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ABSTRACT

Motivation: The large amount of proteomic data is available for a variety of organisms,
allow researchers to efficiently identify novel proteins in distantly related organisms and
annotating them. A faster means of annotation would be to match them with the ﬁlready
annotated sequences using sequence based similarity search method like BLAST. It is a
discrete method of calculating the similarity between protein sequences simply by
measuring the number of matches and mismatches. However, the function of a‘protein is
not only depends on its primary sequence but also very much depends on how the protein
folds into 3D structure which in turn also depends on the hydrophobicity and
hydrophilicity properties of the proteins. Therefore it is needed to capture sequence order
information, short term and long terﬁl interactions between amino acids in a protein
sequence as well as to capture proportion of hydrophobicity and hydrophilicity properties
of the proteins in order to correctly annotate the raw protein sequence. Therefore, we are
motivated to develop an online prediction server for predicting the metal binding proteins
from sequence derived features. These methods achieved good prediction accuracies and
could nicely complement experimental approaches for identification of metal binding
proteins. The prediction methods are unique in the sense that they do not require

homologous protein sequences.

Result: We developed a tool consisting of 3 level of hierarchical classification using
artificial neural network (ANN). First layer of classiﬁcation decides whether protein
sequence is Metal Ion Binding or Non-Metal Ion Binding, If the protein sequence is
Metal Ion Binding, it is classified into either of major classes, Alkali Earth Metal Ion
Binding, Alkali Metal Ion Binding and Transition Metal lon Binding at second level of
classification. In the third level of classification, the tool finally predicts the specificity of
the protein to bind with a metal ion. Sequence derived features like physicochemical
properties; amino acid composition and sequence based correlation of amino acids
(pseudo amino acid) were used during the training, testing and validation of the tool. Our
tool is robust and successfully classifies the novel protein sequence into metal binding

protein, then into its major class and finally predicts specific metal binding. The

X




performance accuracy of our tool at 1* layer is 76.05%, at 2" layer is 77.48% and at 3"

layer is 84.44%. Using Jackknifing validation technique the performance accuracy of our
tool is 66.46% at 1 layer, 68.55% at 2" layer and 73.73% at the 3" layer.

Availability: The Metallopred tool is available for free use to non commercial users and
can be downloaded to be used in-house as a standalone from following link.

http://www. juit.ac.in
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CHAPTER 1
METALLOPROTEINS
INTRODUCTION

The 'metalloproteins' have captivated chemists and biochemists, particularly since the
1950s, when the first X-ray crystal structure of a protein, sperm whale myoglobin,
indicated the presence of an iron atom. They account for nearly half of all proteins in the
nature. Protein metal-binding sites are responsible for catalyzing important biological
processes, such as photosynthesis, respiration, water oxidation, molecular oxygen
reduction and nitrogen fixation. This reaction involves Ha, N3, CO, CO; and CH; which
are likely to have been central to the origin of life. This is indicated by the active-site
structures of the enzymes involved, which are often reminiscent of minerals. Although
the reactions are based on metal centres, the protein matrix regulates reactivity. Much
effort has been devoted to understanding the structure and function of these proteins.
With the automation in genome sequencing projects huge amount of data were generated
each day. However, it is now more important to annotate these sequencing data with the
help of computational methods. Therefore the requirement is to develop automated
computational methods for the annotation. With this challenge here in this study we have
developed an online automated tool for the annotation of metal binding proteins.

Metalloprotein is a generic term for a protein that contains a metal ion cofactor.
Metalloproteins have many different functions in cells as enzymes, transport and storage
proteins, signal transduction proteins, etc.. The metal ion is usually coordinated by
nitrogen, oxygen or sulfur atoms belonging to amino acids in the polypeptide chain
and/or a macro cyclic ligand incorporated into the protein. The presence of the metal ion
allows metalloenzymes to perform functions such as redox reactions that cannot easily be

performed by the limited set of functional groups found inamino acids.

1.1 How metalloproteins evolve in nature?

The most popular autotrophic theory of the origin of life postulates that primordial
metabolisms developed on mineral iron-sulphur surfaces under reducing conditions.

During this period of the Earth's evolution, between 4.6 and 3.5 billion years ago, the
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atmosphere was probably rich in gases such as Hp, CO and CO,, and its hot oceans
contained relatively high concentrations of transition-metal ions such as Fe?" and N,

The physicaland chemical properties of a selected metal satisfied a protein's need to form
structure, as for zinc-fingers, or to drive catalysis. Proteins evolved to use those metals
that at least once were, most accessible. A tenet of the cell biology of metals is that some
metals tend to bind organic molecules more avidly than others. The natural order of
stability for divalent metals, often called the Irving—Williams series, sets out a resulting
trend with copper and zinc forming the tightest complexes, then nickel and cobalt,
followed by ferrous iron and manganese and finally, forming the weakest complexes,

calcium and magnesium.

1.2 Why are metalloproteins useful?

Metal ions present in the proteins help in its structure, function and stability. The study of
these cofactors falls under the area of bioinorganic chemistry. In nutrition, the list of
essential trace elements reflects their role as cofactors. In humans this list commonly
includes iron, manganese, cobalt, copper, zinc, and molybdenum. lodine is also an
essential trace element, but this element is used as part of the structure of thyroid
hormones rather than as an enzyme cofactor. Cakium is another special case, in that it is
required as a component of the human diet, and it is needed for the full activity of many
enzymes: such as nitric oxide synthase, protein phosphatases or adenylate kinase, but
cakium activates these enzymes in allosteric regulation, often binding to these enzymes
in a complex with Calmodulin. Calcium is therefore a cell signaling molecule, and not
usually considered as a cofactor of the enzymes it regulates.

Other organisms require additional metals as enzyme cofactors, such as vanadium in the
nitrogenase of the nitrogen-fixing bacteria of the genus Azotobacter, tungsten in the
aldehyde ferredoxin oxidoreductase of the thermophilic archaean Pyrococcus Sfuriosus,
and even cadmium in the carbonic anhydrase from the marine diatom Thalassiosira
weissflogii .In many cases, the cofactor includes both an inorganic and organic

component. One diverse set of examples are the haem proteins, which consists of a

porphyrin ring coordinated to iron.




1.2.1 Storage and transport metalloproteins

1.2.1.1 Oxygen carriers proteins

Hemoglobin, which is the principal oxygen carrier in humans, has four sub-units in which
the iron (I1) ion is coordinated by the planar, macrocyclic ligand protoporphyrin IX (PIX)
and the imidazole nitrogen atom of a histidine residue. The sixth coordination site
contains a water molecule or a dioxygen molecule. Myoglobin has only one such unit.
The active site is located in a hydrophobic pocket. In both hemoglobin and Myoglobin it
is known that the diamagnetic nature of these species is due to the fact that the iron (II) is
in the low-spin state. Hemerythrin is another iron-containing oxygen carrier. The oxygen
binding site is a binuclear iron center. The iron atoms are coordinated to the protein
through the carboxylate side chains of a glutamate and aspartate and five histidine
residues. Hemocyanins carry oxygen in the blood of most mollusks, and some
arthropods. They are second only to hemoglobin in biological popularity of use in oxygen
transport. On oxygenation the two copper (I) atoms at the active site are oxidised to

copper (IT) and the dioxygen molecules is reduced to peroxide, 052",

1.2.1.2 Cytochrome

Cytochromes function as electron-transfer vectors. The iron atom /nys

in most cytochromes is contained in a heme group. Figure 1.1 Cys\ql /S

represents iron atom interacting with the four sulphur atoms, one /sﬂ"":“\

of each cysteine amino acid present in the cytochrome. The Cys S\c
ys

differences between the cytochromes lie in the different side- Figure 1.1 Fe ions interacting
with cystein amino add present

chains. For instance Cytochrome-a has a heme-a prosthetic in the Cytochrome

group and Cytochrome-b has a heme-b prosthetic group. These differences result in
different Fe**/Fe** redox potentials such that various cytochromes are involved in the
mitochondrial electron transport chain. Cytochromes P450 enzymes perform the function

of inserting an oxygen atom into a C—H bond, an oxidation reaction.

s
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1.2.1.3 Rubredoxin

Rubredoxin is an electron-carrier found in sulfur-metabolizing bacteria and archaea. The
active site contains an iron ion which is coordinated by the sulphur atoms of four cysteine
residues forming an almost regular tetrahedron. Rubredoxin performs one-electron
transfer processes. The oxidation state of the iron atom changes between the +2 and +3
states. In both oxidation states the metal is high spin, which helps to minimize structural

changes.

1.2.1.4 Iron storage and transfer
Iron is stored as iron (III) in ferritin. The exact nature of the binding site has not yet been

determined. The iron appears to be present as a hydrolysis product such as FeO (OH).
Iron is transported by transferring whose binding site consists of two tyrosines, one
aspartic acid and one histidine. The human body has no mechanism for iron excretion.
This can lad to iron-overload problems in patients treated with blood transfusions, as,

for instance, with -thallasemia.

1.2.2 Metalloenzymes
Metalloenzymes have one feature in common, namely, that the metal ion is bound to the
protein with one labile coordination site. As with all enzymes, the shape of the active site

is crucial. The metal ion is usually located in a pocket whose shape fits the substrate.

1.2.2.1 Vitamin B12-dependent enzymes
Vitamin B12 catalyzes the transfer of methyl (-CH;) groups between two molecules,

which involves the breaking of C-C bonds, a process that is energetically expensive in
organic reactions. The metal ion lowers the activation energy for the process by forming
a transient Co-CH3 bond. It consists of a cobalt (II) ion coordinated by four nitrogen
atoms of a corrin rings and a fifth Nitrogen atom from an imidazole group. In the resting
state there is a Co—C o bond with the 5' carbon atom of adenosine. This is a naturally
occurring organ metallic compound, which explins its function in trans-methylation

reactions, such as the reaction carried out by methionine synthase.




1.2.2.2 Nitrogenase (nitrogen fixation)

The fixation of atmospheric nitrogen is a very energy-intensive process, as it involves
breaking the very stable triple bond between the nitrogen atoms. The enzyme nitrogenase
is one of the few enzymes that can catalyze the process. The enzyme occurs in certain
bacteria. There are three components to its action: a molybdenum atom at the active site,
Iron-sulfur clusters which are involved in transporting the electrons needed to reduce the
nitrogen and an abundant energy source. The energy is provided by a symbiotic
relationship between the bacteria and a host plant, often a legume. The relationship is
symbiotic because the plant supplies the energy by photosynthesis and benefits by
obtaining the fixed nitrogen. The reaction may be written symbolically as
Nz +16 MgADP +8¢” — 2NH; + 16 MgADP 16 Pi + H;

where P; stands for inorganic phosphate. The precise structure of the active site has been
difficult to determine. It appears to contain a MoFe7Sg cluster which is able to bind the
dinitrogen molecule and, presumably, enable the reduction process to begin. The
electrons are transported by the associated "P" cluster, which contains two cubical Fe4S4

clusters joined by sulphur bridges.

