h ("Function set"). However, to this we add the
values 10h to indicate an 8-bit data bus plus 08h to indicate that the display is a two-line

display.

We've now sent the first byte of the initialization sequence. The second byte of the
initialization sequence is the instruction OEh. Thus we must repeat the initialization code

from above, but now with the instruction. Thus the next code segment is:

SETB EN

CLR RS

MOV DATA #0Eh
CLR EN

LCALL WAIT_LCD

Programming Tip: The command OEh is really the instruction 08h plus 04h to turn the

LCD on. To that an additional 02h is added in order to turn the cursor on.

The last byte we need to send is used to configure additional operational parameters of

the LCD. We must send the value 06h.

SETB EN
CLR RS
MOV DATA #06h

42

o
g

e

CLR EN
LCALL WAIT_LCD

Programming Tip: The command 06h is really the instruction 04h plus 02h to configure
the LCD such that every time we send it a character, the cursor position automatically

moves to the right. So, in all, our initialization code is as follows:
INIT_LCD:

SETB EN

CLR RS

MOV DATA,#38h
CLR EN

LCALL WAIT_LCD
SETB EN

CLR RS

MOV DATA #0Eh
CLR EN

LCALL WAIT_LCD
SETB EN

CLR RS

MOV DATA #06h
CLR EN

LCALL WAIT_LCD
RET

R

B

R e

Having executed this code the LCD will be fully initialized and ready for us to send

display data to it.
3.2.4 CLEARING THE DISPLAY

When the LCD is first initialized, the screen should automatically be cleared by the

44780 controller. However, it's always a good idea to do things yourself so that you can

43

be completely sure that the display is the way you want it. Thus, it's not a bad idea to

clear the screen as the very first operation after the LCD has been initialized.

An LCD command exists to accomplish this function. Not surprisingly, it is the command
OTh. Since clearing the screen is a function we very likely will wish to call more than

once, it's a good idea to make it a subroutine:
CLEAR_LCD:

SETB EN

CLR RS

MOV DATA#01h
CLR EN

LCALL WAIT_LCD
RET

How that we've written a "Clear Screen" routine, we may clear the LCD at any time by \
simply executing an LCALL CLEAR_LCD.

e

Programming Tip: Executing the "Clear Screen" instruction on the LCD also positions

the cursor in the upper left-hand corner as we would expect.

3.2.5 WRITING TEXT TO THE LCD

Now we get to the real meat of what we're trying to do: All this effort is really so we can

display text on the LCD. Really, we're pretty much done.

Once again, writing text to the LCD is something we'll almost certainly want to do over

and over--so let's make it a subroutine.
WRITE_TEXT: .

SETB EN
SETB RS
MOV DATA,A
CLR EN

44

LCALL WAIT_LCD
J RET

The WRITE_TEXT routine that we just wrote will send the character in the accumulator
1 to the LCD which will, in turn, display it. Thus to display text on the LCD all we need to

do is load the accumulator with the byte to display and make a call to this routine.
e A "HELLO WORLD'" PROGRAM

Now that we have all the component subroutines written, writing the classic "Hello
World" program--which displays the text "Hello World" on the LCD is a relatively trivial

matter. Consider:

LCALL INIT_LCD

LCALL CLEAR_LCD

MOV A #H' |
LCALL WRITE_TEXT \
MOV A#E'

LCALL WRITE_TEXT
MOV A #L'

LCALL WRITE_TEXT
MOV A #L'

LCALL WRITE_TEXT
MOV A #0'

LCALL WRITE_TEXT
MOV A #'"'

LCALL WRITE_TEXT
MOV A#W

LCALL WRITE_TEXT
MOV A #0'

LCALL WRITE_TEXT
MOV A#R'

LCALL WRITE_TEXT
MOV A #L'

T

{ s

LCALL WRITE_TEXT
MOV A#D'
LCALL WRITE_TEXT

The above "Hello World" program should, when executed, initialize the LCD, clear the

LCD screen, and display "Hello World" in the upper left-hand corner of the display.

3.2.6 CURSOR POSITIONING

The above "Hello World" program is simplistic in the sense that it prints its text in the
i upper left-hand corner of the screen. However, what if we wanted to display the word
"Hello" in the upper left-hand corner but wanted to display the word "World" on the
! second line at the tenth character? This sounds simple--and actually, it is simple.

However, it requires a little more understanding of the design of the LCD.

-

o

The 44780 contains a certain amount of memory which is assi gned to the display. All the

text we write to the 44780 is stored in this memory, and the 44780 subsequently reads

R

this memory to display the text on the LCD itself. This memory can be represented with

the following "memory map":

Display @0 01 B2 83 04 05 P6 07 63 69 10 11 12 13 14 15 16

Line 1 fooloi}oohesfaslactochorlosaslorleslachenfoelar ol iz 12 14k c]. . .
Line 2 | do}41] 42} 4344]4c]ac)47)4s] 4o] aalac)4ch 4ol scfsrfso] s1)s2lssfsalss]. . .

