JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2024

B.Tech-I Semester (CSE/IT/ECE/CE/M&C)

COURSE CODE (CREDITS): 24B11MA111 (4)

MAX. MARKS: 35

COURSE NAME: ENGINEERING MATHEMATICS-I

COURSE INSTRUCTORS: PKP*, NKT, RKB, MDS

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required

for solving problems. Use of Calculator is permitted.

Q.No.	Question		CO	Marks
	State Caley Hamilton theorem and apply it to find the inverse of the			47A661 IND
Q1	$\operatorname{matrix} \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}.$		CO1	3
Q2	Show that $\lim_{(x,y)\to(0,0)} \frac{x+3\sin^2 y}{3x-y^2}$ does not exist.		CO2	2
Q3	Find the equations for the tangent plane and normal line to the $x^2 + y^2 - 2xy - x + 3y - z = -4$ at the point (2, 3, 18).	surface	CO3	3
Q4	Find the work done by the force field $\vec{F} = 3x^2t + (2xz - y)j$ a particle along the curve $\vec{r} = 2t^2i + tj$ from $t = 0$ to $t = 1$.	in moving	СОЗ	3
Q5	Evaluate $L\left[\frac{te^t \sin 2t}{4}\right]$.		CO4	3
Q6	Evaluate $L\left[\frac{1-e^{3t}}{t}\right]$.		CO4	3
Q7	Define unit step function, and find the Laplace transformation of $f(t) = (t^2 + t - 2)u(t - 1)$.		CO4	3
Q8	Use the convolution theorem to find $L^{-1}\left[\frac{s}{(s-1)(s^2+1)}\right]$.		CO4	3
9	Using bisection method, find an approximate root of the equation $2x - \cos x - 3 = 0$. Carry out the computations up to 4^{th} iterat least three decimal places. Given that the root lies in [1,2].		CO5	3
10	Find the positive root of the equation $x^3 - x - 4 = 0$ correct to three decimal places using Newton-Raphson method. Given that the root of the equation lies between 1 and 2.		CO5	3
11	Find the value of $\tan 33^{\circ}$ using Lagrange's interpolation formula from the data given below: $\begin{array}{ c c c c c c c c c c c c c c c c c c c$		CO5	3
	$\tan x$ 0.5774 0.6249 0.7002 (0.7813		
12	Evaluate $\int_0^6 \frac{dx}{1+x}$ using Simpson's one-third rule correct to 3 decimal places by dividing the interval in to 6 equal parts. Also find the exact value of the above integral and then find absolute, relative and percentage error generated due to numerical integration.		CO5	3