1.2.2.3 Chlorophyll-containing Proteins
Chlorophyll plays a crucial role in photosynthesis. It contains magnesium enclosed in a

chlorin ring (Figure 1.2). However, the magnesium ion is not directly involved in the
photosynthetic function and can be replaced by other 'divalent jons with little loss of
activity. Rather, the photon is absorbed by the chlorin ring, whose electronic structure is
well-adapted for its purpose.
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Figure 1.2 Mg ion interacting in the chlorin ring of chlorophyll molecule

1.2.3 Signal-transduction metalloproteins

1.2.3.1 Calmodulin

Calmodulin is an example of a signal-transduction protein. It
is a small protein which contains four EF-hand motifs, each
of which can bind a Ca®" ion. In an EF-hand loop the calcium

ion is coordinated in a pentagonal bipyramidal configuration.

Six Glutamic acid and Aspartic acid residues involved in Figure 1.3 Ca ion is coordinated in
Sl ; ith ; a pentagonal bipyramidal
the binding are in positions 1, 3, 5, 7, 9 of the polypeptide configuration in the EF hand '
chain (Figure 1.3). At position 12 there is a glutamate or aspartate ligand which behaves
as a (bidentate ligand), providing two oxygen atoms. The ninth residue in the loop is
necessarily glycine due to the conformational requirements of the backbone. The
coordination sphere of the calcium ion contains only carboxylate oxygen atoms and no

nitrogen atoms. This is consistent with the hard nature of the calcium ion.




1.2.3.2 Transcription factors
Many transcription factors contain a structure known as

a zinc finger; this is a structural module where a region
of protein folds around a zinc ion. The zinc does not

directly contact the DNA that these proteins bind to;

instead the cofactor is essential for the stability of the . i

tightly-folded protein chain. In these proteins the zinc Figure 1.4 Zn ioninteracting with histidine and
¢ = cystein forming the Zn finger

ion is usually coordinated by pairs of cysteine and

histidine side chains (Figure 1.4).
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CHAPTER 2
NEURAL NETWORKS FOR PROTEIN CLASSIFICATION

Molecular biology is a field that has experienced dramatic developments in recent years.
A large number of data are constantly being generated thanks to several gendmes —
sequencing projects throughout the workl. However, little information can readily
extracted from these data and, therefore, data analysis has becomes a central issue in
molecular biology. The analysis includes methods and algorithms for preprocessing
visualization, knowledge discovery and data-mining of genomic and proteomic data. A
vertiginous increase in the rate at which new protein structures are discovered has taken
place as a by-product of ongoing sequencing projects. The functional annotation of
membrane proteins in genomic sequences is an important problem in bioinformatics and

computational biology.

2.1 What is an Artificial Neural Network?

An artificial neural network is a system based on the operation of biological neural
networks, in other words, is an emulation of biological neural system. Why would be
necessary the implementation of artificial neural networks? Although computing these
days is truly advanced, there are certain tasks that a program made for a common
microprocessor is unable to perform; even so a software implementation of a neural

network can be made with their ad vantages and disadvantages.

Advantages:

e A neural network has the ability to learn in non-linear and random fashion and thus,
can perform tasks that a linear regression, multiple linear regression or even n'™ order
non-linear system cannot.

o When an element of the neural network fails, it can continue without much problem
due to their parallel learning nature.

e A neural network larns by input/output mapping and thus, does not need to be

reprogrammed.
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¢ Itcanbe implemented in applications where critical information e.g. sequence pattern
information, for classification/prediction is not known and thus, user doesn’t need to

specify the same.

o It is an easy to use computational algorithm which, after learning once, can be

implemented again and again.

Disadvantages:

o The neural network needs initial training/learning to operate, which is
computationally complex and needs good resources.

» Biological data is usually diverse and imbalanced, having unequal number of data
points in different classes. Neural Networks are not perfectly capable of learning from

imbalanced dataset and usually over train for classes having higher number of data

points.

Another aspect of the artificial neural networks is that there are different architectures,
which consequently requires different types of algorithms, but despite to be an apparently
complex system, a neural network is relatively simple.

The field of Artificial Neural Network is highly interdisciplinary, but our approach will
restrict the view only to the research perspective. In research, neural networks serve two
important functions: as pattern classifiers and as nonlinear adaptive filters. In terms of
definition and style of computation, an Artificial Neural Network is an adaptive, most
often nonlinear system that learns to perform a function (an input/output map) from data.
Adaptive means that the system parameters are changed during operation, normally
called the training phase. After the training phase the Artificial Neural Network
parameters are fixed and the system is deployed to solve the problem at hand (the testing
phase). The Artificial Neural Network is built with a systematic step-by-step procedure to
optimize a performance criterion or to follow some implicit internal constraint, which is
commonly referred-to-as the learning rule. The input/output training data are fundamental
in neural network technology, because they convey the necessary information to

"discover" the optimal operating point. The nonlinear nature of the neural network

processing elements (PEs) provides the system with lots of flexibility to achieve
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practically any desired input/output map, ie., some Artificial Neural Networks are

universal mappers.

Figure 2.1 Architecture of Neural Network
An input is presented to the neural network and a corresponding desired or target

response set at the output (when this is the case the training is called supervised). An
error is composed from the difference between the desired response and the system
output. This error information is fed back to the system and adjusts the system parameters
in a systematic fashion (the learning rule). The process is repeated until the performance
is acceptable (Figure 2.1). It is clear from this description that the performance hinges
heavily on the data. If one does not have data that cover a significant portion of the
operating conditions or if they are noisy, then neural network technology is probably not
the right solution. On the other hand, if there is plenty of data and the problem is poorly
understood to derive an approximate model, then neural network technology is a good
choice. In artificial neural networks, the designer chooses the network topology, the
performance function, the learning rule, and the criterion to stop the training phase, but
the system automatically adjusts the parameters. So, it is difficult to bring a priori
information into the design, and when the system does not work properly it is also hard to
incrementally refine the solution. But in many difficult problems artificial neural
networks provide performance that is difficult to match with other technologies. Denker
10 years ago said that "artificial neural networks are the second besi way (o implemeni a
solution" motivated by the simplicity of their design and because of their universality,

only shadowed by the traditional design obtained by studying the physics of the problem.
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At present, artificial neural networks are emerging as the technology of choice for many

applications, such as pattern recognition, prediction, system identification, and control.

2.2 The Biological Model

Artificial neural networks emerged after the introduction of simplified neurons by
McCulloch and Pitts in 1943. These neurons were presented as models of biological
neurons and as conceptual components for circuits that could perform computational
tasks. The basic model of the neuron is founded upon the functionality of a biological
neuron. Neurons are the basic signaling units of the nervous system and each neuron is a

discrete cell whose several processes arise from its cell body.

Dendrites

Figure 2.2 Biological neuron

The neuron has four main regions to its structure. The cell body, or soma, has two
offshoots from it, the dendrites, and the axon, which end in presynaptic terminals (Figure
2.2). The cell body is the heart of the cell, containing the nucleus and maintaining protein
synthesis. A neuron may have many dendrites, which branch out in a treelike structure,
and receive signals from other neurons. A neuron usually only has one axon which grows
out from a part of the cell body called the axon hillock. The axon conducts electric
signals generated at the axon hillock down its length. These electric signals are called
action potentials. The other end of the axon may split into several branches, which end in
a presynaptic terminal. Action potentials are the electric signals that neurons use to
convey information to the brain. All these signals are identical Therefore, the brain
determines what type of information is being received based on the path that the signal
took. The brain analyzes the patterns of signals being sent and from that information it
can interpret the type of information being received. Myelin is the fatty tissue that
surrounds and insulates the axon. Often short axons do not need this insulation. There are

uninsulated parts of the axon. These areas are called Nodes of Ranvier. At these nodes,
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the signal traveling down the axon is regenerated. This ensures that the signal traveling
down the axon travels fast and remains constant (i.e. very short propagation delay and no
weakening of the signal). The synapse is the area of contact between two neurons. The
neurons do not actually physically touch. They are separated by the synaptic cleft, and
electric signals are sent through thirteen chemical interactions. The neuron sending the
signal is called the presynaptic cell and the neuron receiving the signal is called the
postsynaptic cell. The signals are generated by the membrane potential, which is based on
the differences in concentration of sodium and potassium ions inside and outside the cell
membrane. Neurons can be classified by their number of processes (or appendages), or
by their function. If they are classified by the number of processes, they fall into three
categories. Unipolar neurons have a single process (dendrites and axon are located on the
same stem), and are most common in invertebrates. In bipolar neurons, the dendrite and
axon are the neuron's two separate processes. Bipolar neurons have a subclass called
pseudo-bipolar neurons, which are used to send sensory information to the spinal cord.
Finally, multipolar neurons are most common in mammals. Examples of these neurons

are spinal motor neurons, pyramidal cells and Purkinje cells (in the cerebellum).

2.3 The Mathematical Model

When creating a functional model of the biological neuron, there are three basic
components of importance. First, the synapses of the neuron are modeled as weights. The
strength of the connection between an input and a neuron is noted by the value of the
weight. Negative weight values reflect inhibitory connections, while positive values

designate excitatory connections (Figure 2.3).
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Figure 2.3 Mathematical description of Neural Network

The next two components model the actual activity within the neuron cell. An adder sums
up all the inputs modified by their respective weights. This activity is referred to as linear
combination. Finally, an activation function controls the amplitude of the output of the
k neuron. Anacceptable range ofoutput is usually between 0 and 1, or -1 and 1.

From this model the interval activity of the neuron can be shown to be:

P
) MW X
Vi, W,
J=1

where w represents weight and x; represents the input coming from pth presynaptic node.

The output of the neuron, vk, would therefore be the outcome of some activation function

on the value of vg.

2.4 Activation functions

As mentioned previously, the activation function acts as a squashing function, such that

\ the output of a neuron in a neural network is between certain values (usually 0 and 1, or -

—r 1 and 1). In general, there are three types of activation functions, denoted by @(.) . First,
there is the Threshold Function which takes on a value of 0 if the summed input is less
than a certain threshold value (v), and the value 1 if the summed input is greater than or

equal to the threshold value.

(‘,)_[1 ifv20
PI%V0 tweo
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Secondly, there is the sigmoid function. This function can range between 0 and 1, but it is
also sometimes useful to use the -1 to 1 range. An example of the sigmoid function is the

hyperbolic tangent function. .
v 1—exp(-v)

v) = tanh{ — |
¢(v) = tan 1( 3 e

N

2.5 The Multilayer Perceptron Neural Network Model

This network has an input layer (on the left) with three neurons, one hidden layer (in the
middle) with three neurons and an output layer (on the right) with three neurons. There is
one neuron in the input layer fur each predictor variable. In the case of categorical
variables-/ neurons are used to represent the N categories of the variable. The following

diagram illustrates a perceptron network with three layers:

1y
e

Input Layer | Hidden Laver

Lo

Figure 2.4 Multilayer perceptron neural network model

Input Layer - A vector of predictor variable values (x, ...xp) is presented to the input
layer. The input layer (or processing before the input layer) standardizes these values so
that the range of each variable is -1 to 1. The input layer distributes the values to each of
the neurons in the hidden layer. In addition to the predictor variables, there is a constant
input of 1.0, called the bias that is fed to each of the hidden layers; the bias is multiplied
by a weight and added to the sum going into the neuron.
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Hidden Layer - The arriving at a neuron in the hidden layer, the value from each input
newon is multiplied by a weight (W), and the resulting weighted values are added

together producing a combined value u. The weighted sum () is fed into a transfer

function, ¢, which outputs a value hj. The outputs from the hidden layer are distributed to
the output layer. |

Output Layer - Arriving at a neuron in the output layer, the value from each hidden
layer neuron is multiplied by a weight (W), and the resulting weighted values are added

together producing a combined value vi The weighted sum (v) is fed into a transfer

function, o, which outputs a value Y;. The y values are the outputs of the network.