Figure 3.2 .memory map of display

Thus, the first character in the upper left-hand corner is at address 00h. The following
character position {(character #2 on the first line) is address O1h, etc. This continues until

we reach the 16th character of the first line which is at address OFh.

However, the first character of line 2, as shown in the memory map, is at address 40h.
This means if we write a character to the last position of the first line and then write a
second character, the second character will not appear on the second line. That is because
the second character will effectively be written to address 10h--but the second line begins
at address 40h.

46

Thus we need to send a command to the LCD that tells it to position the cursor on the
second line. The "Set Cursor Position" instruction is 80h. To this we must add the address
of the location where we wish to position the cursor. In our example, we said we wanted
to display "World" on the second line on the tenth character position. Referring again to
the memory map, we see that the tenth character position of the second line is address
4Ah. Thus, before writing the word "World" to the LCD, we must send a "Set Cursor
Position" instruction--the value of this command will be 80h (the instruction code to
position the cursor) plus the address 4Ah. 80h + 4Ah = C4h. Thus sending the command

C4h to the LCD will position the cursor on the second line at the tenth character position:

SETB EN

CLR RS

MOV DATA #0C4h

CLR EN \
LCALL WAIT_LCD \

The above code will position the cursor on line 2, character 10. To display "Hello" in the)J
upper left-hand corner with the word "World" on the second line at character position 10
just requires us to insert the above code into our existing "Hello World" program. This

results in the following:

LCALL INIT_LCD
LCALL CLEAR_LCD
MOV A#H'

LCALL WRITE_TEXT
MOV A#E'

LCALL WRITE_TEXT
MOV A#L

LCALL WRITE_TEXT
MOV A#L

LCALL WRITE_TEXT
MOV A#0'

LCALL WRITE_TEXT

47

SETB EN

CLR RS .
MOV DATA #0C4h

CLR EN

LCALL WAIT_LCD

MOV A #W

LCALL WRITE_TEXT
MOV A#0O'

LCALL WRITE_TEXT
MOV A #R'

LCALL WRITE_TEXT
MOV A #L'

LCALL WRITE_TEXT
MOV A #D

LCALL WRITE_TEXT

3.3 PIN WISE DETAIL OF LCD
|
i 1. Vss GROUND
2. Ve +5VOLT SUFPLY
3 Vee POWER SUPPLY TO CONTROL CONTRAST
4 RS RS = 0 TO SELECT COMMAND REGISTER

RS =1 TO SELECT DATA REGISTER
3. R/W "R/W =0 FOR WRITE

R/W = | FOR READ
6 E ENABLE

7 DBO

48

10.
11;
12,
15
14.

15,16

DB1

DB2

DB3

DB4

DBS5

DB6

DB7

FOR BACK LIGHT DISPLAY

3.4 LCD COMMAND CODES

1.

2

6.

om0 » ®

ol

14.

18.

CLEAR DISPLAY SCREEN

RETURN HOME

DECREMENT CURSOR (SHIFT CURSOR TO LEFT)
SHIFT DISPLAY RIGHT.

INCREMENT CURSOR (SHIFT CURSOR TO RIGHT)
SHIFT DISPLAY LEFT

DISPLAY OFF, CURSOR OFF

DISPLAY OFF CURSOR ON

DISPLAY ON CURSOR OFF

DISPLAY ON CURSOR BLINKING

DISPLAY ON CURSOR BLINKING.

SHIFT CURSOR POSITION TO LEFT

SHIFT CURSOR POSITION TO RIGHT

SHIFT THE ENTIRE DISPLAY TO THE LEFT

49

iC SHIFT THE ENTIRE DISPLAY TO THE RIGHT
80 FORCE CURSOR TO BEGINNING OF IST LINE
C0 FORCE CURSOR TO BEGINNING OF 2MP LINE

LINES AND 5 X 7 MATRIX

T -

50

Chapter-4

! Programming Code

4.1 Programming code
The assembly level programming code for our project is mentioned below

; Program to --------- Car LIFT--mmocameame

led equ pO b
s equ p2.5

rw equ p2.6
en equ p2.7
LED equ p3

d7 equ p0.7

org 33h

acall mainlp

mainlp:
setb p3.7

;show car is parked or not on led

acall carparking ;calling LCd commands
acall express
acall gotogrd ;displau car parking
acall switch

express: ; moving auto carparking on led
acall fcbfl

mov dptr,#TABLE1

51

_

acall write
ret
switch:
jnb p3.7,j1 ; checking ir sensor
jnb pl.7,motoraction6
ret

