JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -3 EXAMINATION- 2024 B.Tech-V Semester (ECE)

COURSE CODE(CREDITS): 18B11EC511 (4)

MAX. MARKS: 35

COURSE NAME: PRINCIPLES OF DIGITAL SIGNAL PROCESSING

COURSE INSTRUCTORS:Dr. Nishant Jain

MAX. TIME: 2 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

ON)
Q.No	Question	CO	Marks
Q1	a. Represent the sequence $x[n] = \{4,2,-1, 1, 3,2,1,5\}$ as a sum of	CO1	2+2+3
	shifted unit impulses.		= 7
	b. With the help of a block diagram and corresponding equations.		
	state the difference between parallel connections and cascade		
	connections of two LTI systems.		
	c. Determine the step response of the LTI system with impulse		
	response: $h[n] = a^n u[n]$.		
Q2	a. Determine the frequency response of the following causal systems:	COI	3+1+1
	$y[n] - (\frac{1}{4})y[n-1] - (\frac{3}{8})y[n-2] = x[n] + x[n-1]$	CO4	= 5
	b. What is the causality condition for an LTI system?		
	c. State the necessary and sufficient condition on the impulse response		
· · · · · ·	for stability,		
Q3.	a. Find the z-transform of the following discrete time system:	CO4	4+3=7
	$h[n] = \left[-\frac{1}{5}\right]^n u[n] + 5\left[\frac{1}{2}\right]^{-n} u[-n-1]$		
ы	Additionally, determine the region of convergence (ROC) for this		
4. 4. **	system and illustrate it on the z-plane. From the ROC, assess the		
** **	stability of the system.		:
	b. With respect to z-transform, state and explain any three properties		
	of the Region of Convergence.		

Q4	a. Discuss the constraints of the Discrete Time Fourier Transform	CO2	3+4=7
	(DTFT) and the necessity of calculating the Discrete Fourier		
!	Transform (DFT) for signals in the discrete time domain.		
	b. Determine the DFT of the sequence $x[n] = \{1,1\}$ considering N=4.		
	Also draw a frequency response of the magnitude of X(k) obtained.		
Q5.	a. Calculate the circular convolution of the two signals:	CO3	5+2+2
	$x[n] = \{1, 1, 2, 1\}$ and $h[n] = \{1, 2, 3, 4\}$	CO5	=9
	Additionally, find the time domain signal by performing the inverse	240 4 400 400	
	Discrete Fourier Transform (IDFT) on the result derived from the	1	
	circular convolution.		
		<u> </u>	
	b. The first five points of the 8-point DFT of a real valued sequence		
	are {28, -4 + j 9.565, -4 + j4, -4 +j 1.656, -4}. Determine the		
	remaining three points.		
	c. With respect to DFT, prove the following:		
	$W_N^r = W_N^{r \pm N} = W_N^{r \pm 2N} = \dots$		