Ifa regression analysis is being performed witha continuous target variable, then there is

a single neuron in the output layer, and it generates a single y value.

2.6 Multilaver Perceptron Architecture

The network diagram shown above is a full-connected; three layer, feed-forward,
perceptron neural network. "Fully connected" means that the output from each input and
hidden neuron is distributed to all of the neurons in the following layer. "Feed forward"
means that the values only move from input to hidden to output layers; no values are fed
back to earlier layers (a Recurrent Network allows values to be fed backward). All neural
networks have an input layer and an output layer, but the number of hidden layers may
vary. When there is more than one hidden layer, the 0ut15ut from one hidden layer is fed
into the next hidden layer and separate weights are applied to the sum going into each

layer.

\ 2.7 Training Multilayer Perceptron Networks

( The goal of the training process is to find the set of weight values that will cause the
output from the neural network to match the actual target values as closely as possible.

There are several issues involved in designing and training a multi layer perceptron

network :

* Selecting how many hidden layers to use in the network. i
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* Deciding how many neurons to use in each hidden layer.
* Finding a globally optimal solution that avoids local minima.
* Converging to an optimal solution in a reasonable period of time.

» Validating the neural network to test for over fitting,

2.8 Selecting the Number of Hidden Layers

For nearly all problems, one hidden layer is sufficient. Two hidden layers are required for
modeling data with discontinuities such as a saw tooth wave pattern. Using two hidden
layers rarely improves the model, and it may introduce a greater risk of converging to a
local minima. There is no theoretical reason for using more than two hidden layers.
SANN can build models with one or two hidden layers. Three layer models with one

hidden layer are recommended.

2.9 Deciding how many neurons to use in the hidden layers

One of the most important characteristics of a perceptron network is the number of
neurons in the hidden layer(s). If an inadequate number of neurons are used, the network
will be unable to model complex data, and the resulting fit will be poor.

SANN includes an automated feature to find the optimal number of neurons in the hidden
layer. We specify the minimum and maximum number of neurons we want it to test, and
it will build models using varying numbers of neurons and measure the quality using
either cross validation or hold-out data not used for training. This is a highly effective
method for finding the optimal number of neurons, but it is computationally expensive,
because many models must be built, and each model has to be validated.

The automated network search (ANS) for the optimal number of neurons only searches

the first hidden layer.

2.10 Finding a globally optimal solution

A typical neural network might have a couple of hundred weighs whose values must be
found to produce an optimal solution If neural networks were linear models like linear

regression, it would be a breeze to find the optimal set of weights. But the output of a
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neural network as a function of the inputs is often highly nonlinear; this makes the

optimization process complex.

2.11 Converging to the Optimal Solution - BFGS

Given a set of randomly-selected starting weight values, SANN Statistica uses the BFGS
algorithm to optimize the weight values. Most training algorithms follow this cycle to
refine the weight values: (1) run a set of predictor variable values through the network
using a tentative set of weights, (2) compute the difference between the predicted target
value and the actual target value for this case, (3) average the error information over the
entire set of training cases, (4) propagate the error backward through the network and
compute the gradient (vector of derivatives) of the change in error with respect to
changes in weight values, (5) make adjustments to the weights to reduce the error. Each

cycle is called an epoch.
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OBJECTIVE:

With the explosion of protein sequences entering into databanks, it is highly
desirable to explore the feasibility of selectively classifying newly found protein
sequences into their respective metal ion binding classes by means of an automated
method. This is indeed important because knowing which protein potentially binds to
metal ion may help to deduce its catalytic mechanism and specificity, giving clues to the
relevant biological function. With the availability of huge amount of genome sequencing
data generated each day and for their functional annotation, sequence derived features are
useful approaches.

Here in this study, an attempt has been taken for distinguishing protein sequences into

metal ion binding and its classes using ANN for annotation of protein sequence with

following objectives:

1. To extract sequence derived features and selection of important features from protein
sequence to be used for prediction and classification of metal ion binding,

2. To develop and optimize the 1% layer for classifying the user input protein sequence
into metal ion binding or non-metal ion binding based on sequence derived features.

3. Todevelop and optimize the 2" layer for classifying the predicted metal ion binding
protein sequences into three major classes based on sequence derived features.

4. Todevelop a 3™ layer for classifying the predicted class of metal jon binding protein
sequences into their corresponding sub-classes and thus their specific binding metal

on.
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Chapter 3
Materials and Methods
Overview of the work
In this study we have developed a cluster of neural networks consisting of three
layers with usage of machine learning approach like ANN (Figure 3.1). This three layer
classification system predicts the metal ion to which a protein sequence can potentially

bind to. The sub-classes of Metal Ton binding class are constructed on the basis of
chemical properties of the metal ions (Figure 3.1).

Level 1 Level 2

Figure 3.1 Neural Network consisting of three layers. The first layer classifies protein sequence as the metal ion
binding and non-metal ion binding. The second layer shows the major classes and third layer shows the sub-
classes.

The sequence derived features that were used are physicochemical properties, amino acid
composition and pseudo amino acid composition. Using these parameters and their
combination we have developed in total seven neural network clusters- ANNpgsa,
ANNAA comp, ANNpeas, ANNpgan + pepsta, ANNAA comp + pepstar, ANNpscaa + AA comp and
ANNpgeaa + AA comp + pepstat- The overall protocol used in this study is described in Figure

3.2
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Data Cleaning

Descriptor Calculation

Neural Network Model

WSS :

Neural Cluster Formation

Server Development

Figure 3.2 Flowchart of the steps performed in the development of the Metallopred

3.1 Data sources

We have downloaded 14625 metal ion binding proteins (Table 3.1) from the PDB
database (www.rcsb.org). These proteins are classified into different classes based on
Molecular Function category (Gene Ontology). Figure 3.3 depicts the hierarchy of Metal

ion binding proteins in Gene Ontology.

| Molecular Function
[ Binding
| lon Binding
=) Cation Binding
( Metal lon Binding

Figure 3.3 Steps followed in retrieving the data
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Table 3.1 The number of proteins downloaded in each class of metal ion binding.

Metal Ion Found Protein Downloaded
Calcium (GO: 5509) 3466
Magnesium (GO: 287) 2886
Lithium (GO: 31403) 20
Potassium (GO: 30955) 173
Sodium(GO: 31402) 157
Cadmium (GO: 46870) 15
Cobalt (GO: 50897) 200
Copper (GO: 5507) 887
Manganese (GO: 30145) 968
Mercury (GO: 45340) 11
Molybdenum (GO: 30151) 134
Nickel (GO: 16151) 147
Vanadium (GO: 51212) 11
Zinc (GO: 8270) 4861
Iron (GO: 5506) 328
TOTAL 14264

Similarly we have also taken a negative dataset (non-metal ion binding) consisting of
5738 proteins from the PDB database. We have checked the non metal binding proteins
based on following two assumptions: 1. the proteins were not functionally annotated as
metal binding based on gene ontology and 2. the PDB IDs which were used in the
positive dataset were not included in the negative dataset. Figure 3.4 illustrates the steps

followed to generate negative dataset.
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Figure 3.2 Flowchart followed for generating negative dataset

3.2 Data cleaning

Data cleaning is a methodology to remove unnecessary noise fiom the data. Thus, in
order to generate a good training data, we performed the following steps for cleaning the

\ data set. Table 3.2 represents the number of protein chains left after removal in each level

F2)

of Data Cleaning,

I. Calculated total no. of chains in each class - We extracted the polypeptide
chains of all proteins ofeach class.
II.  Removed the multi metal binding proteins - We removed those proteins which

were annotated to be binding to more than one metal ion. Such protein chains
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II.

IV.

VI

VIL

woukd pose redundancy between the classes, thus, would hamper the clear
division of classes.

Removed Incorrect Sequences (B, U, Z, X, *) - We removed protein chains
containing non-standard amino acids (B, U and Z), nucleotide sequences
(sequences containing only A, T, G and C) and un-annotated amino acids '(X or
5,

Sequences Removed (seq. length <20) - The protein chains having length less
than 20 amino acids are not believed to go under protein folding process and thus,
would not form a proper pocket for binding of metal ions. We therefore, removed
such protein chains from each class.

Removal of redundant chains - Redundancy drags the network towards biasness
for particular classes holding repeated chains. We therefore, removed such protein
chains from each class.

Multi Chain Proteins Removed - In the cases where proteins were having more
than 1 chain, the sequence alone is insufficient to provide information about the
chain to which metal ion binds. Thus, we better réﬁloved such proteins entirely
from the dataset.

Data Scaling — Data scaling was carried out to reduce the number of data points
to a comparable level, so that, the problem of network biasing due to imbalanced
number of data points in each class may be resolved. It was done using
BLASTClust and random data point reduction (Table 3.3).

BLASTClust is a program within the standalone BLAST package used to cluster
either protein or nucleotide sequences. The program begins with pairwise matches
and places a sequence in the cluster where the sequence shows similarity more
than the specified similarity parameter. In the case of proteins, the blastp
algorithm is used to compute the pairwise matches. BLASTClust can take input in
the form of concatenated FASTA-formatted sequences, each with a unique
identifier —in-the comment line. - BLASTC lust formats-the—input-sequence to

produce a temporary BLAST database, performs clustering, and removes the

" database at completion. The output of BLASTC lust is formatted as each cluster in

a line having identifiers of the proteins in the cluster. Each new cluster is
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separated by a new line. The clusters are sorted on the basis of decreasing number
of data points in the clusters. It accepts a number of parameters that can be used to
control the stringency of clustering including thresholds for score density, percent
identity, and alignment length. The BLASTClust program has a number of
applications, the simplest of which is to create a non-redundant set of se.quences

from a source database.

Table 3.2 Number of protein chains left after removal in each level of Data Cleaning.

Metal Ion Initial Proteins IC MMBR RIS LR RCR MCPR

Ca 3466 7332 - 5637 5568 5168 1662 91282
Mg 2886 7511 4659 4548 4198 1118 911
K 173 468 245 243 240 86 70
Na 157 441 37 37 25 13 13
Co 200 410 287 286 286 67 55
Cu 887 2270 1336 1334 1319 378 306
Mn 968 2426 1265 1253 1144 313 278
Mo 134 561 509 509 509 103 49
Ni 147 474 419 418 418 94 54
\4 11 12 12 12 12 8 8
Zn 4861 13507 10674 10354 9542 3045 2187
Fe 328 1295 1290 1290 1286 174 158
TOTAL 14218 36707 26370 25852 24147 7061 5371 _

Calculated total number of chains in each class (IC); Removed the multi metal binding proteins (MMBRY);
Removed Incorrect Sequences (B, U, Z, X,*) (RIS); Sequences Removed (seq. length <20) (LR); Removal of
redundant chains (RC R); Multi Chain Proteins Removed (MCPR).