startl: ; moving motor forward and backward

jb pl.0,stopl ;if car is not on ground floor
jb pl.1,motoractionl
jb pl.2,motoraction2)
jb pl.3,motoraction3
jnb pl.4,j2 E
acall motoraction4
j2
acall nospace
acall delay
ret
nospace:
acall clrled
acall fcbfl
mov dptr,#TABLE7
ACALL write

acall delay

52

acall delay
ret
stopl:
clr p2.0
setb p2.1
acall delay
acall gotogrd
acall delay
acall delay
acall delay
jnb pl.0,stop ' ¥
jb p1.0,stop1 ;p
ret
stop:
setb p2.0
seth p2.1
acall delay
acall delay
ret |
motoraction]:

acall fcbsl

mov dptr,#TABLE3

acall write

setb p2.0

53

clr p2.1
acall delayl
acall delay!
acall delayl
jb pl.5,motoraction|l
acall stopl
ret
motoractionf:
acall fcbsl

mov dptr, ¥ TABLES

acall write

setb p2.0 j
clr p2.1 !!
acall delayl |
acall delay!

acall delay!

jb p3.6,motoraction6
acall stopl

ret

motoraction2:
acall febsl
mov dptr,#TABLE4
acall write

setb p2.0

54

clr p2.1
acall delay!
acall delayl

acall delayl

jb p1.5,motoraction?2

acall stop] ;

ret |
motoraction3:

acall fcbsl

mov dptr, i TABLES

acall write

setb p2.0

chrp2.1

acall delay!

acali delayl

acall delay!

jb pl.6,motoraction3
acall delay
jnb pl.6,stop!

ret

. motoractiond;
acall fcbsl
mov dptr #TABLES

acall write

55

setb p2.0
clr p2.1
acall delay]1

acall delayl

acall delayl
setb pi.5
jb pl.6,motoraction|
acall stopl
ret

gotogrd:

acal] fchsl f
mov dptr,#Tf.\BLEZ‘
acall write
ret
clrled:
mov A#01h : Entfy mode, Set increment
acall command
acall delay
ret
carparking: ; LCD routines
acall delay
mov A#0lh ; Entry mode, Set increment

acall command

56

acall delay
mov A #06h ; Entry mode, Set increment
acall command

acall delay

mov A #0OEh : Entry mode, Set increment

acall command
acall delay
ret
display: ;WRITE COMMAND TO LCD
mov lcd,a
setb rs
clr rw
seth en
acall delay
clren
ret

command: :INSTRUCTION COMMAND TO LCD

mov led,a
clrrs
clr rw
setb en
acall delay
clr en |

ret

57

write: ;WRITE FROM DATATABLES
clra
move a, @a-+dptr
acall display
inc dptr
jz again
acall delay
sjmp write
again: acall delayl
ret
febfl: !
mov a,#30h ;CURSOR AT BEGINNING OF IST LINE
acall command
acall delay
ret
fcbsl:
mov a,#0C0h ;CURSOR AT BEGINNING OF IIND LINE
acall delay
acall command
ret
delay: ;led delay
mov r3,#50
here2: mov r4,#255

here: djnz rd,here

58

djnz 13,here2

ret
delayl: smotor delay
mov 10,#0{th
her: mov rl,#0ffh
hl: djnzrl,ht
djnz 10,her
ret
;DATA TABLE
TABLEl: DB "CAR LIFT",0
TABLE2: DB 'GOTOGROUND',0
TABLE3: DB "GOTO***F1*" 0
TABLE4: DB "GOTO***F2#%" ()
TABLES: DB "GOTO**#81%",0
TABLES6: DB "GOTO***S2*" 0
TABLE7: DB "NO SPACE",0
TABLES: DB "VIP#k*#ks

end

59

Bibliography
1. HAND BOOK OF ELECTRONICS ALK MAINI,
2. HAND BOOK OF ELECTRONICS CUPTA & KUMAR,
LLETUSC YASHWANT KANITKAR.
4, SHUAM SERIES - TATA MC GRILL
5. DIGITAL SYSTEMS PRINCIPLES AND APPLICATION RONALD LTQCCI
(Sixth addition) '
6. ELECTRONICS FOR YOU
7. DIGITAL DESIGN MORIS MANO,
(Second addition)
8. MODERN ALL ABOUT MOTHERBOARD LOTHIA, M.
(Bpb-publishers)
9. POWER SUPPLY FOR ALL QCCASION SHARMA, MC.
(Bpb-publishers)
10, CMOS DATA BOOK (74SERIES) ECA.
(Bpb-publishers}
11. PRACTICAL YALUE AND TRANSISTOR DATA | POPE.
(Bpb-publishers)
12, PRACTICAL TRANSFORMER DESIGN HAND BOOK LABON. E.
3. MODERN IC MANAHAR LOTIA

60

