JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2024

M.Tech-I Semester (SE)

COURSE CODE (CREDITS): 13M1WCE131 (3)

MAX. MARKS: 35

COURSE NAME: FINITE ELEMENT METHODS

COURSE INSTRUCTORS: DR. SAURAV

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question		_
		CO	Marks
Q1	Deduce an equation to evaluate direct stiffness matrix of a two noded truss membhaving an angle θ with the horizontal. Find the member forces of the truss as shown in Fig. 1 by direct stiffness method. $\frac{AE}{L}$ Values are indicated besides the member.	cO-4	7
	4000 KN AE = 2 4000 KN		
Q2]	Find direct stiffness matrix and compute the stresses at the various salient points of		
	the system as shown in the Fig. 2 discretizing the systems into 4 elements. $A_1 = 2$ cm ² , $A_2 = 4$ cm ² and $A_3 = 6$ cm ² . L= 1 units and E= 1 units. P= 1000 kN	CO-4	7

	$A_3 = 6 \text{ cm}^2$ $A_4 = 4 \text{ cm}^2$ $A_5 = 6 \text{ cm}^2$		
	Fig. 2		
	Determine the shape function for constant strain triangle (CST) using polynomial	CO-3	7
Q3.			
	functions		
	Explain the following terms clearly	CO-3	7
Q4.	i) Nodes, primary nodes, secondary nodes and internal nodes		
	ii) Local coordinates, global coordinates, natural coordinates and area coordinates.iii) Higher order elements and lower order elements.		
	iv) Linear strain triangle (LST)		
	v) Serendipity family members		
Q5.	Compute the value of the central deflection for the simply supported beam subjected to point load P considering the first term of the trigonometric series using Rayleigh		7
	Ritz method	. [