The redundant proteins within each dataset were removed by using BLASTC lust with a
cutoff similarity of 30%. Therefore, each data set consists of proteins which are very
diverse with similarity of < 30% hence covers all the features space corresponding to

metal binding or not metal binding.
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3.3 Feature Extraction:

The following types of sequence derived features were used for the training and testing of
the ANN models.

1. Amino Acid composition:

This feature consists of 20 factors, each representing composition of 20 standard
amino acids in the protein sequences that include A, C, D, E, F, G, H, LK, L,M,P,Q,
R,S, T, V, W, Xand Y. The formula to cakulate this composition is:

Freq.of AA(i)
X Freq.of AA in seq.

AA comp(i) =

2. Physicoche mical Properties:
This feature consists of 12 properties calculated using EMBOSS (EBI) package. The

parameters include Molecular weight, Charge, pl, Mok percentages of Tiny, Small,
Aliphatic, Aromatic, Non-polar, Polar, Charged, Acidic and Basic amino acids. The
different categories include different sets of amino acids like Tiny (A+C+G+S+T),
Small (A+B+C+D+GHN+P+S+T+V), Aliphatic (I+L+V), Aromatic (F+H+W+Y),
Basic (H+K+R), Non-polar (A+CHF+GHHLAMA+P+V+W+Y), Polar
(D+E+H+K+N+Q+R+S+T+Z), Charged (B+D+E+H+K+R+Z) and  Acidic
(B+D+E+Z).

3. Pseudo AA composition:

It was introduced by Kuo-Chen Chou in 2001 to represent protein sequences for
statistical prediction. This descriptor is a collection of 37 factors, 20 of which are
weighted amino acid compositions and rest 17 are correlation factors calculated using
sequence order among amino acids of the given sequences. The algorithm is explained
as follows.

Given a protein sequence P with L amino acid resides, the sequence of the protein

can be represented as

P o R.IRQRgRqR,gRSR,T AT R,L (1)
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where R represents the 1st residue of the protein P, R, the 2nd residue, and so
forth. According to the AA composition model, the protein P of Eq.l can be
expressed by

\ P=[fi fo - fu] (2)

where f, (u =1, 2, ..., 20) are the normalized occurrence frequencies of the 20

native amino acids in P, and T the transposing operator. The additional factors are
a series of rank-different correlation factors along a protein chain, but they can also
be any combinations of other factors so long as they can reflect some sorts of i
sequence-order effects one way or the other. The algorithm for this is as follows:
According to the PseAA composition model, the protein P of Eq.1 can be

formulated as

P = [p1, p2, -+, P20, P20os1, -0+ P20+A}T, (A<l) (3)

where 20 + A the components are given by

f = Ju : o Al £20)
SoicifiFwd g T a
Pu= . (4) I
- WTy—20 |
, (2041 <u<20+))
\ 2?21 fi +w ZLI Tk

where w is the weight factor, and Ty the k-th tier correlation factor that reflects the

sequence order correlation between all the k-th most contiguous residues as w

formulated by — |
™" =T % ; Jiitn, (K<L)  (5)
\ with . ‘i
i Jirs = 1 25 0 (Revs) = B (R (9

where @y(R)) is the &-th function of the amino acid R, and I the total number of
the functions considered. @;(R;), D(R) and D3(R,) are respectively the
hydrophobicity value, hydrophilicity value, and side chain mass of amino acid R;
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(Table 3.4); while D;(R;.4), Py(R,14) and D3(R,4;) the corresponding values for
the amino acid R;4. Therefore, the total number of functions considered is I'=3.

! It can be seen from Eq.3 that the first 20 components, i.e. P P2 ..., P are
associated with the conventional weight AA composition of protein, while the

remaining components Pygss, Pagr - Pag+s are the correlation factors that

reflect the Ist tier, 2nd tier, ..., and the A-th tier sequence order correlation patterns.

It is through these additional A factors that some important sequence-order effects

are incorporated.

Table 3.4 Scales used in PseAA: (a) hydrophobicity values from JACS, 1962, 84: 4240-4246. (C.
Tanford), (b) hy drophilicity values from PNAS, 1981, 78:3824-3828 (T.P.Hopp & K.R.Woods) and (c)
side-chain mass for each of the 20 amino acids.

Amino  Hydrophobicity =~ Hydrophilicity — Side chain mass

acid (it
A 0.62 405 15
! ¢ 0.29 L1 47
D -0.9 3 59
E -0.74 3 73
F 1.19 2.5 91
G 0.48 0 1
H -0.4 0.5 82
I 1.38 +1.8 57
K -1.5 3 73
L 1.06 -1.8 57
M 0.64 213 75
N -0.78 02 58
P 0.12 0 42
Q -0.85 0.2 72
R 2253 3 101
S -0.18 0.3 31
i -0.05 -0.4 45
\Y% 1.08 -1.5 43 :
< W 0.81 ¥ 130 '
T Y 0.26 23 107
o

28




—_—

3.4 Binary classification of protein sequences

In this classification level, a protein sequence is classified as metal ion binding or non-
metal ion binding. If it is metal ion binding, then it is further send to second layer of
classification system. The parameters used for training and testing the model are amino
acid composition, physicochemical properties, pseudo amino acid composition as well as

fusion of these parameters. Figure 3.3 illustrates the Neural Network architecture of
Layer 1.

PARAMETER-
INPUT LAYER - a0 HE T Ry o R R AT R e R L

HIDDEN LAYER

OUTPUT LAYER

IFMETAL
BINDING

Figure 3.3 The Neural Network Architecture for Layer 1 of Metallopred. The architecture of ANN model is 20-
42-2, 12-58-2, 37-41-2, 32-63-2, 57-65-2, 49-80-2, 69-78-2 respectively based on amino acid composition,
physicochemical properties, pseudo amino acid composition, fusion of amino acid composition and
physicochemical properties, fusion of amino acid and pseudo amino acid compositions, fusion of
physicochemical and pseudo amino acid composition and combination of all the 3 types of parameters.

3.5 Classification of metal ion binding protein sequences into major
classes

In this classification level the predicted metal ion binding proteins are classified into
three major classes: Alali Metal ion binding, Alkali Earth Metal ion binding or
Transition Metal ion binding. After that each predicted metal ion binding class will
further be sending to the third layer of clssification system. Figure 3.4 illustrates the

Neural Network architecture of Layer 2.
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Figure 3.4 The Neural Network Architecture for Layer 2 of Metallopred. The architecture of ANN model is 20-
55-3, 12-26-3, 37-33-3, 32-51-3, 57-45-3, 49-38-3, 69-88-3 respectively based on amino acid composition,
physicochemical properties, pseudo amino acid composition, fusion of amino acid composition and
physicochemical properties, fusion of amino acid and pseudo amino acid compositions, fusion of
physicochemical and pseudo amino acid composition and combination of all the 3 types of parameters,

3.6 Classification of metal ion binding protein sequences into subclasses

In this classification level the predicted classes of metal ion binding proteins are further
classified into specific metal ion binding proteins. The predicted Alkali Metal ion binding
proteins are further classified as Potassium or Sodium Metal ion binding. The Alkali
Earth Metal ion binding proteins are classified into Calcium or Magnesium Metal ion
binding and the Transition Metal ion binding proteins are classified into 8 sub classes
which are Vanadium, Nickel, Molybdenum, Cobalt, Manganese, Iron, Zinc and Copper

Metal ion binding. Figure 3.5 illustrates the architecture of the Neural Network of Layer
i
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HIDDEN LAYER

QUTPUT LAYER

Figure 3.5 The Neural Network Architecture for Layer 3 of Metallopred. The architecture of ANN model is 20-
45-2, 12-21-2, 37-61-2, 32-52-2, 57-52-2, 49-30-2, 69-53-2 for Alkali Metal Ion binding class models; 20-80-2, 12-
31-2, 37-32-2, 32-68-2, 57-43-2, 49-35-2, 69-85-2 for Alkali Earth Metal Ton binding class models; 20-122-8, 12-
37-8, 37-53-8, 32-53-8, 57-100-8, 49-85-8, 69-70-8 for Transition Metal Ion binding class models respectively
based on amino acid composition, physicochemical propertics, pseudo amino add composition, fusion of amino
acid composition and physicochemical properties, fusion of amino acid and pseudo amino add compositions,
fusion of physicochemical and pseudo amino adid composition and combination of all the 3 types of parame ters.

3.7 Validation of hierarchical classification model

The validation is the way to confirm the validity of data, information, processes or a

model. We have used three different approaches to validate our tool as follows.

3.7.1 Validation based on self consistency

The performance of our online tool MetalloPred was validated using self consistency
method. In this approach the data set of metal binding proteins were given as input to the
tool and the predicted result was observed. The predicted accuracy at each level of
classification was calculated based on the predicted output. We took 2354 protein
sequences in Metal Ion Binding category and 1035 protein sequences in Non-Metal Ion

Binding category.

3.7.2. Validation based on Jack-knifing

The dataset was also subject to the jackknife test that is deemed to be one of the most
rigorous and objective methods for cross-validation in statistics. We took 2354 protein
sequences in Metal lon Binding category and 1035 protein sequences in Non-Metal Ion
Binding category. Both the data set were merged together and classified into two
category: metal ion binding (2345 sequences) and non-metal binding (1035) by taking
sequences randomly. This randomization process was repeated for 100 times and the

average performance accuracy was measured.
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3.7.3 External validation

Validation of our tool was also has been done using the dataset that was not used for
training or testing. We took 3017 protein sequences in Metal Ton Binding category and
3322 protein sequences in Non-Metal Ion Binding category as independent data set.

3.8 Standalone and Server development of MetalloPred

A standalone as well as online version of our tool (MetalloPred) has been developed and
uploaded into our University web server. The following steps have been used for the
development ofthe server:

e Deployed and modified the C codes for each Neural Network model generated.

o Converted the C codes to C library references as Header files.

e Generated a main parser code, which can take in the descriptors from a file and can
send them to the particular network models in their corresponding header files and
retrieves the output of the model. Based on output, it takes the decision to go which
way in the hierarchy or to which particular model to feed the descriptor and retrieve
the output. This step is repeated until a case gets predicted to the terminal node in
the hierarchy i.e. reaching to a particular ion to which it can potentially bind to if it
is predicted as a Metal lon binding protein.

o Generated Perl parsers to link the webpage with the prediction cluster codes, in
case of online tool and to link prediction clusters directly in case of standalone.
These perl codes can retrieve the sequence and the choice of sequence based
feature from the user and then can convert the protein sequence to features and
present them to prediction clusters for prediction.

Figure 3.6 and figure 3.7 illustrates the front end of the online version with sequence to
be submitted as query and options for the sequence derived features to be used and its

output for an example sequence.
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Figure 3.6 The frontend of the online version of MetalloPred.
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Figure 3.7 The output screen of the online version of MetalloPred showing prediction of an example

protein sequence.
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CHAPTER 4

Results and Discussions
I* Layer of Neural Network
The 1% layer of our MetalloPred tool classified the input protein sequence into
either Metal Ion binding or Non-Metal Ion binding. The neural network model was
trained and tested using training and a test data set based on different types of
sequence derived features. The network achieved an overall accuracy of 95.25%
and 95.77% respectively for the Metal Ion binding proteins and Non-Metal Ion
binding proteins for the training set data. Similarly the performance accuracy was
65.62% and 68.39% for the test set data. The details of the performance accuracy

based on each sequence derived feature have been represented in Table 4.1.

Table 4.1 The summary of the performance accuracy of 1* layer of MetalloPred based on different sequence i |

derived features. M{i
Be Train Test fi
Total Correct Correct % Total Correct Correct % |

1. Pseudo Amino Acid Composition

Metal Ion Binding 680 680 100.00 170 108 63.53

Non Metal Ion Binding 828 828 100.00 207 132 63.77 w
2. Amino Acid Composition ;

Metal lon Binding 680 581 85.44 170 108 63.53 L

Non Metal Ion Binding 828 721 87.08 207 129 62.32 r
3. Physicochemical Properties !

Metal lon Binding 680 574 84.41 170 100 58.82

Non Metal Ion Binding 828 732 88.41 207 143 69.08
4. Pseudo Amino Acid Composition + Amino Acid Composition

Metal Ion Binding 680 671 98.68 170 117 68.82

Non Metal Ion Binding 828 814 98.31 207 155 74.88
5. Pseudo Amino Acid Composition + Physicochemical Properties

Metal Ion Binding 680 678 99.71 170 100 58.82

Non Metal Ion Binding 828 826 99.76 207 134 64.73
6. Amino Acid Composition + Physicochemical Properties

Metal Ion Binding 680 671 98.68 170 113 66.47

} Non Metal Ion Binding 828 805 97.22 207 125 60.39
: 7. Pseudo Amino Acid Composition + Amino Acid Composition + Physicochemical Properties

Metal lon Binding 680 679 99.85 170 135 79.41

Non Metal Ion Binding 828 825 99.64 207 173 83.57

Average

Metal Ion Binding 95.25 65.62

Non Metal Ion Binding 95.77 68.39
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The performance accuracy was further validated using self consistency test and jackknife
test. The overall accuracy of the 1% layer of MetalloPred is 62.41% and 47.05% for the
Metal lon and Non-Metal lon binding classes based on self consistency test. Similarly,
} using jackknife test, the accuracy was found to be 50.72% and 37.03% for the Metal Ton
and Non-Metal Ion binding classes (Table 4.2). Moreover, the results were roBust and
hence, the MetalloPred could successfully predict the novel protein sequence into either
of Metal Ion binding or Non-Metal Ion binding class as evident form the independent
data set used for validation (Table 4.2).

Table 4.2 The performance accuracy of the 1% layer of MetalloPred based on validation techniques (self
consistency test, jackknife test and independentset validation).

\
|
\
Class Total  SelfConsistency  Jackknife  [mdependentSet }
Total  Correct %
1. Pseudo Amino Acid Composition J
Metal Ion Binding 2354 70.14 57.01 3017 50.98 f” |
Non Metal Ion Binding 1035 42.71 33.24 3322 3393 ‘;l:j
2. Amino Acid Composition a!
Metal Ion Binding 2354 68.86 54.04 3017 54.09 ]'!‘
Non Metal Ion Binding 1035 45.51 35.46 3322 35.94 r
3. Physicochemical Properties ll
Metal Ion Binding 2354 5722 45.16 3017 33.34 ‘
Non Metal lon Binding 1035 37.87 28.70 3322 29.77 i.
4. Pseudo Amino Acid Composition + Amino Acid Composition i.
Metal Ion Binding 2354 53.91 41.67 3017 44.75
Non Metal Ion Binding 1035 3797 25.99 3322 29.95 I
S.Pseudo Amino Acid Composition + Physicochemical Properties ‘i
Metal Ion Binding 2354 59.35 50.89 3017 39.58 \‘
Non Metal lon Binding 1035 92.66 82.03 3322 61.05 |
6. Amino Acid Composition + Physicochemical Properties
Metal lon Binding 2354 68.73 56.37 3017 5191 I
Non Metal Ion Binding 1035 40.39 29.37 3322 32.60 ‘
7. Pseudo Amino Acid Composition + Amino Acid Composition + Physicochemical Properties ‘
Metal lon Binding 2354 58.71 49.92 3017 51.38
E Non Metal Ion Binding 1035 32.27 24.44 3322 25.47
] Average :
Metal Ion Binding 62.41 50.72 46.57
Non Metal Ion Binding 47.05 37.03 35.53

36




By comparing the performance accuracy of the 1% layer of MetalloPred between the
individual sequence derived features; it has been observed that the accuracy was better by

combining pseudo amino acid and physiochemical properties.

2" Layer of Neural Network

The 224 layer of our MetalloPred tool classified the input protein sequence into
either Alkali Metal Ion binding, Alkali Earth Metal Ion binding or Transition Metal
lon binding. The neural network model was trained and tested using training and a
test data set based on different types of sequence derived features. The network
achieved an overall accuracy of 95.40%, 96.55% and 96.02% respectively for the
Alkali Metal Ion binding, Alkali Earth Metal Ion binding and Transition Metal lon
binding proteins for the training set data. Similarly the performance accuracy was
70.40%, 63.03% and 68.42% for the test set data. The details of the performance
accuracy based on each sequence derived feature have been represented in Table
4.3.

Table 4.3 The summary of the performance accuracy of 2™ layer of MetalloPred based on different sequence
derived features.

Class Train Test
Total Correct  Correct % Total Correct Correct %
1. Pseudo Amino Acid Composition
Alkali Earth Metal 319 298 93.42 80 48 60.00
Alkali Metal 56 55 98.21 14 12 85.71
Transition Metal 305 292 95.74 76 54 71.05
2. Amino Acid Composition
Alkali Earth Metal 319 316 99.06 80 52 65.00
Alkali Metal 56 56 100.00 14 8 57.14
Transition Metal 305 301 98.69 76 52 68.42
3. Physicochemical Properties
Alkali Earth Metal 319 297 93.10 80 57 71.25
Alkali Metal 56 47 83.93 14 9 64.29
Transition Metal 305 272 89.18 76 45 59.21
4. Pseudo Amino Acid Composition + Amino Acid Composition
Alkali Earth Metal 319 313 98.12 80 42 52.50
Alkali Metal 56 54 96.43 14 9 64.29
Transition Metal 305 297 97.38 76 48 63.16
5. Pseudo Amino Acid Composition + Physicochemical Properties
Alkali Earth Metal 319 316 99.06 80 57 71.25
Alkali Metal 56 56 100.00 14 12 85.71
Transition Metal 305 301 98.69 76 51 67.11

6. Amino Acid Composition + Physicochemical Properties
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Alkali Earth Metal 319 300 94.04 80 55 68.75
Alkali Metal 56 50 89.29 14 10 71.43
Transition Metal 305 286 93.77 76 54 71.05
7. Pseudo Amino Acid Composition + Amino Acid Composition + Physicoche mical Properties
Alkali Earth Metal 319 316 99.06 80 42 52.50
] Alkali Metal 56 56 100.00 14 9 64.29
Transition Metal 305 301 98.69 76 60 78.95
Average
Alkali Earth Metal 96.55 63.03
Alkali Metal 95.40 70.40
Transition Metal 96.02 68.42

The performance accuracy was further validated using self consistency test and jackknife
test. The overall accuracy of the 2" layer of MetalloPred is 76.93%, 67.20% and 56.20%
respectively for the Alkali Metal lon binding, Alkali Earth Metal Ion binding and
Transition Metal lon binding classes based on self consistency test. Similarly, using
jackknife test, the accuracy was found to be 70.70%, 57.77% and 47.49% respectively for
the Alkali Metal Ion binding, Alkali Earth Metal Ion binding and Transition Metal Ion
binding classes (Tabk 4.4). Moreover, the results were robust and hence, the MetalloPred
could successfully predict the novel protein sequence into either of Alkali Metal Ion
- binding, Alkali Earth Metal Ion binding or Transition Metal Ion binding class as evident

form the independent data set used for validation (Table 4.4).

Table 4.4 The performance accuracy of the 2" Iayer of MetalloPred based on validation techniques (self
consistency test, jackknife test and independent set validation).

Independent Set
Total Correct % .
1. Pseudo Amino Acid Composition |

Class Total Self Consistency Jackknife

Alkali Earth Metal 1238 68.26 59.13 955 64.19 il

Alkali Metal 70 92.86 84.29 13 76.92

Transition Metal 1046 71.32 62.24 2049 48.56 ‘

2. Amino Acid Composition \

Alkali Earth Metal 1238 67.77 59.21 955 61.15 I
) Alkali Metal 70 90.00 78.57 13 76.92 ‘
j{ Transition Metal 1046 68.36 60.33 2049 45.00

3. Physicochemical Properties

Alkali Farth Metal 1238 66.40 49.11 955 63.04

Alkali Metal 70 72.86 61.43 13 69.23

Transition Metal 1046 43.40 31.74 2049 28.79

4.Pseudo Amino Acid Composition + Amino Acid Composition

Alkali Earth Metal 1238 75.69 59.94 955 72.67
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Alkali Metal 70 45.71 32.86 13 38.46
Transition Metal 1046 34.23 24.19 2049 30.26
S.Pseudo Amino Acid Composition + Physicochemical Properties
Alkali Earth Metal 1238 59.05 51.78 955 56.34
] Alkali Metal 70 97.14 90.00 13 84.62
Transition Metal 1046 56.41 49.62 2049 41.24
6. Amino Acid Composition + Physicochemical Properties
Alkali Earth Metal 1238 68.42 57.92 955 67.33
Alkali Metal 70 87.14 78.57 13 69.23
Transition Metal 1046 67.69 59.75 2049 44.61 ’
7. Pseudo Amino Acid Composition + Amino Acid Composition + Physicochemical Properties
Alkali Earth Metal 1238 64.86 49.76 955 63.66
Alkali Metal 70 52.86 42.86 13 46.15
Transition Metal 1046 52.01 40.06 2049 45.68
= Average
Alkali Earth Metal 67.20 5771 61.54 .
Alkali Metal 76.93 70.70 62.16 i |
Transition Metal 56.20 47.49 39.94 il

By comparing the performance accuracy of the 2™ layer of MetalloPred between the |
individual sequence derived features; it has been observed that the accuracy was better by |
pseudo amino acid as well as by amino acid composition and by combining pseudo f|

amino acid and physiochemical properties.

3t Layer of Neural Network for Alkali Earth Metal Ion binding class
The 3™ layer of our MetalloPred tool developed for Alkali Earth Metal Ion binding
class classified the input protein sequence to be either Calcium Metal Ion binding

or Magnesium Metal lon binding. The neural network model was trained and tested
using training and a test data set based on different types of sequence derived
features. The network achieved an overall accuracy of 93.88% and 92.10%
respectively for the Calcium Metal lon binding and Magnesium Metal lon binding

J proteins for the training set data. Similarly the performance accuracy was 88.51%
and 87.75% for the test set data. The details of the performance accuracy based on

each sequence derived feature have been represented in Table 4.5.
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Table 4.5 The summary of the performance accuracy of 3" layer of MetalloPred developed for Alkali Earth
Metal lon binding dass based on different sequence derived features,

Class Train Test
Total Correct  Correct %  Total Correct Correct %
1. Pseudo Amino Acid Composition ,
Calcium 572 549 95.98 143 123 86.01
Magnesium 418 396 94.74 105 82 78.10 _
2. Amino Acid Composition !
Calcium 572 529 92.48 143 130 90.91 |
Magnesium 418 378 90.43 105 97 92.38 i
3. Physicochemical Properties '
Calcium 572 512 89.51 143 124 86.71
Magnesium 418 366 87.56 105 91 86.67
4. Pseudo Amino Acid Composition + Amino Acid Composition
Calcium 572 542 94.76 143 129 90.21
Magnesium 418 391 93.54 105 98 93.33
5. Pseudo Amino Acid Composition + Physicochemical Properties
Calcium 572 556 97.20 143 126 88.11
Magnesium 418 398 95.22 105 83 79.05
6. Amino Acid Composition + Physicochemical Properties
Calcium 572 539 94.23 143 127 88.81
Magnesium 418 388 92.82 105 96 91.43
7. Pseudo Amino Acid Composition + Amino Acid Composition + Physicochemical Proper ties
Calcium 572 532 93.01 143 127 88.81
Magnesium 418 378 90.43 105 98 9333
Average
Calcium 93.88 88.51
Magnesium 92.10 87.75

The performance accuracy was further validated using self consistency test and jackknife
test. The overall accuracy of the 3" layer of MetalloPred for Alkali Earth Metal Ion
binding class is 71.55% and 67.93% respectively for the Calkcium Metal Ion binding and
Magnesium Metal lIon binding classes based on self consistency test. Similarly, using
jackknife test, the accuracy was found to be 60.20% and 57.00% respectively for the
Cakium Metal lon binding and Magnesium Metal Ion binding classes (Table 4.6).

Moreover, the results were robust and hence, the MetalloPred could successfully predict

the novel protein sequence into either of Cakium Metal Ion binding or Magnesium Metal |

lon binding class as evident form the independent data set used for validation (Table 4.6). |
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Table 4.6 The performance accuracy of the 3" layer of MetalloPred developed for Alkali Earth Metal Ion
binding class based on validation techniques (self consistency test, jackknife test and independent set validation).

Class Total Self Consistency Jackknife It
Total Correct %

1. Pseudo Amino Acid Composition

Calcium 715 72.59 63.92 567 63.67

Magnesium 523 66.16 57.55 388 64.95

2. Amino Acid Composition

Calcium 715 73.29 63.36 567 72.84

Magnesium 523 64.05 54.49 388 63.66

3. Physicochemical Properties

Calcium 715 69.09 52.59 567 66.84

Magnesium 523 66.73 49.33 388 62.11

4. Pseudo Amino Acid Composition + Amino Acid Composition

Calcium 715 81.12 64.76 567 74.25 '

Magnesium 523 77.82 6291 388 75.52 I

5.Pseudo Amino Acid Composition + Physicochemical Properties | 4|

Calcium 715 62.52 56.22 567 55.56 mmi

Magnesium 523 72.08 64.63 388 57.47 o
Y 6. Amino Acid Composition + Physicochemical Properties EJ:H

Calcium 715 73.711 63.08 567 72.49 . i

Magnesium 523 65.01 56.60 388 57.22 e

7.Pseudo Amino Acid Composition + Amino Acid Compeosition + Physicoche mical il |

Properties

Calcium 715 68.53 57.48 567 63.32

Magnesium 523 63.67 53.54 388 61.60

Avwverage

Calcium 71.55 60.20 66.99

Magnesium 67.93 57.00 63.21

By comparing the performance accuracy of the 3™ layer of MetalloPred for Alkali Earth
Metal Ion binding class between the individual sequence derived features; it has been

observed that the accuracy was better by combining pseudo amino acid and amino acid

composition.
j it Layer of Neural Network for Alkali Metal Ion binding class
The 3™ layer of our MetalloPred tool developed for Alkali Metal Ion binding class
classified the input protein sequence to be either Potassium Metal Ion binding or
J Sodium Metal Ion binding. The neural network model was trained and tested using

training and a test data set based on different types of sequence derived features.
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The network achieved an overall accuracy of 99.40% and 91.07% respectively for
the Potassium Metal Ion binding and Sodium Metal Ion binding proteins for the
training set data. Similarly the performance accuracy was 97.62% and 57.14% for
the test set data. The details of the performance accuracy based on each sequence

derived feature have been represented in Table 4.7.

Table 4.7 The summary of the performance accuracy of 3" layer of MetalloPred developed for Alkali Metal lon
binding class based on different sequence derived features,

Class Train Test \
Total Correct  Correct % Total Correct  Correct % 1
1. Pseudo Amino Acid Composition 1

Potassium 48 48 100.00 12 12 100.00 .
Sodium 8 7 87.50 2 1 50.00 |
2. Amino Acid Composition "
Potassium 48 48 100.00 12 12 100.00
Sodium 8 7 87.50 2 1 50.00
3. Physicochemical Properties
Potassium 48 47 97.92 12 11 91.67
\ Sodium 8 8 100.00 2 1 50.00
4, Pseudo Amino Acid Composition + Amino Acid Composition
Potassium 48 48 100.00 12 11 91.67 ;
Sodium 8 7 87.50 2 2 100.00 1
5. Pseudo Amino Acid Composition + Physicochemical Properties '
Potassium 48 48 100.00 12 12 100.00
Sodium 8 7 87.50 2 1 50.00
6. Amino Acid Composition + Physicochemical Properties
Potassium 48 47 97.92 12 12 100.00
Sodium 8 8 100.00 2 1 50.00
7. Pseudo Amino Acid Composition + Amino Acid Composition + Physicoche mical .
Properties !
Potassium 48 48 100.00 12 12 100.00 '
Sodium 8 7 87.50 2 1 50.00
Average
Potassium 99.40 97.62 -
Sodium 91.07 57.14
The performance accuracy was further validated using self consistency test and jackknife
1 test. The overall accuracy of the 3" layer of MetalloPred for Alkali Metal Ion binding
J class is 74.04% and 45.71% respectively for the Potassium Metal lon binding and

Sodium Metal Ton binding classes based on self consistency test. Similarly, using |
jackknife test, the accuracy was found to be 64.52% and 32.85% respectively for the |
Potassium Metal Ion binding and Sodium Metal Ion binding classes (Tablk 4.8).
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Moreover, the results were robust and hence, the MetalloPred couid successfully predict
the novel protein sequence into either of Potassium Metal Ion binding or Sodium Metal

lon binding class as evident form the independent data set used for validation (Table 4.8).

Table 4.8 The performance accuracy of the 3™ layer of MetalloPred developed for Alkali Metal Ion biﬁding class
based on validation techniques (self consistency test, jackknife test and independent set validation).

Class Total Self Consistency Jackknife Indepondent Set
Total Correct %

1. Pseudo Amino Acid Composition
Potassium 60 91.67 ; 83.33 10 70.00
Sodium 10 60.00 50.00 3 66.67
2. Amino Acid Composition
Potassium 60 91.67 81.67 10 80.00
Sodium 10 40.00 40.00 3 3333
3. Physicochemical Properties
Potassium 60 70.00 55.00 10 70.00
Sodium 10 20.00 0.00 3 33.33

_ 4. Pseudo Amino Acid Composition + Amino Acid Composition

| Potassium 60 31.67 20.00 10 30.00
Sodium 10 30.00 10.00 3 33.33
5. Pseudo Amino Acid Composition + Physicochemical Properties
Potassium 60 100.00 96.67 10 80.00
Sodium 10 90.00 80.00 3 100.00
6. Amino Acid Composition + Physicochemical Properties
Potassium 60 85.00 76.67 10 60.00
Sodium 10 50.00 40.00 3 66.67
7. Pseudo Amino Acid Composition + Amino Acid Composition + Physicochemical Properties
Potassium 60 48.33 38.33 10 40.00
Sodium 10 30.00 10.00 3 33.33
Average
Potassium 74.04 64.52 61.42
Sodium 4571 32.85 52.38

By comparing the performance accuracy of the 3™ layer of MetalloPred for Alkali Metal
1 Ion binding class between the individual sequence derived features; it has been observed
that the accuracy was better by combining pseudo amino-acid and physiochemical

properties.
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3" Layer of Neural Network for Transition Metal Ion binding class

The 3" layer of our MetalloPred tool developed for Transition Metal Ton binding

class classified the input protein sequence to be either of Cobalt, Copper, Iron,
) Manganese, Molybdenum, Nickel or Vanadium Metal Ion binding. The neural
network model was trained and tested using training and a test data set based on
different types of sequence derived features. The network achieved an overall
accuracy of 98.92%, 95.86%, 98.26%, 99.16%, 100%, 99.63%, 97.61% and
98.11% respectively for the Cobalt, Copper, Iron, Manganese, Molybdenum,
Nickel and Vanadium Metal lon binding proteins for the training set data. Similarly
the performance accuracy was 100%, 87.65%, 96.42%, 97.80%, 100%, 91.42%,
100% and 93.02% for the test set data. The details of the performance accuracy

based on each sequence derived feature have been represented in Table 4.9.

Table 4.9 The summary of the performance accuracy of 3" layer of MetalloPred developed for Transition Metal
Ion binding class based on different sequence derived features.
Train Test
Total Correct  Correct %  Total  Correct Correct %
1. Pseudo Amino Acid Composition

Class

Cobalt 40 37 92.50 10 10 100.00
Copper 221 217 98.19 55 44 80.00
Iron 66 66 100.00 16 14 87.50
Manganese 103 103 100.00 26 26 100.00
Molybdenum 35 35 100.00 9 9 100.00
Nickel 39 38 97.44 10 9 90.00
Vanadium 6 5 83.33 2 2 100.00
Zing 326 322 98.77 82 77 93.90
2. Amino Acid Composition
Cobalt 40 40 100.00 10 10 100.00
Copper 221 218 98.64 55 48 87.27
Iron 66 65 98.48 16 16 100.00
Manganese 103 103 100.00 26 26 100.00
Molybdenum 35 35 100.00 9 9 100.00
Nickel 39 39 100.00 10 9 90.00
Vanadium 6 6 100.00 2 2 100.00
Zinc 326 324 99.39 82 74 90.24
3. Physicochemical Properties
£ Cobalt 40 40 100.00 10 10 100.00
j Copper 221 190 8597 55 47 85.45
Tron 66 59 89.39 16 15 93.75
Manganese 103 97 94.17 26 24 9231
Molybdenum 35 35 100.00 9 9 100.00
Nickel 39 39 100.00 10 9 90.00
Vanadium 6 6 100.00 2 2 100.00
- Zinc 326 306 93.87 82 74 90.24
4. Pseudo Amino Acid Composition + Amino Acid Composition
3 Cobalt 40 40 100.00 10 10 100.00
44
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Copper 221 218 98.64 55 51 92.73
Iron 66 66 100.00 16 15 93.75
Manganese 103 103 100.00 26 26 100.00
Molybdenum 35 35 100.00 9 9 100.00
Nickel 39 39, 100.00 10 9 90.00
Vanadium 6 6 100.00 2 2 100.00
Zinc 326 324 99.39 82 76 92.68
5. Pseudo Amino Acid Composition + Physicochemical Properties
Cobalt 40 40 100.00 10 10 100.00
Copper 221 217 98.19 55 49 88.09
Iron 66 66 100.00 16 16 100.00
Manganese 103 103 100.00 26 25 96.15
Molybdenum 35 35 100.00 9 9 100.00
Nickel 39 39 100.00 10 9 90.00
Vanadium 6 6 100.00 2 2 100.00
Zinc 326 322 98.77 82 74 90.24
6. Amino Acid Composition + Physicochemical Properties
Cobalt 40 40 100.00 10 10 100.00
Copper 221 217 98.19 55 49 89.09
Iron 66 66 100.00 16 16 100.00
Manganese 103 103 100.00 26 26 100.00
Molybdenum 35 35 100.00 9 9 100.00
Nickel 39 39 100.00 10 9 90.00
Vanadium 6 6 100.00 2 2 100.00
Zine 326 322 98.77 82 75 91.46
7. Pseudo Amino Acid Composition + Amino Acid Composition + Physicoche mical
Properties
Cobalt 40 40 100.00 10 10 100.00
Copper 221 206 93.21 55 45 81.82
Iron 66 66 100.00 16 16 100.00
Manganese 103 103 100.00 26 25 96.15
Molybdenum 35 35 100.00 9 9 100.00
Nickel 39 39 100.00 10 9 90.00
Vanadium 6 6 100.00 2 2 100.00
Zinc 326 319 97.85 82 78 95.12
Average
Cobalt 98.92 100
Copper 95.86 87.65
Iron 98.26 96.42
Manganese 99.16 97.80
Molybdenum 100 100
Nickel 99.63 91.42
Vanadium 97.61 100
Zinc 98.11 93.02

The performance accuracy was further validated using self consistency test and jackknife
test. The overall accuracy of the 3™ layer of MetalloPred for Transition Metal Ion binding
class is 66.28%, 57.29%, 63.06%, 57.58%, 69.80%, 59.18%, 60.71% and 56.68%
respectively for the Cobalt, Copper, Iron, Manganese, Molybdenum, Nickel and
Vanadium Metal Ion binding classes based on self consistency test. Similarly, using
jackknife test, the accuracy was found to be 56.00%, 46.53%, 52.96%, 47.06%, 60.06%,
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47.81%, 50.00% and 46.00% respectively for the Cobalt, Copper, Iron, Manganese,
Molybdenum, Nickel and Vanadium Metal Ion binding classes (Table 4.10). Moreover,
the results were robust and hence, the MetalloPred could successfully predict the novel
protein sequence into either of Cobalt, Copper, Iron, Manganese, Molybdenum, Nickel or
Vanadium Metal Ion binding class as evident form the independent data set used for
validation (Table 4.10).

Table 4.10 The performance accuracy of the 3" layer of MetalloPred developed for Transition Metal Jon
binding class based on validation techniques (self consistency test, jackknife test and independentset validation).

3 Independent Set
Class Total Self Consistency Jackknife
Total Correct %
1. Pseudo Amino Acid Composition
Cobalt 50 88.00 78.00 5 60.00
Copper 276 78.26 69.20 30 5333
Iron 82 62.20 53.66 76 60.53
Manganese 129 76.74 68.22 149 66.44
Molybdenum 44 84.09 7273 5 60.00
Nickel 49 93.88 83.67 5 60.00
Vanadium 8.00 87.50 75.00 - -
Zinc 408 60.29 51.23 1779 49.13
2. Amino Acid Composition
Cobalt 50 88.00 80.00 5 80.00
Copper 276 71.38 59.06 30 66.67
Iron 82 67.07 58.54 76 48.68
Manganese 129 70.54 61.24 149 65.77
Molybdenum 44 93.18 84.09 5 60.00
Nickel 49 79.59 67.35 5 80.00
Vanadium 8.00 37.50 37.50 - -
Zinc 408 60.05 52.45 1779 48.62
3. Physicochemical Properties
Cobalt 50 72.00 58.00 5 40.00
Copper 276 47.10 3333 30 50.00
Iron 82 65.85 47.56 76 52.63
b Manganese 129 56.59 41.09 149 51.68
g Molybdenum 44 79.55 63.64 5 60.00
i Nickel 49 46.94 36.73 S 40.00
Vanadium 8.00 87.50 50.00 > C
Zinc 408 46.81 31.13 1779 42.72
4. Pseudo Amino Acid Composition + Amino Acid Composition
Cobalt 50 34.00 26.00 5 20.00
5 Copper 276 38.41 26.81 30 26.67
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Iron 82 29.27 18.29 76 18.42
Manganese 129 25.58 14.73 149 18.12
Molybdenum 44 27.217 18.18 20.00
Nickel 49 28.57 16.33 20.00
Vanadium 8.00 12.50 0.00 - -
Zinc 408 40.69 26.72 1779 33.05
5.Pseudo Amino Acid Composition + Physicochemical Properties

Cobalt 50 84.00 76.00 5 80.00
Copper 276 45.29 39.49 30 40.00
Iron 82 75.61 70.73 76 73.68
Manganese 129 63.57 56.59 149 51.68
Molybdenum 44 81.82 77.27 5 80.00
Nickel 49 7143 63.27 5 80.00
Vanadium 8.00 100.00 100.00 - 5
Zinc 408 64.46 56.86 1779 50.48
6. Amino Acid Composition + Physicochemical Properties

Cobalt 50 62.00 52.00 5 60.00
Copper 276 70.29 59.06 30 46.67
Iron 82 80.49 71.95 76 78.95
Manganese 129 67.44 55.81 149 61.74
Molybdenum 44 84.09 75.00 5 80.00
Nickel 49 55.10 44.90 5 60.00
Vanadium 8.00 87.50 87.50 - -
Zing 408 63.24 54.41 1779 41.65
7. Pseudo Amino Acid Composition + Amino Acid Composition + Physicochemical Properties
Cobalt 50 36.00 22.00 5 20.00
Copper 276 5036 38.77 30 40.00
Iron 82 60.98 50.00 76 44.74
Manganese 129 42.64 31.78 149 34.90
Molybdenum 44 38.64 29.55 5 40.00
Nickel 49 38.78 22.45 5 20.00
Vanadium 8.00 12.50 0.00 - -
Zing 408 61.27 4926 1779 46.66
Average

Cobalt 66.28 56.00 46.00
Copper 57.29 46.53 45.06
Iron 63.06 52.96 49.81
Marganese 57.58 47.06 45.76
Molybdenum 69.80 60.06 4993
Nickel 59.18 47.81 46.06
Vanadium 60.71 50.00 -
Zinc 56.68 46.00 45.70
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By comparing the performance accuracy of the 3" layer of MetalloPred for Transition
Metal Ion binding class between the individual sequence derived features; it has been
observed that the accuracy was better by pseudo amino acid as well as by combining

pseudo amino acid and physiochemical properties.
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Chapter 5
CONCLUSION

From a practical point of view, the most important aspect of a prediction model is its
ability to make correct predictions. Till date most of the available methods usé the 3-D
structure of the protein to predict and classify metal ion binding protein. This is a very
tedious job and requires much costlier endeavors. The sequence of a protein is an
important determinant for the detailed molecular function of proteins, and would
consequently also be useful for prediction of metal ion binding protein and classes.
Additionally much encouraging results have been predicted using the sequence derived
parameters technique. Therefore, a much accurate and reliable method is that predicts the

metal ion binding proteins and metal ion binding protein classes based on both strategies.

This thesis contains detailed work on metal ion binding protein prediction and
classification. We achieved an accuracy of ~ 75% for the prediction of the Metal Ion
binding proteins and its classification into major class and sub-classes using three layer
artificial neural networks. The first level of network imitates the binary model, the second
level of network classify the predicted Metal Ion binding protein into 3 major classes and
the third level of network uses the predicted results of the former to provide a much
detailed and useful classification. The neural network architecture used for the prediction
was optimized for maximum accuracy. This was achieved by gradually testing networks
with variable hidden nodes and retaining the one with highest true predictions. This is the
only best prediction tool available till date, but to the contrary, uses a much simpler and
efficient prediction method based on sequence features. This application not only gives
optimal results with the dataset used but also predicts metal ion binding proteins from
complex genomes to a very high satisfactory level. A much elaborate analysis has been

done, which is evident from the extracted data, figures and tables compiled.
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1.

PUBLICATIONS

MetalloPred: An online tool for hierarchical prediction of Metal Ion Binding
proteins using cluster of neural networks and sequence derived features. -

Piyush Ranjan, Pooja Kesari, Sankalp Jain and Pradeep Kumar Naik
(Communicated to: Journal of Computational Biology)

TpPred: An online tool for hierarchical prediction of Transport proteins using
cluster of neural networks and sequence derived features.

Sankalp Jain, Piyush Ranjan, Pooja Kesari and Pradeep Kumar Naik
(Communicated to: Journal of Computational Biology)
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Appendix I |
Cluster ¢ code:

An example ¢ parser code of ANNpg.aa cluster.

#include<stdio.h>
#include<math.h>
#include<stdlib. h> i?
#include<conio.h>
#include<string.h>
#include "L1.h"
f#finclude "L2.h"
#include "L3A.h"
#finclude "L3AE.h"
#include "L3T.h" 1
#include "LATGI1.h" 11
#include "LATG2.h" I
#include "LATG3.h" u

el il
¢ il
1{n main() W

//making Outfile

FILE *OQUT;
OUT=fopen("metallopred_out.txt","w");
fclose(OUT);

i

//Inputting Descriptors
FILE *PAR;
PAR=fopen("par.xls","r");
double desc[37];

charr;

int i;

| if(PAR ==NULL)

{

printf("cannot open file");
for(i=0;}i<37;H-+) 7
| fiscanf(PAR, "%lg", &desclil);
fclose (P}AR);

//sending to Layer 1
r=L1::pseaal.l(desc);
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if=="M")
{
//sending to Layer 2
r=L2::pseaal .2 (desc);
ifr—="A")
{
/fsending to Layer 3 Alkali
r=L3A:pseaalL.3A(desc);
)
else if(r=="E")
{
/lsending to Layer 3 Alkali Earth
r=L3AE::pseaalL3AE(desc);
ifir=—='C")
{

}
else if(=="M")

{

}
}
else if(r=="T")
{
//sending to Layer 3 Transition

r=L3T::pseaal.3 T(desc);
if(r=="1")
=LATG1 ::pseaal ATG1(desc);

}
else if(r=="2")
{

}
else if(r=='3")

{
=LATG3::pseaal ATG3(desc);
}

}

return 0;

}
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Appendix I1
Parser perl code:

Perl parser which links frontend with the descriptor calculation codes and

] prediction clusters

#1"C/xampp/perl/bin/perl.exe"
#1"C /xampp/perl/lib"

#prediction starter and output web page compiler

print "Content-type: text/html; charset=iso-8859-1\n\n";
print "<htmI>";

use CGI qw(:standard);

$pred=new CGI;

use FileHandle;

#taking in the sequence from the html page
$sequence=$pred->param("sequence");

#taking choice of parameters form html page
$pseaa=$pred->param('pseaa");
$aa=$pred->param("aa");
$pep=$pred->param("pepstat");

#ichecking for errors

#error type - no parameter

if(($pseaa ne "y") && ($aa ne "y") && ($pep ne "y"))

print "Error!!<br>No Parameter type selected... Go Back Again";
goto end;
}

#error type - no sequence

if(!$sequence)

print "Error!!<br>Sequence field empty... Go Back Again";

goto end;
i }
#preparing input sequence file
print "<br>Input Sequence:<br>";
open(INP, "+>par.txt");
@seq=split(/[\n]/,$sequence);
$sequence="";
#removing Fasta comment line
if($seq[0] =~ /">/)

{

print splice(@seq,0,1);
}

55




iHormatting sequence to be ina single line
$sequence=join("",@seq);
$sequence =~ tr/a-z/A-7/;
@seq=0);
Y, @seq=split(//,$sequence);
$sequence="";
firemoving any other exception (errors/non-standard aa) in the sequence
foreach $y(@seq)
{

if($y =~ /[ACDEFGHIKLMNPQRSTVWYY/)
{

$sequence=$sequence.$y;

}
}
print INP ">Query|PDBID|CHAIN|SEQUEN CE\n$sequence";
print "<br>$sequence<br>";
close(INP);

#STARTING PREDICTION based on the choice of parameters(user given)
#firing predictor executers accord ingly

if(($pseaa eq "y") && ($aa ne "y") && ($pep ne "y")) J
{

system "modified_pseaa_desc_calc.exe": |
system "I_PSEAA ANN.exe", !

}
elsif(($pseaa ne "y") && ($aaeq "y") && ($pep ne "y")
{

'2_AA_aa_comp_desc cak.pl’;
system "2_ AA ANN.exe";

}

elsif(($pseaa ne "y") && ($aa ne "y") && ($pep eq "y"))
{
‘pepstats_cale.pl;

'3_PEP_pep_parser.pl’;
! system "3_PEP_ANN.exe",

}
eksif(($pseaa eq "y") && ($aaeq "y") && ($pep ne "y™M)
{

system "modified_pseaa_desc_calc.exe";
‘4_PSEAA_AA aa comp_desc_cak.pl;
system "4_PSEAA_AA_ ANN.exe"; |

M

e

}

ekif(($pseaa eq "y") && ($aa ne "y") && ($pep eq "y")
{
system "modified_pseaa desc_calc.exe";
‘pepstats_calc.pl';
'5_PSEAA_PEP_pep_parser.pl’;
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system "5_PSEAA PEP_ANN.exe";
}

elsif(($pseaa ne "y") && ($aaeq "y") && ($pep eq "y")
{

J '6_AA_PEP_aa comp_desc calc.pl’;
‘pepstats_cale.pl’;
'6_AA_PEP_pep_parser.pl’;
system "6_ AA PEP_ANN.exe";
}

elsif(($pseaa eq "y") && ($aa eq "y") && ($pep eq "y")
{

system "modified_pseaa_desc calc.exe";
“7_PSEAA_AA_PEP aa comp_desc calc.pl’;
“pepstats_cale.pl’;
“7_PSEAA_AA PEP pep parser.pl’;
g system "7_PSEAA AA PEP ANN.exe",
}
#printing the output
open(OUT, "metallopred out.txt");
@output=<OUT>;
close(OUT);
“del par.xls’;
‘del par.txt";
if(glob("pepstat.xls")) {"del pepstat.xls’;}
‘del metallopred_out.txt’;
print "<p align=\"center\"><h3>Output of MetalloPred</h3></p><br>";
foreach $y(@output)

print "$y<br>",

}
end:
print "</html>",
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Appendix III
Pseudo amino acid ¢ code:

C code for calculation of sequence derived features which preserves sequence order

i information

/* Pseudo Amino Acid Composition */

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<conio.h>
ftinclude<fstream.h>
#include<iostream.h>
#include<math.h>

int pcount=0;

void getseq();

int aacheck (char);
float H1(int);

float H2(int);

float M(int);

float SD(float A[20]);
, float avg(float A[20]);
i float J(int,int);

void main()

{

clrscr();
getseq();
cout<<"No of proteins in the file :"<<pcount;
getch();
}

void getseq()
{
char ch,file[15],file1[15]={0};
cout<<"Enter the file containing the sequenecs :";
4 cin>>file; -
‘ ifstream infile(file);
int v=0;,
while(file)

e

filel [v]=file[v];
if(file[v]=="")
{
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filel [v+1]="X';
filel [v+2]='T;
file1[v+3]="s";

break;
] }
v+t
}
ofstream outfile(file1);
while(infile)
{
infile.get(ch);
if(ch==">")
{
char pname[15]={0};
int plength=0;
int =0;
while(ch)
{
infile. get(ch);
ifch=="\n')
break;
}
iflch=="")
-+
int j=0;

i while(F=0)

| {

' : infile.get(ch);
pname[j]=ch;
it
iftoh==")

it+;
}
}

. cout<<pname<<"\n";

! char seq[1800];

J int n=0;

‘ while(infile)

4 {Es

infile.get(ch);
ifch=="\n')
{

infile.get(ch);
iflch=="\n')
break;
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}
seq[n]=ch;
-
}
plength=n;
int count[21]={0},£
for(=0;i<plength;i++)
{
f=aacheck(seq[i]);
count[f]=count[f]+1;
}
float arr[20],P[37];
for(int j=0:j<20;j++)
{

arr[j]=(float)count[j]/plength;
}
float T[17];
for(int =1;r<18;r++)
{
float k=0.0;
for(=0;i<plength-r;it+)

inte,f;
e=aacheck(seq[i]);
f=aacheck(seq[ir]);
if(e!=20 && 1=20)
k=k+J(e,f);
}
T[r-1]=(k/(plength-r));
}
float =0.0;
for(i=0;i<17;i++)
=TT

float g=0.0;
for(i=0;i<20;it++)
{

g=gtarrfi];

float tmp=0.0;

tmp=g+(0.5*1);

for(i=0;i<20;H+)
P[i]=(arr[i]*100)/tmp;

for(=0;i<17;it++)
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{
}

for(=0;i<37;i++)

{

P[20+i]=(0.5* T[i]*100)/tmp;

outfile<<P[i];
outfile<<'\t';

outfile<<\n';
pcountt+;

}
}
}
int aacheck (char h)
{

IR ..

int a;
if(h=='A")
a=0;
else if(h=="C")
a=1;
! else if(h=="D")
l a=2;
else if(h=="E')
a=3;
else if(h=="F")
a=4,
else if(h=="G")
a=5;
else if(h=="H")
a=0;
else if(h=="1")
a=7,;
else if(h=='K")
a=8§;
else if(h=="L")
a=9;
else if(h=="M")
J a=10;
else if(h=="N")
a=11;
! else if(h=="P")
| a=12;
else if(h=='Q")
a=13;
else if(h=="R")
a=14;
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else if(h=='S")
a=135;
else if(h=="T")
a=16;
else if(h=="V")
a=17,;
else if(h=="W")
a=18;
else if(h=="Y")
a=19;
else
a=20;
returna;
}
float J(int x1,int x2)
{
float j,k;
k=(pow((H1(x2)-H1(x1)),2)+pow((H2(x2)-H2(x1)),2 ) +pow((M(x2)-M(x1)),2));
J=k/3;
return j;
}
float H1(int s)

float H1{201={0.62,0.29,-0.90,-0.74,1.19,0.48,-0.40,1.38,-1.50,1.06,0.64,-
0.78,0.12,-0.85,-2.53,-0.18,-0.05,1.08,0.81,0.26} ;

float H;
H=(H1[s]-avg(H1))/SD(H1);
return H;

}

float H2(int s)

float H2[20]={-0.5,-1.0,3.0,3.0,-2.5,0.0,-0.5.-1.8,3.0,-1.8,-1.3,0.2,0.0,0.2,3.0,0.3,-
0.4,-1.5,-3.4,-2.3};

float H;
=(H2[s]-avg(H2))/SD(H2),
return H;
}
float M(int s)
{
float :

M[20]={15.0.47.0,59.0,73.0,91.0,1.0,82.0,57.0,73.0,57.0,75.0,58.0,42.0,72.0,101.0,31.0,
45.0,43.0,130.0,107.0};

float m;

n=(M[s]-avg(M))/SD(M);

return m;
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float SD(float A[20])
{
float sd,a,s=0.0;
a=avg(A);
» for(int 0;i<20;i+)

s=s+pow((A[i]-a),2);
sd=sqrt(s/20);
return sd;

)
float avg(float A[20])
{

float avg,a=0.0;

for(int =0;i<20;iH+)
a=at+A[i];

avg=a/20;

return avg;

-
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Appendix IV

Amino acid perl code:

Perl code for calculation of sequence derived features based on amino acid

composition

#Amino Acid Compostion Based Descriptors
#inputting file
print "\nInput filename (.txt)\t";
$filename=<>;
open (file,$filename)

or print "cannot open sequence file";

#reading file into array

$=0;
while(<file>)
{
if(/~>/)
{
$it+;
$name[$i]=$ ;
}
else
{
chomp($ );
$seq[$i]=$seq[$i].$ ;
}
}
#Reference array

$ref=(ACDEFGHIKLMNPQRSTVWY);
@ref=split(",$ref);

#output file open

print "\nenter output filename: ";
Sout=<>;

open (desc,"+>$out");

#opening sequence and calculating frequency of amino acids
for($i=1;$i<$#name+1;$H++)

{

@pro=0;_ _

@pro=split(",$seq[$i]); .
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for($y=0;8y<$#refr1;$y++)
{
$freq[$y]=0;
}

foreach $aa(@pro)
{
for($j=0;$j<$#reft1;$j++)

{
if ($aa eq $ref[$j])

{
$freq[$j]+=1;
}

}

}
$proname=(split /[|]/,$name[$i])[0];
print "protein: $proname\t@ freq\n";
print desc "$proname\t";
for($k=0;$k<$#ref+1;5k++)
{
$probab=$ freq[$k)/($#pro+1);
if($freq[$k] eq 0)
{
$probab=0;
}
print desc "$probab\t";

print desc "\n";

}
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